首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rabbits intoxicated with soman were treated with various doses of HS-6 at 3 min following administration of soman to establish whether the antidotal efficacy reported for HS-6 against soman can be attributed in part to reactivation of the inhibited cholinesterase (ChE) enzymes. Within 5 min after treating animals intoxicated with soman with 15 or 30 mg/kg of HS-6 (iv) the whole blood ChE activity increased from 6.0 to 30.5 and 44.2% of control activity, respectively. Because HS-6 apparently is able to reactivate completely the unaged inhibited enzyme, HS-6, 60 mg/kg (iv) was used to measure for the first time the in vivo rate of aging of whole blood ChE in soman-intoxicated rabbits. The half time for aging was determined to be 7.6 (5.8 ? 9.4) min, P = 0.05. HS-6 in combination with atropine and pyridostigmine was tested as a pretreatment against soman. When only atropine + pyridostigmine was used in the pretreatment regimen, none of the rabbits survived a 10 LD50 dose of soman (iv). However, when HS-6 (30 mg/kg, iv) was used together with atropine + pyridostigmine in the pretreatment regimen, 87% of the animals survived this high dose of soman. Since HS-6 is a powerful reactivator of unaged, soman-inhibited ChE, the antidotal effectiveness of HS-6 against soman can be attributed in part to the restoration of vital enzyme activity.  相似文献   

2.
Protection by physostigmine against the pressor effect of soman in the rat   总被引:1,自引:0,他引:1  
Intravenous injection of soman, 30 ug/kg, increased mean arterial blood pressure by 57 mmHg in urethane-anesthetized rats. The response declined slightly after a few minutes and then remained stable at about 39 mmHg for the next 20 minutes. The increase in pressure was accompanied by marked inhibition of brain acetylcholinesterase (AChE). In rats pretreated with a threshold pressor dose of physostigmine (50 ug/kg, i.v.), the peak pressor response to soman rose to the same level as that in the control group, but showed a more rapid recovery, reaching 17 mmHg at 20 minutes. The recovery of blood pressure was accompanied by partial recovery of brain AChE.  相似文献   

3.
The blocking effects of newly synthesized compounds N-decyltropine bromide (IEM-1556) and its derivatives N-methyltropine iodide (IEM-1893) and N-hexyltropine iodide (IEM-1848), possessing aliphatic radicals of different length, on the vagus-induced reduction of the heart rate were studied in acute experiments on rats. The effects produced by these compounds on the level of arterial blood pressure and synaptic transmission in the superior cervical ganglion (SCG) of the rat were studied and compared with those produced by classical ganglion-blocking agents (hexamethonium and trimetaphan) and muscle relaxants (pancuronium and decamethonium). IEM-1556 much more effectively blocked the vagus-induced reduction of the heart rate than other tested blocking agents, and, in contrast to the classical ganglion-blocking agents and decamethonium, did not reduce the arterial blood pressure. In addition, IEM-1556 was less effective than hexamethonium in blocking synaptic transmission through the SCG. IEM-1893 and IEM-1848 demonstrated lower efficacy in blocking SCG transmission, if compared with that of IEM-1556. The results suggest that IEM-1556 is a highly selective blocking agent for parasympathetic versus sympathetic pathways, and its selectivity is determined by the presence of a decyl aliphatic radical in its molecule.Neirofiziologiya/Neurophysiology, Vol. 27, No. 5/6, pp. 323–330, September–December, 1995.  相似文献   

4.
Pressor reactivity to a variety of pressor agents after partial ganglionic blockade induced with hexamethonium was investigated in intact, in spinalized, and in chemically sympathectomized, spontaneously hypertensive rats (SHR). Responses of unanaesthetized 6-month-old SHR to noradrenaline, phenylephrine, and angiotensin after hexamethonium administration (32 mg/kg) markedly exceeded those of unanaesthetized, age-matched normotensive Wistar-Kyoto rats (WKR). Responses of anaesthetized SHR to noradrenaline after hexamethonium administration (16 mg/kg) were also increased at the hypertensive stages but not at the prehypertensive stages, when compared with those of anaesthetized normotensive Wistar rats of respective ages. In spinalized and chemically sympathectomized preparations after hexamethonium administration (16 mg/kg), noradrenaline produced equal increases in blood pressure in 6-month-old SHR and WKR. It is suggested that the functional sympathetic nervous system is important for the hyperreactivity of intact SHR.  相似文献   

