首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma) is essential for placental development. Here, we show that the mucin gene Muc1 is a PPARgamma target, whose expression is lost in PPARgamma null placentas. During differentiation of trophoblast stem cells, PPARgamma is strongly induced, and Muc1 expression is upregulated by the PPARgamma agonist rosiglitazone. Muc1 promoter is activated strongly and specifically by liganded PPARgamma but not PPARalpha or PPARdelta. A PPAR binding site (DR1) in the proximal Muc1 promoter acts as a basal silencer in the absence of PPARgamma, and its cooperation with a composite upstream enhancer element is both necessary and sufficient for PPARgamma-dependent induction of Muc1. In the placenta, MUC1 protein is localized exclusively to the apical surface of the labyrinthine trophoblast around maternal blood sinuses, resembling its luminal localization on secretory epithelia. Last, variably penetrant maternal blood sinus dilation in Muc1-deficient placentas suggests that Muc1 regulation by PPARgamma contributes to normal placental development but also that the essential functions of PPARgamma in the organ are mediated by other targets.  相似文献   

2.
3.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising cancer therapy that preferentially induces apoptosis in cancer cells. However, many neoplasms are resistant to TRAIL by mechanisms that are poorly understood. Here we demonstrate that human breast cancer cells, but not normal mammary epithelial cells, are dramatically sensitized to TRAIL-induced apoptosis and caspase activation by peroxisome proliferator-activated receptor gamma (PPARgamma) agonists of the thiazolidinedione (TZD) class. Although TZDs do not significantly alter the expression of components of the TRAIL signaling pathway, they profoundly reduce protein levels of cyclin D3, but not other D-type cyclins, by decreasing cyclin D3 mRNA levels and by inducing its proteasomal degradation. Importantly, both TRAIL sensitization and reduction in cyclin D3 protein levels induced by TZDs are likely PPARgamma-independent because a dominant negative mutant of PPARgamma did not antagonize these effects of TZDs, nor were they affected by the expression levels of PPARgamma. TZDs also inhibit G(1) to S cell cycle progression. Furthermore, silencing cyclin D3 by RNA interference inhibits S phase entry and sensitizes breast cancer cells to TRAIL, indicating a key role for cyclin D3 repression in these events. G(1) cell cycle arrest sensitizes breast cancer cells to TRAIL at least in part by reducing levels of the anti-apoptotic protein survivin: ectopic expression of survivin partially suppresses apoptosis induced by TRAIL and TZDs. We also demonstrate for the first time that TZDs promote TRAIL-induced apoptosis of breast cancer in vivo, suggesting that this combination may be an effective therapy for cancer.  相似文献   

4.
5.
The cyclin D1 gene encodes the regulatory subunit of a holoenzyme that phosphorylates and inactivates the pRB tumor suppressor protein. Cyclin D1 is overexpressed in 20-30% of human breast tumors and is induced both by oncogenes including those for Ras, Neu, and Src, and by the beta-catenin/lymphoid enhancer factor (LEF)/T cell factor (TCF) pathway. The ankyrin repeat containing serine-threonine protein kinase, integrin-linked kinase (ILK), binds to the cytoplasmic domain of beta(1) and beta(3) integrin subunits and promotes anchorage-independent growth. We show here that ILK overexpression elevates cyclin D1 protein levels and directly induces the cyclin D1 gene in mammary epithelial cells. ILK activation of the cyclin D1 promoter was abolished by point mutation of a cAMP-responsive element-binding protein (CREB)/ATF-2 binding site at nucleotide -54 in the cyclin D1 promoter, and by overexpression of either glycogen synthase kinase-3beta (GSK-3beta) or dominant negative mutants of CREB or ATF-2. Inhibition of the PI 3-kinase and AKT/protein kinase B, but not of the p38, ERK, or JNK signaling pathways, reduced ILK induction of cyclin D1 expression. ILK induced CREB transactivation and CREB binding to the cyclin D1 promoter CRE. Wnt-1 overexpression in mammary epithelial cells induced cyclin D1 mRNA and targeted overexpression of Wnt-1 in the mammary gland of transgenic mice increased both ILK activity and cyclin D1 levels. We conclude that the cyclin D1 gene is regulated by the Wnt-1 and ILK signaling pathways and that ILK induction of cyclin D1 involves the CREB signaling pathway in mammary epithelial cells.  相似文献   

