首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We observed emission from the tyrosine derivative N-acetyl-L-tyrosinamide (NATyrA) when excited with the fundamental output of a femtosecond Ti:Sapphire laser from 780 to 855 nm. The dependence on incident laser power indicates a three-photon process. The emission spectra and intensity decay in glycerol-water (30:70) at 5 degrees C were found to be identical for one- and three-photon excitation. Also the excitation spectrum of three-photon-induced fluorescence of NATyrA corresponds to the one-photon excitation spectrum. The time-zero or fundamental anisotropy spectrum was reconstructed from the frequency-domain anisotropy decays. The three-photon anisotropies are similar or larger than the one-photon anisotropies. These three-photon anisotropies are surprising given the near zero values known for tyrosine with two-photon excitation. The observations indicate that one- and three-photon excitation directly populates the same singlet excited states(s). However, the origin of the anisotropies with multi-photon excitation of tyrosine remain unclear and unpredictable.  相似文献   

2.
We measured the emission spectra, intensity decays and anisotropy decays of the single tryptophan residue of human serum albumin (HSA) resulting from one-photon (295-298 nm) and two-photon (590-596) excitation. The emission spectra and intensity decays were independent of the mode of excitation. The anisotropy decays were superficially similar for one- and two-photon excitation. However, upon consideration of the different orientation photoselection for one- and two-photon excitation, the anisotropy data reveal different angles between the absorption and emission oscillators for one-photon and two-photon excitation. This result suggests different relative one-photon and two-photon cross-sections for the 1La and 1Lb transitions of the indole residue. This first report of the time-resolved anisotropy decay of a protein resulting from two-photon excitation suggests that such measurement will yield insights into the complex photophysical properties of tryptophan residues in proteins.  相似文献   

3.
The tumor-localizing photosensitizer hematoporphyrin derivative (HPD) is shown to undergo a simultaneous two-photon excitation into the near-ultraviolet Soret band system upon intense laser irradiation at 750 nm, a spectral region where there is no significant HPD one-photon absorbance in aqueous solution. Subsequent to this excitation, internal conversion and vibrational relaxation occur, resulting in the population of the vibrationless level of the first electronically excited singlet state. This state relaxes by two channels, the emission of fluorescence in the spectral region 600-700 nm and intersystem crossing into the triplet manifold, followed by near-resonant electronic energy transfer with surrounding oxygen to result in the generation of highly reactive singlet molecular oxygen (1 delta g). Evidence for the two-photon excitation consists in the observation both of the HPD fluorescence spectrum in the region of 615 nm as a result of 750 nm excitation and the quadratic dependence of this fluorescence emission intensity upon the excitation laser intensity. Since, in general, the penetration depth of ultraviolet and visible light into tissue varies directly with wavelength (red penetrating more deeply than blue), these studies suggest the possibility that two-photon-induced localization of tumor-bound HPD might facilitate the detection of deeper lying tumors than allowed by the current one-photon photolocalization method.  相似文献   

4.
Picosecond multiphoton scanning near-field optical microscopy.   总被引:2,自引:0,他引:2       下载免费PDF全文
We have implemented simultaneous picosecond pulsed two- and three-photon excitation of near-UV and visible absorbing fluorophores in a scanning near-field optical microscope (SNOM). The 1064-nm emission from a pulsed Nd:YVO4 laser was used to excite the visible mitochondrial specific dye MitoTracker Orange CM-H2TMRos or a Cy3-labeled antibody by two-photon excitation, and the UV absorbing DNA dyes DAPI and the bisbenzimidazole BBI-342 by three-photon excitation, in a shared aperture SNOM using uncoated fiber tips. Both organelles in human breast adenocarcinoma cells (MCF 7) and specific protein bands on polytene chromosomes of Drosophila melanogaster doubly labeled with a UV and visible dye were readily imaged without photodamage to the specimens. The fluorescence intensities showed the expected nonlinear dependence on the excitation power over the range of 5-40 mW. An analysis of the dependence of fluorescence intensity on the tip-sample displacement normal to the sample surface revealed a higher-order function for the two-photon excitation compared to the one-photon mode. In addition, the sample photobleaching patterns corresponding to one- and two-photon modes revealed a greater lateral confinement of the excitation in the two-photon case. Thus, as in optical microscopy, two-photon excitation in SNOM is confined to a smaller volume.  相似文献   