5.
T.D. Giles  G.E. Sander 《Peptides》1983,4(2):171-175
Leucine-enkephalin (Leu5-ENK) (35 μg/kg) increased heart rate and mean systemic arterial blood pressure following intravenous injection into chronically-instrumented, conscious dogs. Repeated injections at five-minute intervals were not associated with a diminished response. Naloxone (1 mg/kg) pre-treatment inhibited both heart rate and blood pressure increases. Prazosin (1 mg/kg) attenuated the increase in blood pressure but did not influence the heart rate response. Propranolol (1 mg/kg) attenuated the heart rate response but not the pressor response. Clonidine (30 μg/kg) attenuated the positive chronotropic effect of Leu5-ENK. Atropine (1 mg/kg) plus propranolol (1 mg/kg) blocked the heart rate response but the pressor effect was still present. The attenuation of the heart rate response by propranolol and the pressor response by prazosin suggests an adrenergic component to the enkephalin response; the reduction in the heart rate response by clonidine and atropine-propranolol indicates a role for cholinergic mechanisms in the chronotropic response. Hexamethonium (10 mg/kg) blocked the heart rate response and markedly inhibited the pressor response. Vagal interruption attenuated both heart rate and blood pressure responses. It is concluded that intravenous Leu5-ENK stimulates afferent pathways located in fibers which are contained in the vagosympathetic trunk to reflexly increase heart rate and blood pressure.  相似文献   

6.
Intravenous injection of 3–33 nmol/kg of substance P (SP) caused pressor and tachycardic responses in anesthetized rats. The responses were not blocked by a ganglion nicotinic receptor antagonist or by pithing. Pretreatment with reserpine blocked both responses. β-Adrenoceptor blockade attenuated only the tachycardic response, and -adrenoceptor blockade attenuated only the pressor response. These findings indicated that the effects of SP to increase blood pressure and heart rate are due to sympathetic ganglion stimulation. Studies with adrenalectomized rats showed that stimulation of the adrenals by SP contributes to both responses but makes a greater contribution to the tachycardic response. These observations raise the possibility that the tachykinin innervation of sympathetic ganglia and the adrenal medulla may be involved in the local regulation of blood pressure and heart rate.  相似文献   

7.
Intraperitoneal injection of choline (40, 80 or 120 mg/kg) produced a dose-dependent increase in serum glucose and choline levels in rats. The increases in serum glucose and choline were associated with an increase of serum insulin as well as plasma levels of epinephrine and norepinephrine. The increases in serum glucose and plasma catecholamine concentrations induced by choline (120 mg/kg) were blocked by pretreatment with the ganglionic nicotinic receptor antagonist hexamethonium (15 mg/kg), but were not affected by pretreatment with atropine (5 mg/kg). The choline-induced rise in serum insulin was blocked by pretreatment with atropine and with hexamethonium each. The increase in serum glucose evoked by choline (120 mg/kg) was blocked by alpha-adrenoceptor blockade and bilateral adrenalectomy each. Blockade of beta-adrenoceptor by propranolol or chemical sympathectomy by 6-hydroxydopamine failed to alter the hyperglycemic response to choline. These results show that choline, a precursor of the neurotransmitter acetylcholine, increases serum glucose and insulin levels. The effect of choline on serum insulin is mediated by both muscarinic and nicotinic acetylcholine receptors, whereas the effect of choline on serum glucose is mediated solely by nicotinic receptors. The stimulation of adrenal medullary catecholamine release and subsequent activation of alpha-adrenoceptors apparently mediates the hyperglycemic effect of choline.  相似文献   