6.
7.
8.
9.
10.
Cellular proliferation and migration are fundamental processes that contribute to the injury response in major blood vessels. The resultant pathologies are atherosclerosis and restenosis. As we begin to understand the cellular changes associated with vascular injury, it is critical to determine whether the inhibition of growth and movement of cells in the vasculature could serve as a novel therapeutic strategy to prevent atherosclerosis and restenosis.  相似文献   

11.
Peroxisome proliferator-activated receptor gamma (PPARgamma) causes epithelial to mesenchymal transformation (EMT) in intestinal epithelial cells, as evidenced by reorganization of the actin cytoskeleton, acquisition of a polarized, mesenchymal cellular morphology, increased cellular motility, and colony scattering. This response is due to activation of Cdc42, resulting in p21-activated kinase-dependent phosphorylation and activation of MEK1 Ser(298) and activation of ERK1/2. Dominant negative MEK1, MEK2, and ERK2 block PPARgamma-induced EMT, whereas constitutively active MEK1 and MEK2 induce a mesenchymal phenotype similar to that evoked by PPARgamma. PPARgamma also stimulates ERK1/2 phosphorylation in the intestinal epithelium in vivo. PPARgamma induces the p110alpha subunit of phosphoinositide 3-kinase (PI3K), and inhibition of PI3K blocks PPARgamma-dependent phosphorylation of MEK1 Ser(298), activation of ERK1/2, and EMT. We conclude that PPARgamma regulates the motility of intestinal epithelial cells through a mitogen-activated protein kinase cascade that involves PI3K, Cdc42, p21-activated kinase, MEK1, and ERK1/2. Regulation of cellular motility through Rho family GTPases has not been previously reported for nuclear receptors, and elucidation of the mechanism that accounts for the role of PPARgamma in regulating motility of intestinal epithelial cells provides fundamental new insight into the function of this receptor during renewal of the intestinal epithelium.  相似文献   

12.
13.
alpha1-Acid glycoprotein (alpha1-AGP) is an acute phase protein that can potentiate cytokine secretion by mononuclear cells and may induce thrombosis by stabilizing the inhibitory activity of plasminogen activator inhibitor-1. Thus, alpha1-AGP may promote pathobiologies associated with type 2 diabetes mellitus (T2DM) including insulin resistance and cardiovascular disease. Here, we demonstrate that antidiabetic peroxisome proliferator-activated receptor gamma (PPARgamma) agonists inhibited expression of 3T3-L1 adipocyte alpha1-AGP in a concentration- and time-dependent manner via an apparent PPARgamma-mediated mechanism. As a result, synthesis and secretion of the glycoprotein was reduced. While PPARgamma agonist regulation of genes with functional peroxisome proliferator response elements in their promoter such as phosphoenolpyruvate carboxykinase were unaffected when cellular protein synthesis was inhibited, downregulation of alpha1-AGP mRNA was ablated thereby supporting the proposition that PPARgamma activation inhibits alpha1-AGP expression indirectly. These results suggest a potential novel adipocytic mechanism by which PPARgamma agonists may ameliorate T2DM-associated insulin resistance and cardiovascular disease.  相似文献   

