首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Conjugated Dopamine in Superfusates of Slices of Rat Striatum   总被引:3,自引:3,他引:0  
Abstract: An acid-hydrolyzable conjugate of 3,4-dihydroxyphenylethylamine (dopamine, DA) was detected in superfusates from slices from rat striatum. The concentrations of endogenous free and conjugated DA, and of the acid metabolites (3,4-dihydroxyphenylacetic acid [DOPAC] and homovanillic acid [HVA]) in superfusates were measured using HPLC with electrochemical detection. Conjugated DA in superfusates represented 10–20% of the free DA under basal conditions and during release evoked by p -tyramine (5 × 10−6 M to 5 × 10−4 M ); much smaller amounts of conjugated DA overflowed into superfusate when DA was released by equimolar concentrations of β-phenylethyl-amine. Surprisingly, inhibition of monoamine oxidase by the inhibitors N -methyl- N -propargyl-3-(2,4-dichlorophenoxy)propylamine hydrochlo-ride (clorgyline) or N -methyl- N -2-propynylbenylamine (pargyline) had little effect on the amounts of conjugated DA present in superfusate. Under basal conditions, the amounts of conjugated DA in superfusate were always less than the amounts of DOPAC but quite similar to the amounts of HVA. However, during release of DA evoked by p -tyramine the concentrations of conjugated DA in superfusate showed much more pronounced increases than those of the acidic metabolites.  相似文献   

2.
The release of endogenous dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) was measured in superfused striatal slices of the rat and the results compared with data obtained for the release of endogenous (a) DA and DOPAC in the cerebral cortex, nucleus accumbens and thalamus; (b) 5-hydroxytryptamine (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), GABA, and glutamate in the striatum; and (c) GABA, glutamate and 5-HT in the cerebral cortex. In superfused slices of all four CNS regions, there appeared to be a Ca2+-dependent, K+-stimulated release of endogenous DA. In addition, in slices of the striatum and nucleus accumbens there also appeared to be a Ca2+-dependent, 60 mM K+ stimulated release of endogenous DOPAC. In the striatum, 16 mM Mg2+ was as effective as 2.5 mM Ca2+ in promoting the 60 mM K+-stimulated release of DOPAC. In addition, 16 mM Mg2+ appeared to function as a weak Ca2+ agonist since it also promoted the release of DA to approximately 40% of the level attained with Ca2+ in the presence of 60 mM K+. On the other hand, in the striatum, 16 mM Mg2+ inhibited the Ca2+-dependent, 60 mM K+-stimulated release of GABA and glutamate. Similar Mg2+-inhibition was observed in the cerebral cortex not only for GABA and glutamate but also for DA and 5-HT. With the use of -methyl -tyrosine (tyrosine hydroxylase inhibitor), cocaine (uptake inhibitor) and pargyline (monoamine oxidase inhibitor), it was determined that (a) most of the released DA and DOPAC was synthesized in the slices during the superfusion; (b) DOPAC was not formed from DA which had been released and taken up; and (c) DA and DOPAC were released from DA nerve terminals. In addition, the data indicate a difference in the release process between the amino acids and the monoamines from striatal slices since Mg2+ inhibited the Ca2+-dependent, K+-stimulated release of GABA and glutamate and appeared to promote the release of DA and 5-HT.  相似文献   