8.
电刺激猫小脑顶核对动脉血压和肾交感神经放电的影响   总被引:1,自引:0,他引:1  
童岗  富维骏  卢振东 《生理学报》1988,40(4):356-364
在38只麻醉及人工呼吸的猫,观察到电刺激小脑顶核嘴侧部能引起动脉血压显著升高;肾交感神经放电于刺激期间显著增加。去缓冲神经对刺激顶核所引起的血压反应的幅度和肾交感神经放电均无明显影响,但可明显延长血压反应升高相以及血压恢复期的时间。静脉注射氯庄定引起血压降低、心率减慢及肾交感神经放电的抑制,并能减弱刺激顶核引起的血压反应,但增强了刺激顶核引起的肾神经放电的变化。电解损毁延髓腹外侧面引起血压降低及肾交感神经放电的抑制,然而无论单侧还是双侧损毁延髓腹外侧面都不能阻断刺激顶核所引起的血压和肾交感神经放电的反应。以上结果表明,电刺激顶核能引起明显的心血管反应,其反应的下行性通路可能不通过延髓腹外侧面。  相似文献   

9.
Tyrosine, the amino acid precursor of catecholamines, increases blood pressure (BP) in hemorrhaged hypotensive rats. Since tyrosine may also be decarboxylated to form tyramine, which releases norepinephrine from sympathetic terminals, we tested the hypothesis that tyramine formation might mediate tyrosine's ability to increase BP. Three lines of evidence indicate that tyrosine does not act via this mechanism: pretreatment with reserpine blocked tyramine's but not tyrosine's pressor activity; pretreatment with hexamethonium left tyramine's effect intact but blocked the pressor response to tyrosine; and plasma tyramine did not increase after an hemodynamically-active dose of tyrosine (100 mg/kg).  相似文献   

10.
Hemodynamic actions of endothelin in conscious and anesthetized dogs   总被引:1,自引:0,他引:1  
The newly described endogenous peptide, endothelin, was administered to five chronically instrumented conditioned dogs. Endothelin produced significant and simultaneous increases in both heart rate (HR) and mean arterial pressure (MAP) in conscious dogs. Endothelin also produced significant increases in MAP in anesthetized animals. Ganglionic suppression induced by hexamethonium (10 mg/kg) and atropine (0.1 mg/kg) blocked HR responses and markedly inhibited the pressor responses to endothelin in conscious animals. These results suggest that endothelin in part acts to elevate blood pressure and heart rate through modification of autonomic nervous system tone. When endothelin and angiotensin II were administered in mole equivalent doses, angiotensin II produced a pressor response of greater magnitude than did endothelin in conscious animals.  相似文献   

11.
The acute effects of capsaicin on the cardiovascular system   总被引:1,自引:0,他引:1  
Arterial blood pressure and heart rate were recorded from male Wistar rats anaesthetized with urethane. Intravenous injection of capsaicin, 1 microgram, produced a reproducible triphasic effect on blood pressure, comprising an initial fall in blood pressure and heart rate, followed by a transient and then a sustained pressor response. The depressor response and bradycardia were abolished by vagal section. The transient pressor response was altered in shape by hexamethonium. Slow intravenous infusion of capsaicin, 50 micrograms over 12 min, produced only a sustained pressor response accompanied by tachycardia, which was resistant to hexamethonium but abolished by morphine and pithing. Responses to both 1 microgram injection and 50 micrograms infusion of capsaicin were unaffected by the SP antagonist, spantide, but were abolished by capsaicin pretreatment of the rats. Capsaicin induces complex effects on the cardiovascular system, the nature of which varies with the dose and speed of administration.  相似文献   

12.
The dose-response curves of the central and peripheral airways to intravenously injected nicotine were studied in 55 anesthetized dogs. With intact vagi, nicotine caused a dose-dependent increase in central airway resistance (Rc) similar to the increase in peripheral airway resistance (Rp) at concentrations ranging from 4 to 64 micrograms/kg. However, the responses of both Rc and Rp fell progressively when sequential doses of nicotine greater than 256 micrograms/kg were administered. With intact vagi and the administration of propranolol, there was a greater increase in Rp than in Rc at a nicotine dose of 64 micrograms/kg (P less than 0.05). With vagotomy, the responsiveness of both central and peripheral airways to nicotine decreased with doses of nicotine less than 64 micrograms/kg, but with doses of nicotine greater than 256 micrograms/kg the suppressive effect of nicotine on both Rc and Rp was less than that seen with intact vagi. Under conditions in which the vagi were cut and atropine administered, the responsiveness of nicotine was even further depressed. Combinations either of atropine and chlorpheniramine or atropine and phenoxybenzamine also completely blocked reactions to nicotine. Additionally reactions to nicotine were completely blocked by hexamethonium. These results suggest that nicotine increases both Rc and Rp mainly through a vagal reflex and stimulation of the parasympathetic ganglia.  相似文献   