14.
15.
16.
17.
The role of peroxisome proliferator-activated receptor gamma (PPARgamma) in adipocyte physiology has been exploited for the treatment of diabetes. The expression of PPARgamma in lymphoid organs and its modulation of macrophage inflammatory responses, T cell proliferation and cytokine production, and B cell proliferation also implicate it in immune regulation. Despite significant human exposure to PPARgamma agonists, little is known about the consequences of PPARgamma activation in the developing immune system. Here, well-characterized models of B lymphopoiesis were used to investigate the effects of PPARgamma ligands on nontransformed pro/pre-B (BU-11) and transformed immature B (WEHI-231) cell development. Treatment of BU-11, WEHI-231, or primary bone marrow B cells with PPARgamma agonists (ciglitazone and GW347845X) resulted in rapid apoptosis. A role for PPARgamma and its dimerization partner, retinoid X receptor (RXR)alpha, in death signaling was supported by 1) the expression of RXRalpha mRNA and cytosolic PPARgamma protein, 2) agonist-induced binding of PPARgamma to a PPRE, and 3) synergistic increases in apoptosis following cotreatment with PPARgamma agonists and 9-cis-retinoic acid, an RXRalpha agonist. PPARgamma agonists activated NF-kappaB (p50, Rel A, c-Rel) binding to the upstream kappaB regulatory element site of c-myc. Only doses of agonists that induced apoptosis stimulated NF-kappaB-DNA binding. Cotreatment with 9-cis-retinoic acid and PPARgamma agonists decreased the dose required to activate NF-kappaB. These data suggest that activation of PPARgamma-RXR initiates a potent apoptotic signaling cascade in B cells, potentially through NF-kappaB activation. These results have implications for the nominal role of the PPARgamma in B cell development and for the use of PPARgamma agonists as immunomodulatory therapeutics.  相似文献   

18.
19.
Retinoid x receptor alpha (RXRalpha) serves as an active partner of peroxisome proliferator-activated receptor (PPARalpha). In order to dissect the functional role of RXRalpha and PPARalpha in PPARalpha-mediated pathways, the hepatocyte RXRalpha-deficient mice have been challenged with physiological and pharmacological stresses, fasting and Wy14,643, respectively. The data demonstrate that RXRalpha and PPARalpha deficiency are different in several aspects. At the basal untreated level, RXRalpha deficiency resulted in marked induction of apolipoprotein A-I and C-III (apoA-I and apoC-III) mRNA levels and serum cholesterol and triglyceride levels, which was not found in PPARalpha-null mice. Fasting-induced PPARalpha activation was drastically prevented in the absence of hepatocyte RXRalpha. Wy14,643-mediated pleiotropic effects were also altered due to the absence of hepatocyte RXRalpha. Hepatocyte RXRalpha deficiency did not change the basal acyl-CoA oxidase, medium chain acyl-CoA dehydrogenase, and malic enzyme mRNA levels. However, the inducibility of those genes by Wy14,643 was markedly reduced in the mutant mouse livers. In contrast, the basal cytochrome P450 4A1, liver fatty acid-binding protein, and apoA-I and apoC-III mRNA levels were significantly altered in the mutant mouse livers, but the regulatory effect of Wy14,643 on expression of those genes remained the same. Wy14,643-induced hepatomegaly was partially inhibited in hepatocyte RXRalpha-deficient mice. Wy14,643-induced hepatocyte peroxisome proliferation was preserved in the absence of hepatocyte RXRalpha. These data suggested that in comparison to PPARalpha, hepatocyte RXRalpha has its unique role in lipid homeostasis and that the effect of RXRalpha, -beta, and -gamma is redundant in certain aspects.  相似文献   

20.
Peroxisome proliferator-activated receptor alpha (PPARalpha) activation by fibrates controls expression of several genes involved in hepatic cholesterol metabolism. Other genes could be indirectly controlled in response to changes in cellular cholesterol availability. To further understand how fibrates may affect cholesterol synthesis, we investigated in parallel the changes in the metabolic pathways contributing to cholesterol homeostasis in liver. Ciprofibrate increased HMG-CoA reductase and FPP synthase mRNA levels in rat hepatocytes, together with cholesterogenesis from [(14)C] acetate and [(3)H] mevalonate. The up-regulation observed in fenofibrate- and WY-14,643-treated mice was abolished in PPARalpha-null mice, showing an essential role of PPARalpha. Among the three sterol regulatory element-binding protein (SREBP) mRNA species, only SREBP-1c level was significantly increased. In ciprofibrate-treated hepatocytes, cholesterol efflux was decreased, in parallel with cholesteryl ester storage and bile acids synthesis. As expected, AOX expression was strongly induced, supporting evidence of the peroxisome proliferation. Taken together, these results show that fibrates can cause cholesterol depletion in hepatocytes, possibly in part as a consequence of an important requirement of cholesterol for peroxisome proliferation, and increase cholesterogenesis by a compensatory phenomenon afterwards. Such cholesterogenesis regulation could occur in vivo, in species responsive to the peroxisome proliferative effect of PPARalpha ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号