5.
Photobleaching in two-photon excitation microscopy   总被引:10,自引:0,他引:10       下载免费PDF全文
The intensity-squared dependence of two-photon excitation in laser scanning microscopy restricts excitation to the focal plane and leads to decreased photobleaching in thick samples. However, the high photon flux used in these experiments can potentially lead to higher-order photon interactions within the focal volume. The excitation power dependence of the fluorescence intensity and the photobleaching rate of thin fluorescence samples ( approximately 1 microm) were examined under one- and two-photon excitation. As expected, log-log plots of excitation power versus the fluorescence intensity and photobleaching rate for one-photon excitation of fluorescein increased with a slope of approximately 1. A similar plot of the fluorescence intensity versus two-photon excitation power increased with a slope of approximately 2. However, the two-photon photobleaching rate increased with a slope > or =3, indicating the presence of higher-order photon interactions. Similar experiments on Indo-1, NADH, and aminocoumarin produced similar results and suggest that this higher-order photobleaching is common in two-photon excitation microscopy. As a consequence, the use of multi-photon excitation microscopy to study thin samples may be limited by increased photobleaching.  相似文献   

6.
We report the first measurements of protein fluorescence with three-photon excitation, using a mutant of troponin C (TnC) that contains a single tryptophan residue F22W. From the emission intensity dependence on laser power we determine that TnC F22W displays one-, two-, and three-photon excitation at 285, 570, and 855 nm, respectively. The emission spectra and intensity decays are identical for one-, two-, or three-photon excitation. The steady-state and time 0 anisotropies are distinct for each mode of excitation, but the correlation times were the same, suggesting that three-photon excitation of proteins can be accomplished without significant effects of the locally intense illumination. The excitation anisotropy spectrum from 830 to 900 nm displays only negative values, suggesting dominant excitation via the 1Lb state of tryptophan from 830 to 900 nm.  相似文献   

7.
In this paper, we report the first successful demonstration, to our knowledge, of two-photon fluorescence excitation (TPFE) using planar thin-film waveguide structures of macroscopic excitation dimensions (square millimeters to square centimeters in size). The high intensity of excitation light required for TPFE is available not only at a single focus point but along the whole trace of the beam guided in the waveguide structure. Line profiles of the fluorescence excited by TPFE show excellent correlation with the geometry of the launched laser beams. A clear second-order dependence of the fluorescence intensity on the excitation intensity confirms the two-photon character of fluorescence generation. Spectra of the emission generated by one-photon excitation and by two-photon excitation show only minor differences.  相似文献   

8.
We studied one- and two-photon induced fluorescence of Pacific Blue (PB)-labeled human serum albumin (HSA) in the presence of different size silver colloids. The PB fluorescence emission intensity was observed with small (30-40 nm) and large (about 120 nm) colloids and compared with PB emission in absence of colloids. For the system with a small core size colloids we did not detect any fluorescence enhancement with one-photon excitation and the enhancement observed with two-photon excitation was about 2.5-fold. In contrast, for large silver colloids we observed about a 2-fold increase in PB fluorescence brightness for one-photon excitation, and the enhancement with two-photon excitation excided 13-folds. Much stronger increases in brightness observed with two-photon excitation, compared to one-photon excitation, indicate a dominant role of enhanced local field in fluorescence enhancement on silver colloids in solutions.  相似文献   

9.
We demonstrate the direct 1064 nm two-photon excitation of hematoporphyrin derivative (HPD), a complex mixture of photosensitizing porphyrins which is selectively retained in tumor tissue and used in cancer photochemotherapy. Although 1064 nm is outside of the one-photon HPD absorption spectrum, two-photon induced fluorescence from HPD was observed following excitation by the 20 ns output of an amplified, Q-switched Nd-YAG laser at peak power levels of 0.1 to 3 GW/cm2. Evidence for the successful two-photon excitation to vibrational levels of the S1 state consists of the observation of the known HPD fluorescence spectrum exhibiting peaks at approximately 615 and 675 nm, with the observed two-photon induced fluorescence intensity exhibiting a quadratic dependence on the excitation laser intensity as required for a direct two-photon process. More generally, these results suggest the possibility for the achievement of photosensitized oxidations utilizing photons of lower energy than that required for single photon excitation, offering the potential for both greater selectivity and a reduction in competing photochemical processes.  相似文献   