13.
A number of studies have demonstrated an important role for nitric oxide (NO) in central and peripheral neural modulation of sympathetic activity. To assess the interaction and integrative effects of NO release and sympathetic reflex actions, we investigated the influence of inhibition of NO on cardiac-cardiovascular reflexes. In anesthetized, sinoaortic-denervated and vagotomized cats, transient reflex increases in arterial blood pressure (BP) were induced by application of bradykinin (BK, 0.1-10 microg/ml) to the epicardial surface of the heart. The nonspecific NO synthase (NOS) inhibitor NG-monomethyl-L-arginine (L-NMMA, 10 mg/kg iv) was then administered and stimulation was repeated. L-NMMA increased baseline mean arterial pressure (MAP) from 129 +/- 8 to 152 +/- 9 mmHg and enhanced the change in MAP in response to BK from 32 +/- 3 to 39 +/- 5 mmHg (n = 9, P < 0.05). Pulse pressure was significantly enhanced during the reflex response from 6 +/- 4 to 27 +/- 6 mmHg after L-NMMA injection due to relatively greater potentiation of the rise in systolic BP. Both the increase in baseline BP and the enhanced pressor reflex were reversed by L-arginine (30 mg/kg iv). Because L-NMMA can inhibit both brain and endothelial NOS, the effects of 7-nitroindazole (7-NI, 25 mg/kg ip), a selective brain NOS inhibitor, on the BK-induced cardiac-cardiovascular pressor reflex also were examined. In contrast to L-NMMA, we observed significant reduction of the pressor response to BK from 37 +/- 5 to 18 +/- 3 mmHg 30 min after the administration of 7-NI (n = 9, P < 0.05), an effect that was reversed by L-arginine (300 mg/kg iv, n = 7). In a vehicle control group for 7-NI (10 ml of peanut oil ip), the pressor response to BK remained unchanged (n = 6, P > 0.05). In conclusion, neuronal NOS facilitates, whereas endothelial NOS modulates, the excitatory cardiovascular reflex elicited by chemical stimulation of sympathetic cardiac afferents.  相似文献   

14.
In part, the exercise pressor reflex is believed to be evoked by chemical stimuli signaling that blood supply to exercising muscles is not adequate to meet its metabolic demands. There is evidence that either ATP or adenosine may function as one of these chemical stimuli. For example, muscle interstitial concentrations of both substances have been found to increase during exercise. This finding led us to test the hypothesis that popliteal arterial injection of alpha,beta-methylene ATP (5, 20, and 50 microg/kg), which stimulates P2X receptors, and 2-chloroadenosine (25 microg/kg), which stimulates P1 receptors, evokes reflex pressor responses in decerebrate, unanesthetized cats. We found that popliteal arterial injection of the two highest doses of alpha,beta-methylene ATP evoked pressor responses, whereas popliteal arterial injection of 2-chloroadenosine did not. In addition, the pressor responses evoked by alpha,beta-methylene ATP were blocked either by section of the sciatic nerve or by prior popliteal arterial injection of pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (10 mg/kg), a selective P2-receptor antagonist. We conclude that the stimulation of P2 receptors, which are accessible through the vascular supply of skeletal muscle, evokes reflex pressor responses. In addition, our findings are consistent with the hypothesis that the stimulation of P2 receptors comprises part of the metabolic error signal evoking the exercise pressor reflex.  相似文献   