3.
X M Guan  W J McBride 《Life sciences》1988,42(25):2625-2631
The effect of local pH on the in vivo efflux of endogenous dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) following administration of d-amphetamine (AMPH) was examined in the striatum of the anesthetized rat using two bilaterally placed push-pull cannulae. At both pH 7.3 and 6.4, the baseline efflux values for DA and DOPAC were approximately 0.2 and 25 pmoles/15 min, respectively. Subcutaneous injection of 2 mg/kg AMPH induced a 3-fold increase of DA release at pH 7.3 and a 21-fold increase of DA release at pH 6.4. In both cases, the maximum was reached at about 30 min after the drug administration. Following the administration of AMPH, the efflux of DOPAC was reduced to the same degree (20% of control values) under both pH conditions. In vitro data showed that the lower pH did not alter the recovery of DA or DOPAC. In addition, release of DA produced by local perfusion with 5 uM AMPH was also greater at the lower pH (50-fold increase over baseline) than at the physiological pH (10-fold increase over baseline). The stimulated DA release produced by local perfusion with 35 mM K+, however, was the same at both pH values. Preliminary experiments also indicated that there was a pH effect for AMPH-induced serotonin (5-HT) release but that the difference in the amount of 5-HT in the two media was not nearly as large as that obtained for DA. The markedly elevated level of extracellular DA at the lower pH might be due to a higher affinity of the DA uptake system for AMPH, thereby producing greater inhibition of DA uptake as well as enhanced DA release. The data also suggest an enhanced affinity of AMPH for 5-HT uptake sites at the lower pH.  相似文献   

4.
The effects of a number of biochemical and pharmacological manipulations on amphetamine (AMPH)-induced alterations in dopamine (DA) release and metabolism were examined in the rat striatum using the in vivo brain microdialysis method. Basal striatal dialysate concentrations were: DA, 7 nM; dihydroxyphenylacetic acid (DOPAC), 850 nM; homovanillic acid (HVA), 500 nM; 5-hydroxyindoleacetic acid (5-HIAA), 300 nM; and 3-methoxytyramine (3-MT), 3 nM. Intraperitoneal injection of AMPH (4 mg/kg) induced a substantial increase in DA efflux, which attained its maximum response 20-40 min after drug injection. On the other hand, DOPAC and HVA efflux declined following AMPH. The DA response, but not those of DOPAC and HVA, was dose dependent within the range of AMPH tested (2-16 mg/kg). High doses of AMPH (greater than 8 mg/kg) also decreased 5-HIAA and increased 3-MT efflux. Depletion of vesicular stores of DA using reserpine did not affect significantly AMPH-induced dopamine efflux. In contrast, prior inhibition of catecholamine synthesis, using alpha-methyl-p-tyrosine, proved to be an effective inhibitor of AMPH-evoked DA release (less than 35% of control). Moreover, the DA releasing action of AMPH was facilitated in pargyline-pretreated animals (220% of control). These data suggest that AMPH releases preferentially a newly synthesised pool of DA. Nomifensine, a DA uptake inhibitor, was an effective inhibitor of AMPH-induced DA efflux (18% of control). On the other hand, this action of AMPH was facilitated by veratrine and ouabain (200-210% of control). These results suggest that the membrane DA carrier may be involved in the actions of AMPH on DA efflux.  相似文献   

5.
The nature of postsynaptic sites involved in the uptake and metabolism of striatal 3,4-dihydroxyphenylethylamine (dopamine, DA) was investigated. The accumulation of [3H]DA (10(-7) M) into slices of rat striatum was found to be greatly dependent (greater than 99%) on the presence of sodium ion in the incubation medium. However, the formation of the [3H]dihydroxyphenylacetic acid (DOPAC) and [3H]homovanillic acid (HVA) was only partially reduced in the absence of sodium (DOPAC, 27% of control; HVA, 47% of control). Inhibition of carrier-mediated DA neuronal uptake with nomifensine (10(-5) M) significantly decreased DA accumulation (18% of control) and [3H]DOPAC formation (62% of control), but enhanced [3H]HVA production (143% of control). Inhibition of the 5-hydroxytryptamine (5-HT, serotonin) neuronal uptake system with fluoxetine (10(-6) M) or selective 5-HT neuronal lesions with 5,7-dihydroxytryptamine (5,7-DHT) had no effect on [3H]DOPAC or [3H]HVA formed from [3H]DA in the presence or absence of nomifensine. These results demonstrate that the uptake and subsequent metabolism of striatal DA to DOPAC and HVA is only partially dependent on carrier-mediated uptake mechanism(s) requiring sodium ion. These data support our previous findings suggesting a significant role for synaptic glial cell deamination and O-methylation of striatal DA. Further, experiments with fluoxetine or 5,7-DHT suggest that 5-HT neurons do not significantly contribute in the synaptic uptake and metabolism of striatal DA.  相似文献   