10.
Fluorescence detection is extensively used in high throughput screening. In HTS there is a continuous migration toward higher density plates and smaller sample volumes. In the present report we describe the advantages of two-photon or multiphoton excitation for HTS. Multiphoton excitation (MPE) is the simultaneous absorption of two long-wavelength photons to excite the lowest singlet state of the fluorophore. MPE is typically accomplished with short but high-intensity laser pulses, which allows simultaneous absorption of two or more photons. The intensity of the multiphoton-induced fluorescence is proportional to the square, cube, or higher power of the instantneous photon flux. Consequently, two-photon or multiphoton excitation only occurs at the focal point of the incident beam. This property of two-photon excitation allows the excited volume to be very small and to be localized in the center of each well in the HTS plate. We show that two-photon-induced fluorescence of fluorescein can be reliably measured in microwell plates. We also show the use of 6-carboxy fluorescein as a pH probe with two-photon excitation, and measure 4'-6-diamidino-2-phenylindole (DAPI) binding and two-photon-induced fluorescence. In further studies we measure the time-dependent intensity decays of DAPI bound to DNA and of calcium-dependent fluorophores. Finally, we demonstrate the possibility of three-photon excitation of several fluorophores, including indole, in the HTS plate. These results suggest that MPE can be used in high-density multiwell plates.  相似文献   

11.
Two-photon fluorescence excitation spectra of the peripheral light-harvesting complex LH2 from the purple photosynthetic bacterium Chromatium minutissimum were examined within the expected spectral range of the optically forbidden S1 singlet state of carotenoids. LH2 preparations isolated from wild-type and carotenoid-depleted cells were used. 100-fs laser pulses in the range of 1300-1490 nm with an energy of 7-9 mW (corresponding to one-photon absorption between 650 and 745 nm) were used for two-photon fluorescence excitation. It was shown that two-photon fluorescence excitation spectra of LH2 complex from wild and carotenoid-depleted cells are very similar to each other and to the two-photon fluorescence excitation spectrum of bacteriochlorophyll a in acetone. It was concluded that direct two-photon excitation of bacteriochlorophyll a determines the fluorescence of both samples within the 650-745 nm spectral range.  相似文献   

12.
The intensity and wavelength-dependence of Rose-Bengal-mediated photoinhibition of red blood cell acetylcholinesterase has been studied. Irradiation of dye-membrane suspensions with 308 nm laser excitation resulted in enzyme inhibition almost 50% greater than that obtained with 514 nm laser excitation. Sodium azide and argon purging greatly decreased the photosensitized enzyme inhibition at both wavelengths. Although Rose Bengal photosensitized enzyme inhibition more efficiently upon excitation into Sn (308 nm) than into S1 (514 nm), Stern-Volmer analysis of sodium azide quenching data gave similar quenching efficiencies at both wavelengths. Irradiation of dye-membrane suspensions with increasing intensities (Nd:YAG, 532 nm, 40 ps pulse duration) resulted in a decrease in enzyme inhibition. Saturation of the Rose Bengal fluorescence intensity and light transmission occurred with nearly the same intensity-dependence, suggesting that ground-state depletion occurs at the higher intensities. Our results demonstrate that excitation of a sensitizer into higher-lying excited singlet states can result in enhanced sensitizing efficiency. However, attempts to populate such states in Rose Bengal by sequential two-photon absorption using high intensities resulted only in ground-state depletion.  相似文献   