15.
《Journal of Physiology》1998,92(1):25-30
In the present experiments we investigated a possible involvement of imidazoline receptors of the paraventricular nucleus (PVN) of the hypothalamus on the pressor effects of the angiotensin II (ANG II) injected into the subfornical organ (SFO), in male Holtzman rats (250–300 g) with a cannula implanted into the third ventricle (3rdV), PVN and SFO. At first we tested the participation of α2 and imidazoline agonist and antagonist compounds on the pressor effect of ANG II injected into the 3rdV. Based on the results we may conclude that clonidine associated with rilmenidine was able to block the hypertensive response to ANG II. The ANG II (20 pmol) injected into SFO induced a robust increase in blood pressure (37 ± 2 mmHg). Isotonic saline (0.15 M) NaCl did not produce any change in blood pressure (5 ± 2 mmHg). The injection of rilmenidine (30 μg/kg/1 μL), an imidazoline agonist agent injected into PVN before ANG II injection into SFO, blocked the pressor effect of ANG II (5 ± 2 mmHg). Also, the injection of idazoxan (60 μg/kg/μL) before rilmenidine blocked the inhibitory effect of rilmenidine on blood pressure (39 ± 4 mmHg). The injection of clonidine (20 nmol/μL) prior to ANG II into the 3rdV produced a decreased in arterial blood pressure (37 ± 2 mmHg) to (15 ± 4 mmHg). The injection of yohimbine (80 nmol/μL) prior to clonidine blocked the effect of clonidine on the effect of ANG II (27 ± 2 mmHg). The injection of rilmenidine prior to ANG II also induced a decrease in arterial blood pressure (10 ± 3 mmHg). The injection of idazoxan prior to rilmenidine also blocked the inhibitory effect of rilmenidine (24 ± 3 mmHg). In summary, the present study demonstrated that rilmenidine decreases the hypertensive effect of ANG II, with more potency than clonidine, even when injected into 3rdV or PVN. This study established that the PVN interacts with SFO by imidazoline receptors in order to control the arterial blood pressure.  相似文献   

16.
It has been found that intravenous administration of nociceptin (0.4 mg/kg) prevents development of aconitine-induced arrhythmias but has no effect on the incidence of occlusion, reperfusion, CaCl2-induced arrhythmias, and exacerbates epinephrine-evoked dysrhythmias. Pretreatment with hexamethonium, atropine, guanethidine and naloxone did not abolish the arrhythmic effect of nociceptin. Intracerebroventricular infusion of orphanin FQ was shown to increase cardiac tolerance of arrhythmogenic influence of aconitine, but this effect is completely abolished by hexamethonium administration. It has been suggested that stimulation of both central and peripheral ORL1 receptors increases cardiac resistance against arrhythmogenic effect of aconitine via different mechanisms.  相似文献   

17.
The chemical warfare nerve agent (CWNA) soman irreversibly inhibits acetylcholinesterase (AChE) causing seizure, neuropathology and neurobehavioral deficits. Pyridostigmine bromide (PB), the currently approved pretreatment for soman, is a reversible AChE inhibitor that does not cross the blood–brain barrier (BBB) to protect against central nervous system damage. [−]-Huperzine A, a natural reversible AChE inhibitor, rapidly passes through the BBB and has numerous neuroprotective properties that are beneficial for protection against soman. However, [−]-Huperzine A is toxic at higher doses due to potent AChE inhibition which limits the utilization of its neuroprotective properties. [+]-Huperzine A, a synthetic stereoisomer of [−]-Huperzine A and a weak inhibitor of AChE, is non-toxic. In this study, we evaluated the efficacy of [+]-Huperzine A for protection against soman toxicity in guinea pigs. Pretreatments with [+]-Huperzine A, i.m., significantly increased the survival rate in a dose-dependent manner against 1.2× LD50 soman exposures. Behavioral signs of soman toxicity were significantly reduced in 20 and 40 mg/kg [+]-Huperzine A treated animals at 4 and 24 h compared to vehicle and PB controls. Electroencephalogram (EEG) power spectral analysis showed that [+]-Huperzine A significantly reduces soman-induced seizure compared to PB. [+]-Huperzine A (40 mg/kg) preserved higher blood and brain AChE activity compared to PB in soman exposed animals. These data suggest that [+]-Huperzine A protects against soman toxicity stronger than PB and warrant further development as a potent medical countermeasure against CWNA poisoning.  相似文献   