6.
The effect of the systemic administration of a novel, orally active, catechol-O-methyltransferase (COMT) inhibitor, Ro 40-7592, on the in vivo extracellular concentrations of dopamine (DA) and its metabolites, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), was studied by transcerebral microdialysis in the dorsal caudate of freely moving rats. Ro 40-7592 (at doses of 3.0, 7.5, and 30 mg/kg p.o.) elicited a marked and long-lasting reduction of HVA, and at doses of 7.5 and 30 mg/kg, an increase of DOPAC output, but it failed to increase DA output. The administration of L-beta-3,4-dihydroxyphenylalanine (L-DOPA, 20 and 50 mg/kg p.o.) with a DOPA decarboxylase inhibitor (benserazide) increased both HVA and DOPAC output, but failed to modify significantly extracellular DA concentrations in dialysates; in contrast, combined administration of L-DOPA+benserazide with Ro 40-7592 (30 mg/kg p.o.) resulted in a significant increase in DA output. Ro 40-7592 prevented the L-DOPA-induced increase in HVA output and markedly potentiated the increase in DOPAC output. To investigate to what extent the increase in extracellular DA concentrations was related to an exocitotic release, tetrodotoxin (TTX) sensitivity was tested. Addition of TTX to Ringer, although abolishing DA output in the absence of L-DOPA, partially reduced it in the presence of L-DOPA+Ro 40-7592 and even more so after L-DOPA without the COMT inhibitor. The results of the present study suggest that metabolism through COMT regulates extracellular concentrations of DA formed from exogenously administered L-DOPA but not of endogenous DA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The effects of amphetamine (amph) and high K+ on the synthesis and release of dopamine (DA) were compared in striatal slices. Both agents stimulated DA synthesis as well as release. For both agents, Ca2+ was required for the initiation of synthesis stimulation as well as for the maintenance of this stimulation. The addition of EGTA to medium containing slices that were already stimulated by 1.0 microM-amph or 55 mM-K+ markedly reduced the stimulation of DA synthesis. Although it has been reported that high K+ activates soluble tyrosine hydroxylase (TH), neither high K+ nor amph appeared to increase the affinity of the synthetic cofactor, 6-MPH4, or decrease the affinity of the catechol, DA, for TH. This finding was supported by the observation that the inhibitory effect of L-DOPA on DA synthesis in slices, in which synthesis was stimulated by either agent, was not decreased. Although both 1.0 microM-amph and 55 mM-K+ stimulated the release of [3H]DA from striatal slices, the release produced by K+ was Ca2+-dependent, whereas release produced by amph did not occur at any concentration tested. Studies on pH requirements for both synthesis and release also confirmed a similarity between amph and K+ in stimulating synthesis but not in stimulating release. These results suggest that depolarizing agents, such as high K+, couple synthesis and release of DA by a Ca2+-dependent mechanism. In contrast, the simultaneous stimulation of synthesis and release by amph is not regulated by Ca2+.  相似文献   

8.
The invivo of four psychomotor stimulants (d-amphetamine, β-phenylethylamine, cocaine and methylphenidate) were determined on: 1) the rate of dopamine (DA) synthesis, as measured by the accumulation of dihydroxyphenylalanine (DOPA) after aromatic L-amino acid decarboxylase inhibition, in the striatum (terminals of nigrostriatal neurons) and in the nucleus accumbens and olfactory tubercle (terminals of mesolimbic neurons) and 2) the efflux of the DA metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) into cerebroventricular perfusates of conscious, freely-moving rats. d-Amphetamine and β-phenylethylamine produced biphasic responses with lower doses of each drug increasing both the efflux of DOPAC and the rate of DA synthesis in the striatum. Higher doses of each drug either had no effect or actually decreased the efflux of DOPAC and also decreased the rate of DA synthesis in the striatum. Higher doses of each drug either had no effect only decreased the efflux of DOPAC and the rate of DA synthesis in the striatum. The effects of the drugs on the rate of DA synthesis in the nucleus accumbens and olfactory tubercle were similar to, but less pronounced than those seen in the striatum. These results are consistent with the following suggestions: 1) low doses of d-amphetamine and β-phenylethylamine facilitate the neuronal release of DA while higher doses of both drugs facilitate release and inhibit neuronal reuptake of the amine, and 2) cocaine and methylphenidate preferentially block the neuronal reuptake of DA.  相似文献   

