首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A paralog of the human cell cycle checkpoint gene HUS1 has been identified and designated HUS1B. It encodes a 278-amino-acid protein, 48% identical and 69% similar to HUS1. Mouse and rat orthologs of HUS1B have also been detected by a BLAST search. HUS1B is expressed variably in many human tissues, and the tissue-specific levels observed parallel those for HUS1. A HUS1-RAD1-RAD9 protein complex is thought to form a proliferating cell nuclear antigen (PCNA)-like structure, important for cell cycle checkpoint function. However, HUS1B directly interacts with RAD1, but not RAD9 or HUS1, whereas HUS1 can bind RAD1, RAD9, and another molecule of HUS1, suggesting that HUS1B cannot simply substitute for HUS1 in the complex. HUS1B is less conserved evolutionarily than HUS1. Furthermore, overexpression of HUS1B but not HUS1 in human cells induces clonogenic cell death. We suggest that HUS1B and HUS1 have distinct but related roles in regulating cell cycle checkpoints and genomic integrity.  相似文献   

2.
Mechanisms for genetic control of cell division cycle (checkpoint control) have been studied in most detail in yeast Saccharomyces cerevisiae. To clarify the role of checkpoint genes RAD9, RAD17, RAD24, and RAD53 in cell radioresistance, double mutants were analyzed for cell sensitivity to ionizing radiation. Double mutants carrying mutations in combination with mutation rad9Delta were shown to manifest the epistatic type of interaction. Our results suggest that checkpoint genes RAD9, RAD17, RAD24, and RAD53 belong to a single epistatic group designated RAD9 and govern the same pathway. Genes RAD9 and RAD53 have a positive effect on sensitivity to gamma-radiation, whereas RAD17 and RAD24 have a negative effect. Interactions between mutations may differ when considering their sensitivity to gamma-radiation and UV light; mutations rad9Delta and rad24Delta were shown to manifest the additive effect in the first case and epistatic effect in the second.  相似文献   

3.
Mechanisms for genetic control of cell division cycle (checkpoint control) have been studied in most detail in yeast Saccharomyces cerevisiae. To clarify the role of checkpoint genes RAD9, RAD17, RAD24, and RAD53 in cell radioresistance, double mutants were analyzed for cell sensitivity to ionizing radiation. Double mutants carrying mutations in combination with mutation rad9delta were shown to manifest the epistatic type of interaction. Our results suggest that checkpoint genes RAD9, RAD17, RAD24, and RAD53 belong to a single epistatic group designated RAD9 and govern the same pathway. Genes RAD9 and RAD53 have a positive effect on sensitivity to gamma-radiation, whereas RAD17 and RAD24 have a negative effect. Interactions between mutations may differ when considering their sensitivity to gamma-radiation and UV light; mutations rad9delta and rad24delta were shown to manifest the additive effect in the first case and epistatic effect in the second.  相似文献   

4.
5.
The RAD51 gene is a eukaryotic homolog of rec A, a critical component in homologous recombination and DNA repair pathways in Escherichia coli . We have cloned the RAD51 homolog from Tetrahymena thermophila , a ciliated protozoan. Tetrahymena thermophila RAD51 encodes a 36.3 kDa protein whose amino acid sequence is highly similar to representative Rad51 homologs from other eukaryotic taxa. Recombinant Rad51 protein was purified to near homogeneity following overproduction in a bacterial expression system. The purified protein binds to both single- and double-stranded DNA, possesses a DNA-dependent ATPase activity and promotes intermolecular ligation of linearized plasmid DNA. While steady-state levels of Rad51 mRNA are low in normally growing cells, treatment with UV light resulted in a >100-fold increase in mRNA levels. This increase in mRNA was time dependent, but relatively independent of UV dose over a range of 1400-5200 J/m2. Western blot analysis confirmed that Rad51 protein levels increase upon UV irradiation. Exposure to the alkylating agent methyl methane sulfonate also resulted in substantially elevated Rad51 protein levels in treated cells, with pronounced localization in the macronucleus. These data are consistent with the hypothesis that ciliates such as T.thermophila utilize a Rad51-dependent pathway to repair damaged DNA.  相似文献   