18.
α-Melanocyte-stimulating hormone (α-MSH) regulates important physiological functions including energy homeostasis and inflammation. Potent analogs of α-MSH, [Nle4, d-Phe7]-α-MSH (NDP-α-MSH) and melanotan-II (MT-II), are widely used in pharmacological studies, but the hemodynamic effects associated with their systemic administration have not been thoroughly examined. Therefore, we investigated the hemodynamic actions of these compounds in anesthetized and conscious C57Bl/6N mice using peripheral routes of administration. NDP-α-MSH and MT-II induced mild changes in blood pressure and heart rate in anesthetized mice compared to the effects observed in conscious mice, suggesting that anesthesia distorts the hemodynamic actions of α-MSH analogs. In conscious mice, NDP-α-MSH and MT-II increased blood pressure and heart rate in a dose-dependent manner, but the tachycardic effect was more prominent than the pressor effect. Pretreatment with the melanocortin (MC) 3/4 receptor antagonist SHU9119 abolished these hemodynamic effects. Furthermore, the blockade of β1-adrenoceptors with metoprolol prevented the pressor effect and partly the tachycardic action of α-MSH analogs, while the ganglionic blocker hexamethonium abrogated completely the difference in heart rate between vehicle and α-MSH treatments. These findings suggest that the pressor effect is primarily caused by augmentation of cardiac sympathetic activity, but the tachycardic effect seems to involve withdrawal of vagal tone in addition to sympathetic activation. In conclusion, the present results indicate that systemic administration of α-MSH analogs elevates blood pressure and heart rate via activation of MC3/4 receptor pathways. These effects and the consequent increase in cardiac workload should be taken into account when using α-MSH analogs via peripheral routes of administration.  相似文献   

19.
The effects of beta-alanine on the electrically evoked vagal efferent (hexamethonium-sensitive initial excitatory response) and afferent (hexamethonium-resistant delayed excitatory response) responses of the cat stomach were studied. beta-alanine (30 to 300 micrograms/kg, i.v.) dose-dependently inhibited both the efferent and afferent response. The IC50 values of beta-alanine on the efferent and afferent response were 296 +/- 65 micrograms/kg and 128 +/- 35 microgram/kg, respectively. Maximal inhibitory effects of beta-alanine (300 micrograms/kg, i.v.) appeared about 1 hr after the injection. Glycine and taurine (100 to 10,000 micrograms/kg) did not affect these responses. Treatment with hexamethonium (10 mg/kg, i.v.) prevented the efferent response, but augmented the afferent response. The treatment with hexamethonium abolished the inhibitory effect of beta-alanine on the afferent response. Both picrotoxin (100 and 500 micrograms/kg, i.v.) and bicuculline (2000 micrograms/kg, i.v.) antagonized the inhibitory effects of beta-alanine on the vagal efferent and afferent responses of the stomach. The present experiments clearly demonstrated that beta-alanine inhibited both the vagal efferent and afferent excitatory responses of stomach to electrical stimulation of vagal trunk in cats.  相似文献   

20.
Li JT  Ruan JX  Zhang ZQ  Yuan SL  Yu WD  Song ZY 《Life sciences》2003,73(8):1053-1062
The effects of 8018 [3-(2'-phenyl-2'-cyclopentyl-2'-hydroxyl-ethoxy)quinuclidine] on the elimination of soman in rabbits blood and distribution in mice brain and diaphragm were investigated using the chirasil capillary gas chromatographic analysis method. In all experiments, the concentration of P(+)soman was below the detection limit (<0.1 ng x mL(-1)). 8018 (1 mg x kg(-1), im, 10 min pre-treated) could significantly reduce the concentration of P(-)soman in rabbit blood from 53.6 +/- 13.3 to 26.2 +/- 9.70 ng x mL(-1) blood as compared to soman-treated control animal at 15 s following soman injection (43.2 microg x kg(-1), iv). Toxicokinetic parameters showed 8018 could increase clearance (CL((S))) from 20.8 +/- 1.54 to 38.2 +/- 15.3 mLx kg(-1) x s(-1) and reduce AUC of P(-)soman from 2.08 +/- 0.151 to 1.30 +/- 0.564 mg x s x L(-1). 8018 could reduce the concentration P(-)soman in diaphragm from 74.7, 70.5, 88.7 ng x g(-1) to 54.5 45.6, 50.0 ng x g(-1) at the time of 30, 90, 120 s after intoxication of soman subcutaneously vs. soman control respectively, but it had no influence on the concentration of free P(-)soman in brain. Isotope trace experiments showed that it could significantly increase the distribution amount of bound [3H]soman in mice plasma and small intestine during 0-120 min after mice received [3H]soman (0.544 GBq.119 microg x kg(-1), sc) compared to soman control group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号