9.
The N-methyl-D-aspartate (NMDA) receptor-mediated regulation of the release of newly synthesized [3H]dopamine [( 3H]DA) was studied in vitro, both on rat striatal slices using a new microsuperfusion device and on rat striatal synaptosomes. Under Mg2(+)-free medium conditions, the NMDA (5 X 10(-5) M)-evoked release of [3H]DA from slices was found to be partly insensitive to tetrodotoxin (TTX). This TTX-resistant stimulatory effect of NMDA was blocked by either Mg2+ (10(-3) M) or the noncompetitive antagonist MK-801 (10(-6) M). In addition, the TTX-resistant NMDA-evoked response could be potentiated by glycine (10(-6) M) in the presence of strychnine (10(-6) M). The coapplication of NMDA (5 X 10(-5) M) and glycine (10(-6) M) stimulated the release of [3H]DA from striatal synaptosomes. This effect was blocked by Mg2+ (10(-3) M) or MK-801 (10(-5) M). These results indicate that some of the NMDA receptors involved in the facilitation of DA release are located on DA nerve terminals. These presynaptic receptors exhibit pharmacological properties similar to those described in electrophysiological studies for postsynaptic NMDA receptors.  相似文献   

10.
The in vivo effects of amperozide, a novel atypical antipsychotic drug, on the release of dopamine (DA) and the output of its metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC), were investigated in the striatum and the nucleus accumbens of awake, freely moving rats using microdialysis. Amperozide (2-10 mg/kg, s.c.) significantly increased extracellular levels of DA in both the striatum and nucleus accumbens in a dose-dependent manner. It had a similar but lesser effect on extracellular DOPAC levels in both regions. d-Amphetamine (2 mg/kg, s.c.) alone produced a very large (43-fold) increase in DA release, together with a 70% decrease in DOPAC levels in both the striatum and the nucleus accumbens. Amperozide (1-5 mg/kg, s.c.) 30 min before d-amphetamine (2 mg/kg) dose-dependently attenuated d-amphetamine-induced DA release but had no effect on the d-amphetamine-induced decrease in extracellular DOPAC levels in both regions. The effect of amperozide on d-amphetamine-induced DA release in the nucleus accumbens may explain the inhibitory effect of amperozide on amphetamine-induced locomotor activity. However, the failure of amperozide to block amphetamine-induced stereotypy, despite marked inhibition of striatal DA release, suggests the need to reexamine the importance of striatal DA for amphetamine-induced stereotypy.  相似文献   

11.
L-DOPA is therapeutically efficacious in patients with Parkinson’s disease (PD), although dopamine (DA) neurons are severely degenerated. Since cortical astrocytes express neutral amino acid transporter (LAT) and DA transporter (DAT), the uptake and metabolism of L-DOPA and DA in striatal astrocytes may influence their availability in the dopaminergic system of PD. To assess possible L-DOPA- and DA-uptake and metabolic properties of striatal astrocytes, we examined the expression of L-DOPA, DA and DAT in striatal astrocytes of hemi-parkinsonian model rats after repeated L-DOPA administration, and measured the contents of L-DOPA, DA and their metabolite in primary cultured striatal astrocytes after L-DOPA/DA treatment. Repeated injections of L-DOPA induced apparent L-DOPA- and DA-immunoreactivities and marked expression of DAT in reactive astrocytes on the lesioned side of the striatum in hemi-parkinsonian rats. Exposure to DA for 4h significantly increased the levels of DA and its metabolite DOPAC in cultured striatal astrocytes. L-DOPA was also markedly increased in cultured striatal astrocytes after 4-h L-DOPA exposure, but DA was not detected 4 or 8h after L-DOPA treatment, despite the expression of aromatic amino acid decarboxylase in astrocytes. Furthermore, the intracellular level of L-DOPA in cultured striatal astrocytes decreased rapidly after removal of extracellular L-DOPA. The results suggest that DA uptaken into striatal astrocytes is rapidly metabolized and that striatal astrocytes act as a reservoir of L-DOPA that govern the uptake or release of L-DOPA depending on extracellular L-DOPA concentration, but are less capable of converting L-DOPA to DA.  相似文献   