13.
We demonstrate broad-field, non-scanning, two-photon excitation fluorescence (2PEF) close to a glass/cell interface by total internal reflection of a femtosecond-pulsed infrared laser beam. We exploit the quadratic intensity dependence of 2PEF to provide non-linear evanescent wave (EW) excitation in a well-defined sample volume and to eliminate scattered background excitation. A simple model is shown to describe the resulting 2PEF intensity and to predict the effective excitation volume in terms of easily measurable beam, objective and interface properties. We demonstrate non-linear evanescent wave excitation at 860 nm of acridine orange-labelled secretory granules in live chromaffin cells, and excitation at 900 nm of TRITC-phalloidin-actin/GPI-GFP double-labelled fibroblasts. The confined excitation volume and the possibility of simultaneous multi-colour excitation of several fluorophores make EW 2PEF particularly advantageous for quantitative microscopy, imaging biochemistry inside live cells, or biosensing and screening applications in miniature high-density multi-well plates.Abbreviations 1PEF one-photon excited fluorescence - 2PEF two-photon excited fluorescence - APD avalanche photo diode - CHO Chinese hamster ovary - DMEM Dulbecco's modified Eagle's medium - EGFP enhanced green fluorescent protein - EW evanescent wave - FCS fetal calf serum - GPI glycosylphosphatidylinositol - TIR total internal reflectionThis paper is dedicated to the memory of Prof. Horst Harreis (1940–2002)  相似文献   

14.
The transient absorption anisotropy spectrum of bacteriochlorophyll a (BChl a) in pyridine was measured in the wavelength interval 550-850 nm, 1 ps after optical excitation with a 792-nm femtosecond light pulse. In the wavelength region of Q(y) absorption and stimulated emission (775-825 nm), the anisotropy was found to be close to the theoretically expected value (0.4) for a two-level system. In the wavelength region 650-750 nm, where the transient absorption signal is dominated by excited state absorption, the anisotropy is reduced to approximately 0.18. Anisotropy kinetics were measured at several wavelengths and found to be constant within the time window 0-5 ps, showing that no internal dynamics of the BChl a molecule change the anisotropy on the time scale of tens of picoseconds.  相似文献   

15.
We describe a custom one-photon (confocal) and two-photon all-digital (photon counting) laser scanning microscope. The confocal component uses two avalanche photodiodes (APDs) as the fluorescence detector to achieve high sensitivity and to overcome the limited photon counting rate of a single APD ( approximately 5 MHz). The confocal component is approximately nine times more efficient than our commercial confocal microscope (fluorophore fluo 4). Switching from one-photon to two-photon excitation mode (Ti:sapphire laser) is accomplished by moving a single mirror beneath the objective lens. The pulse from the Ti:sapphire laser is 109 fs in duration at the specimen plane, and average power is approximately 5 mW. Two-photon excited fluorescence is detected by a fast photomultiplier tube. With a x63 1.4 NA oil-immersion objective, the resolution of the confocal system is 0.25 microm laterally and 0.52 microm axially. For the two-photon system, the corresponding values are 0.28 and 0.82 microm. The system is advantageous when excitation intensity must be limited, when fluorescence is low, or when thick, scattering specimens are being studied (with two-photon excitation).  相似文献   

16.
A major limitation for the use of two-proton laser scanning microscopy (2P-LSM) in biofilm and other studies is the lack of a thorough understanding of the excitation-emission responses of potential fluorochromes. In order to use 2P-LSM, the utility of various fluorochromes and probes specific for a range of biofilm constituents must be evaluated. The fluorochromes tested in this study included classical nucleic acid-specific stains, such as acridine orange (AO) and 4",6"-diamidino-2-phenylindole (DAPI), as well as recently developed stains. In addition, stains specific for biofilm extracellular polymeric substances (EPS matrix components) were tested. Two-photon excitation with a Ti/Sapphire laser was carried out at wavelengths from 760 to 900 nm in 10-nm steps. It was found that autofluorescence of phototrophic organisms (cyanobacteria and green algae) resulted in strong signals for the entire excitation range. In addition, the coenzyme F(420)-related autofluorescence of methanogenic bacteria could be used to obtain images of dense aggregates (excitation wavelength, 780 nm). The intensities of the emission signals for the nucleic acid-specific fluorochromes varied. For example, the intensities were similar for excitation wavelengths ranging from 780 to 900 nm for AO but were higher for a narrower range, 780 to 810 nm, for DAPI. In selective excitation, fading, multiple staining, and combined single-photon-two-photon studies, the recently developed nucleic acid-specific fluorochromes proved to be more suitable regardless of whether they are intended for living or fixed samples. Probes specific for proteins and glycoconjugates allowed two-photon imaging of polymeric biofilm constituents. Selective excitation-emission was observed for Calcofluor White M2R (780 to 800 nm) and SyproOrange (880 to 900 nm). In addition, fluor-conjugated concanavalin A lectins were examined and provided acceptable two-photon emission signals at wavelengths ranging from 780 to 800 nm. Finally, CellTracker, a fluorochrome suitable for long-term labeling of microbial eucaryote cells, was found to give strong emission at wavelengths ranging from 770 to 810 nm. If fluorochromes have the same two-photon excitation cross section, they are suitable for multiple staining and multichannel recording. Generally, if an appropriate excitation wavelength and fluorochrome were used, it was possible to obtain more highly resolved images for thick biofilm samples with two-photon laser microscopy than with conventional single-photon laser microscopy. Due to its potential for higher resolution in light-scattering tissue-like material, such as biofilms, and extremely localized excitation, 2P-LSM is a valuable addition to conventional confocal laser scanning microscopy with single-photon excitation. However, further development of the method and basic research are necessary to take full advantage of nonlinear excitation in studies of interfacial microbial ecology.  相似文献   