6.
Tocochromanols (tocopherols and tocotrienols) are micronutrients with antioxidant properties synthesized by photosynthetic bacteria and plants that play important roles in animal and human nutrition. There is considerable interest in identifying the genes involved in tocochromanol biosynthesis to allow transgenic modification of both tocochromanol levels and tocochromanol composition in agricultural crops. The first committed reaction in tocopherol biosynthesis is the condensation of homogentisic acid (HGA) with phytyldiphosphate or geranylgeranyldiphosphate, catalyzed by the homogentisate phytyltransferase (VTE2) or by the homogentisate geranylgeranyl transferase (HGGT). In this study, we describe the identification of conserved amino acid sequences within VTE2 and HGGT and the application of these conserved sequences for a motif analysis resulting in the discovery of a VTE2-paralog in the Arabidopsis genome. We designated this new gene VTE2-2 and renamed the old VTE2 to VTE2-1. Seed-specific expression of VTE2-2 in Arabidopsis resulted in increased seed-tocopherol levels, similar to the transgenic expression of VTE2-1. Bioinformatics analysis revealed that VTE2-2 is conserved in both monocotyledonous and dicotyledonous plants and is distinct from VTE2-1 and HGGT.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.Tyamagondlu V. Venkatesh, and Balasulojini Karunanandaa have equally contributed.  相似文献   

7.
Bloom's syndrome (BS) is a genetic disorder associated with short stature, fertility defects, and a predisposition to the development of cancer. BS cells are characterized by genomic instability; in particular, a high rate of reciprocal exchanges between sister-chromatids and homologous chromosomes. The BS gene product, BLM, is a helicase belonging to the highly conserved RecQ family. BLM is known to form a complex with the RAD51 recombinase, and to act upon DNA intermediates that form during homologous recombination, including D-loops and Holliday junctions. Here, we show that BLM also makes a direct physical association with the RAD51L3 protein (also known as RAD51D), a so-called RAD51 paralog that shows limited sequence similarity to RAD51 itself. This interaction is mediated through the N-terminal domain of BLM. To analyze functional interactions between BLM and RAD51L3, we have purified a heteromeric complex comprising RAD51L3 and a second RAD51 paralog, XRCC2. We show that the RAD51L3-XRCC2 complex stimulates BLM to disrupt synthetic 4-way junctions that model the Holliday junction. We also show that a truncated form of BLM, which retains helicase activity but is unable to bind RAD51L3, is not stimulated by the RAD51L3-XRCC2 complex. Our data indicate that the activity of BLM is modulated through an interaction with the RAD51L3-XRCC2 complex, and that this stimulatory effect on BLM is dependent upon a direct physical association between the BLM and RAD51L3 proteins. We propose that BLM co-operates with RAD51 paralogs during the late stages of homologous recombination processes that serve to restore productive DNA replication at sites of damaged or stalled replication forks.  相似文献   

8.
J Willson  S Wilson  N Warr    F Z Watts 《Nucleic acids research》1997,25(11):2138-2146
Checkpoint controls exist in eukaryotic cells to ensure that cells do not enter mitosis in the presence of DNA damage or unreplicated chromosomes. In Schizosaccharomyces pombe many of the checkpoint genes analysed to date are required for both the DNA damage and the replication checkpoints, an exception being chk1 . We report here on the characterization of nine new methylmethane sulphonate (MMS)-sensitive S.pombe mutants, one of which is defective in the DNA damage checkpoint but not the replication checkpoint. We have cloned and sequenced the corresponding gene. The predicted protein is most similar to the Saccharomyces cerevisiae Rad9 protein, having 46% similarity and 26% identity. The S.pombe protein, which we have named Rhp9 (Rad9 homologue in S. pombe) on the basis of structural and phenotypic similarity, also contains motifs present in BRCA1 and 53BP1. Deletion of the gene is not lethal and results in a DNA damage checkpoint defect. Epistasis analysis with other S.pombe checkpoint mutants indicates that rhp9 acts in a process involving the checkpoint rad genes and that the rhp9 mutant is phenotypically very similar to chk1.  相似文献   

9.
10.
Diploid Saccharomyces cells experiencing a double-strand break (DSB) on one homologous chromosome repair the break by RAD51-mediated gene conversion >98% of the time. However, when extensive homologous sequences are restricted to one side of the DSB, repair can occur by both RAD51-dependent and RAD51-independent break-induced replication (BIR) mechanisms. Here we characterize the kinetics and checkpoint dependence of RAD51-dependent BIR when the DSB is created within a chromosome. Gene conversion products appear within 2 h, and there is little, if any, induction of the DNA damage checkpoint; however, RAD51-dependent BIR occurs with a further delay of 2 to 4 h and cells arrest in response to the G(2)/M DNA damage checkpoint. RAD51-dependent BIR does not require special facilitating sequences that are required for a less efficient RAD51-independent process. RAD51-dependent BIR occurs efficiently in G(2)-arrested cells. Once repair is initiated, the rate of repair replication during BIR is comparable to that of normal DNA replication, as copying of >100 kb is completed less than 30 min after repair DNA synthesis is detected close to the DSB.  相似文献   