12.
The efflux of endogenous 3,4-dihydroxyphenylethylamine (DA) 5-hydroxytryptamine (5-HT), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA) in the nucleus accumbens of the anesthetized rat was studied using a push-pull cannula. Local perfusion for 10 minutes with 35 mM K+ significantly (P<0.01) increased the release of DA and 5-HT, but not their metabolites, from their respective control levels of 0.95 and 0.04 pmol/15 min to 2.5 and 0.23 pmol/15 min. Exposure to 35 mM K+ a second and third time resulted in a decrement in the amount of stimulated release for both DA and 5-HT. This decrease was prevented by local perfusion for 10 minutes with 50 uM L-tyrosine and -tryptophan starting 30 minutes before each episode of depolarization. The baseline amounts of DOPAC, HVA and 5-HIAA observed in the perfusates were several fold higher than the basal levels found for 5-HT and Da. In the absence of precursors, the efflux of DOPAC, HVA and 5-HIAA decreased approximately 60, 40 and 25%, respectively, from the first to the last baseline fraction collected. Addition of precursors prevented the decrease for DOPAC and 5-HIAA but not for HVA. The data indicated that (a) the release of DA and 5-HT, along with their metabolites, could be simultaneously measured with the present procedure, and (b) when using the push-pull cannula, local perfusion with precursors may be necessary following periods of sustained and/or repeated stimulation in order to replenish the monoamine transmitter pools.  相似文献   

13.
Catecholamine and metabolite excretion was studied in the cat after 6 h of 7.5% O2 hypoxia. Norepinephrine (NE) release from sympathetic nervous endings was strongly activated, whereas epinephrine (E) excretion was only slightly increased. A noteworthy result was the increase of dopamine (DA) and its metabolites [3-methoxytyramine (MT); 3,4-dihydroxyphenylacetic acid (DOPAC)] in urine samples. This increased release does not seem to originate from the central nervous system, but rather from peripheral dopaminergic structures; available knowledge on peripheral DA suggests that the hypoxia-induced DA release might be partly related to chemosensory or renal function. Indeed, in addition to enhanced DA and NE excretion, we observed an increase in sodium excretion that correlated with both DA and NE. Analysis of free and conjugated urinary metabolites showed that only free NE and both free and conjugated normetanephrine were increased in urine after hypoxic stress. Among DA metabolites, conjugated DOPAC was the main DA metabolite in the basal state and after hypoxia. Both the free and the conjugated forms of DA, MT, and DOPAC were increased by hypoxia.  相似文献   

14.
Abstract: The effect of various doses of the serotonin (5-HT) release-inducing agent d -fenfluramine ( d -fenf) on extracellular dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindoleacetic acid (5-HIAA) was studied in vivo in the striatum of halothane-anesthetized rats, following systemic and local administration. At 5 and 10 but not 2.5 mg/kg, d -fenf administered intraperitoneally significantly increased DA extracellular concentration and reduced DOPAC outflow. A concentration-dependent enhancement of DA dialysate content was also found following intrastriatal application (5, 10, 25, and 50 µ M ). The bilateral administration of 5,7-dihydroxytryptamine into the dorsal raphe nucleus, which markedly depleted 5-HT in the striatum, did not modify the effect on extracellular DA concentration of 25 µ M d -fenf locally applied into the striatum. The enhancement of extracellular DA level induced by 25 µ M d -fenf was slightly but significantly reduced by the local application of 25 µ M citalopgram. The blockade of DA uptake sites by nomifensine (0.1, 0.3, and 1 µ M ) did not modify significantly the effect of d -fenf. The rise of DA outflow induced by 25 µ M d -fenf was strongly reduced in the presence of 1 µ M tetrodotoxin (TTX) or by the removal of Ca2+ from the perfusion medium. The results obtained show that d -fenf increases the striatal extracellular DA concentration by a Ca2+-dependent and TTX-sensitive mechanism that is independent of striatal 5-HT itself or DA uptake sites.  相似文献   