17.
We report electron energy loss spectroscopy (EELS) and one- and two-photon excited surface-enhanced Raman scattering (SERS) and hyper Raman studies on plasmonic silver nanoaggregates. By comparison with computations, EELS imaging reveals an inverse relationship between local field intensity in an optical experiment and electron energy loss intensity at energies corresponding to excitation wavelengths used for optical probing. This inverse relation exists independent on specific nanoaggregate geometries and is mainly controlled by the gap size between the particles forming the aggregate. The ratio between two- and one-photon excited SERS measured at different excitation wavelengths provides information about local fields in the hottest spots and their dependence on the photon energy. Our data verify experimentally the predicted increase of local optical fields in the hot spots with increasing wave lengths. The reported findings show new experimental ways to characterize local fields of plasmonic nanostructures. This is of particular importance for complex structures which are not easily approachable by computations.  相似文献   

18.
The feasibility to induce oxygen-independent tumour cell kill by two-photon excitation of copper tetrasulfophthalocyanine (CuPcS4) was studied in Jurkat cells in vitro. Following incubation with CuPcS4 cells were transferred to a closed cuvette and irradiated with 532 nm pulsed-laser or 680 nm continuous-laser light to evaluate the effect of either two- or one-photon excitation, respectively. Cell survival was measured using MTT and Trypan Blue exclusion tests. Cell viability decreased 10-20% following two-photon excitation while one-photon illumination did not affect cell survival. These data confirm that two-photon excitation of CuPcS4 to the upper excited triplet state results in the formation of toxic species suggesting its potential use as a sensitizer for the photodynamic treatment of poorly oxygenated tumours.  相似文献   

19.
There is a need for luminescent probes, which display both long excitation and emission wavelengths and long decay times. We synthesized and characterized an osmium metal–ligand complex which displays a mean decay time of over 100 ns when bound to proteins. [Os(1,10-phenanthroline)2(5-amino-1,10-phenanthroline)](PF6)2 can be excited at wavelengths up to 650 nm, and displays an emission maximum near 700 nm. The probe displays a modest but useful maximum fundamental anisotropy near 0.1 for 488-nm excitation, and thus convenient when using an argon ion laser. [Os(phen)2(aphen)](PF6)2 is readily activated to the isothiocyanate for coupling to proteins. When covalently linked to bovine serum albumin the intensity decay is moderately heterogeneous with a mean decay time of 145 ns. The anisotropy decay of the labeled protein displays a correlation time near 40 ns. This relatively long lifetime luminophores can be useful as a biophysical probe or in clinical applications such as fluorescence polarization immunoassays.  相似文献   

20.
The fluorescence spectral properties of recombinant green fluorescent protein (rGFP) were examined with one- and two-photon excitations using femtosecond pulses from a Ti:sapphire laser. Intensity-dependent properties of the two-photon-induced fluorescence from rGFP excited by an 800-nm, 100-fs laser beam were reported, and the two-photon excitation cross section of rGFP was measured at 800 nm as about 160 x 10(-50) cm(4)s/photon. The possible excited-state proton transfer between two electronic states at about 400 nm in protonated (RH) species and 478 nm in deprotonated (R(-)) species in rGFP was confirmed by fluorescence and fluorescence excitation anisotropy spectra. A subelectronic state (or vibronic progression) at about 420 nm in RH species was identified, which was relatively stable and not involved in the excited state proton transfer in rGFP upon irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号