11.
RADiation sensitive52 (RAD52) mediates RAD51 loading onto single-stranded DNA ends, thereby initiating homologous recombination and catalyzing DNA annealing. RAD52 is highly conserved among eukaryotes, including animals and fungi. This article reports that RAD52 homologs are present in all plants whose genomes have undergone extensive sequencing. Computational analyses suggest a very early RAD52 gene duplication, followed by later lineage-specific duplications, during the evolution of higher plants. Plant RAD52 proteins have high sequence similarity to the oligomerization and DNA binding N-terminal domain of RAD52 proteins. Remarkably, the two identified Arabidopsis thaliana RAD52 genes encode four open reading frames (ORFs) through differential splicing, each of which specifically localized to the nucleus, mitochondria, or chloroplast. The A. thaliana RAD52-1A ORF provided partial complementation to the yeast rad52 mutant. A. thaliana mutants and RNA interference lines defective in the expression of RAD52-1 or RAD52-2 showed reduced fertility, sensitivity to mitomycin C, and decreased levels of intrachromosomal recombination compared with the wild type. In summary, computational and experimental analyses provide clear evidence for the presence of functional RAD52 DNA-repair homologs in plants.  相似文献   

12.
ST0838 (designed stRad55B) is one of the four RadA paralogs (or Rad55 homologues) in the genome of the hyperthermophilic crenarchaeon Sulfolobus tokodaii. The gene is induced by UV irradiation, suggesting that it is involved in DNA recombinational repair in this organism. However, this protein could not be expressed normally in vitro. In this study, thermostable and soluble stRad55B was obtained by co-expression with S. tokodaii RadA (stRadA) in E. coli, and the enzymatic properties were examined. It was found that stRad55B bound ssDNA preferentially and had a very weak ATPase activity that was not stimulated by DNA. The recombinant protein inhibited the strand exchange activity promoted by stRadA, indicating that stRad55B might be an inhibitor to the homologous recombination in this archaeon. The results will be helpful for further functional and interaction analysis of RadA paralogs and for the understanding of the mechanism of recombinational repair in archaea. Supported by the National Basic Research Program of China (Grant No. 2004CB719604) and National Natural Science Foundation of China (Grant Nos. 30470386 and 30700011)  相似文献   

13.
Hang H  Lieberman HB 《Genomics》2000,65(1):24-33
Schizosaccharomyces pombe hus1 promotes radioresistance and hydroxyurea resistance, as well as S and G2 phase checkpoint control. We isolated a human cDNA homologous to hus1, called HUS1. The major focus of this report is on a detailed analysis of the physical interactions of the HUS1-encoded protein and two other checkpoint control proteins, RAD1p and RAD9p, implicated in the cellular response to DNA damage. We found that HUS1p interacts with itself and the N-terminal region of RAD1p. In contrast, the C-terminal portion of the checkpoint protein RAD9p is essential for interacting with HUS1p and the C-terminal region of RAD1p. Since the N-terminal portion of RAD9p was previously demonstrated to participate in apoptosis, this protein likely has at least two functional domains, one that regulates programmed cell death and another that regulates cell cycle checkpoint control. Truncated versions of HUS1p are unable to bind RAD1p, RAD9p, or another HUS1p molecule. RAD1p-RAD1p and RAD9p-RAD9p interactions can be demonstrated by coimmunoprecipitation, but not by two-hybrid analysis, suggesting that the proteins associate as part of a complex but do not interact directly. Northern blot analysis indicates that HUS1 is expressed in different tissues, but the mRNA is most predominant in testis where high levels of RAD1 and RAD9 message have been detected. These studies suggest that HUS1p, RAD9p, and RAD1p form a complex in human cells and may function in a meiotic checkpoint in addition to the cell cycle delays induced by incomplete DNA replication or DNA damage.  相似文献   

14.
ST0838 (designed stRad55B) is one of the four RadA paralogs (or Rad55 homologues) in the genome of the hyperthermophilic crenarchaeon Sulfolobus tokodaii. The gene is induced by UV irradiation, suggesting that it is involved in DNA recombinational repair in this organism. However, this protein could not be expressed normally in vitro. In this study, thermostable and soluble stRad55B was obtained by co-expression with S. tokodaii RadA (stRadA) in E. coli, and the enzymatic properties were examined. It was found that stRad55B bound ssDNA preferentially and had a very weak ATPase activity that was not stimulated by DNA. The recombinant protein inhibited the strand exchange activity promoted by stRadA, indicating that stRad55B might be an inhibitor to the homologous recombination in this archaeon. The results will be helpful for further functional and interaction analysis of RadA paralogs and for the understanding of the mechanism of recombinational repair in archaea.  相似文献   

15.
16.
17.
18.
D R Higgins  S Prakash  P Reynolds  L Prakash 《Gene》1983,26(2-3):119-126
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号