15.
The basal catecholamine content of rabbit retina was determined by liquid chromatography with electrochemical detection (LC-EC) and 3,4-dihydroxyphenylethylamine (dopamine, DA) found to be the major catecholamine. The immediate DA precursor, 3,4-dihydroxyphenylalanine (L-DOPA), and the metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC), were also detected at about 2.8% and 17% of DA levels, respectively. When added exogenously, L-tyrosine did not increase the rate of DA synthesis over the basal level. In contrast, exogenous L-DOPA led to a 3.5-fold increase in DA, and to a 20-fold increase in DOPAC content. The monoamine oxidase inhibitors pargyline and (-)-deprenyl differentially affected the degradation of DA, since 100 microM pargyline was apparently more effective than 100 microM (-)-deprenyl. Reserpine and (+/-)-amphetamine each induced a Ca2+-independent decrease of DA stores. The separate actions of reserpine and (+/-)-amphetamine in lowering tissue DA levels were additive, suggesting two separate pools of DA available for release from presynaptic stores. The present study demonstrates that the LC-EC technique may be used to investigate the modulation of the synthesis and release of retinal DA in vitro, without the prior uptake of radiolabelled transmitter.  相似文献   

16.
A study was made of the actions of the excitant neurotoxin, kainic acid, on the uptake and the release of D-[2,3-3H]aspartate (D-ASP) in slices of guinea pig cerebral neocortex and striatum. The slices took up D-ASP, reaching concentrations of the amino acid in the tissue which were 14-23 times that in the medium. Subsequently, electrical stimulation of the slices evoked a Ca2+-dependent release of a portion of the D-ASP. Kainic acid (10(-5)-10(-3) M) produced a dose-dependent inhibition of D-ASP uptake. The electrically evoked release of D-ASP was increased 1.6-2.0 fold by 10(-5) and 10(-4)M kainic acid. The kainate-enlarged release was Ca2+-dependent. Dihydrokainic acid, an analogue of kainic acid with little excitatory or toxic action, did not increase D-ASP release but depressed D-ASP uptake. Attempts were made to block the action of kainic acid with baclofen and pentobarbital, compounds which depress the electrically evoked release of L-glutamate (L-GLU) and L-aspartate (L-ASP). Baclofen (4 X 10(-6)M), an antispastic drug, and pentobarbital (10(-4)M), an anesthetic agent, each inhibited the electrically evoked release of D-ASP and prevented the enhancement of the release above control levels usually produced by 10(-4)M kainic acid. It is proposed that 10(-5) and 10(-4)M kainic acid may enhance the synaptic release of L-GLU and L-ASP from neurons which use these amino acids as transmitters. This action is prevented by baclofen and pentobarbital. In view of the possibility that cell death in Huntington's disease could involve excessive depolarization of striatal and other cells by glutamate, baclofen might be effective in delaying the loss of neurons associated with this condition.  相似文献   

17.
Abstract: The effects of benzazepine derivatives on extracellular levels of dopamine (DA) and l -3,4-dihydroxyphenylacetic acid (DOPAC) in the dorsal striatum of freely moving rats were studied using in vivo microdialysis. Direct injection of SKF-38393 (0.5 or 1.5 µg/0.5 µl), a selective D1 receptor agonist, into the striatum through a cannula secured alongside a microdialysis probe produced a rapid dose-dependent transient increase in striatal DA efflux and a more gradual reduction in efflux of DOPAC. The rapid increase in DA efflux was not affected by infusion of tetrodotoxin (TTX; 2 µ M ) or Ca2+-free Ringer's solution and occurred after either enantiomer of SKF-38393. A TTX-insensitive increase in DA level similar to that induced by SKF-38393 was also seen after other benzazepines acting as agonists (SKF-75670 and SKF-82958, each 1.5 µg in 0.5 µl) and antagonists (SCH-23390, 1.5 µg in 0.5 µl) at the D1 receptor and after (+)-amphetamine. These effects were inhibited by infusion of nomifensine (100 µ M ). It is concluded that the transient increases in striatal DA efflux seen after intrastriatal injection of SKF-38393 and other benzazepines are not mediated by presynaptic D1 receptors but by an amphetamine-like action on the dopamine transporter.  相似文献   

18.
Abstract— Conjugated (sulphonyloxy) dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were synthesized from free DOPAC and HVA and used as reference compounds in their fluorimetric determination in rat brain (detection limit 0.2 nmol/g). The conjugated DOPAC and HVA form 29 and 36% of the total DOPAC and HVA found in rat striatum, respectively. Dopamine (DA) metabolism was studied in the rat striatum by following the decline of both free and conjugated DOPAC and HVA after treatment with pargyline (100mg/kg. i.p.) either alone or in combination with tropolone (100 mg/kg, i.p.). or from the accumulation of the free and conjugated acids after treatment with probenecid (100-500mg/kg. i.p.). The rates of decline were analysed by a non-linear curve fitting method using a simple model of DA metabolism that postulates the formation of the conjugates exclusively from the free acids, and HVA from DOPAC, with first order kinetics and single open compartments only. The curves computed all passed through the s.e.m. of every experimental point. The rate constants thus found indicate that DOPAC turnover is about 23nmol/g/h. Of this about 16 nmol/g/h are O -methylated to HVA, about 6 nmol/g/h are conjugated and less than 1 nmol/g/h is eliminated as free DOPAC. Of the HVA formed, about 8.5nmol/g/h are conjugated and about 7.5 nmol/g/h eliminated as free HVA. The conjugates accumulated after treatment with probenecid (1 h) faster than the free acids. The maximal accumulation of all four metabolites found (21 nmol/g/h) approximates the total turnover of DOPAC.  相似文献   

19.
The release of gamma-hydroxybutyrate from preloaded rat brain striatal slices was investigated. K+-induced depolarization caused an efflux of gamma-hydroxybutyrate of about 50 fmol min-1 mg-1 (wet weight), but in a Ca2+-free medium containing Mg2+, the evoked release was reduced by 50-60%. The release was higher when 100 microM veratridine was used as a depolarizing agent. The efflux of gamma-hydroxybutyrate is related to veratridine and K+ concentration, and is strongly inhibited by 10 microM tetrodotoxin. The Ca2+ channel blocker verapamil induces a large decrease in the efflux of gamma-hydroxybutyrate after both K+- and veratridine-induced depolarization. These results are in favour of a possible transmitter function for gamma-hydroxybutyrate in rat striatum.  相似文献   

20.
The effect of L-DOPA in combination with benserazide (Madopar), administered intraperitoneally on the rat behaviour and L-DOPA, DA, NE, DOPAC content in rat brain structures was studied depending on the level of the animals' emotional-behavioural reactivity. The results indicate that L-DOPA metabolism in striatum, n. accumbens and hypothalamus in intact animals with high emotional reactivity was the greatest. Administration of Madopar (50 mg/kg) induced significant behavioural disturbances in animals with less emotional-behavioural response patterns. In contrast, 125 mg/kg Madopar completely abolished individual differences in the rats' behaviour and DA, but not L-DOPA and DOPAC content. The correlation between behavioural and biochemical differences in two groups of animals is discussed in view of distinctions in L-DOPA and DA compartmentation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号