首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One hundred-eighty piglets (Duroc × Landrace × Yorkshire), with an average initial weight of 7.4?kg weaned at 27?±?1?days of age, were used to evaluate the effects of dietary zinc oxide?Cmontmorillonite hybrid (ZnO?CMMT) on growth performance, diarrhea, intestinal mucosal integrity, and digestive enzyme activity. All pigs were allotted to five treatments and fed with the basal diets supplemented with 0, 250, 500, and 750?mg/kg of Zn as ZnO?CMMT or 2,000?mg/kg of Zn as ZnO. The results showed that supplementation with 500 or 750?mg/kg of Zn from ZnO?CMMT and 2,000?mg/kg of Zn from ZnO improved average daily gain, enhanced average daily feed intake, decreased fecal scores at 4, 8, and 14?days postweaning, reduced intestinal permeability which was evident from the reduced lactulose recovery and urinary lactulose/mannitol ratio, and improved the activities of protease, amylase, lipase, trypsin, and chymotrypsin both in pancreas and small intestinal contents of pigs as compared with the control. Supplemental 250?mg/kg of Zn from ZnO?CMMT also decreased fecal scores at 8 and 14?days postweaning, decreased urinary lactulose/mannitol ratio, and improved chymotrypsin activity in pancreas and small intestinal contents as well as protease activity in small intestinal contents compared with control. Moreover, the above indexes of weanling pigs fed with 500 or 750?mg/kg of Zn as ZnO?CMMT did not differ from those fed with 2,000?mg/kg of Zn as ZnO. The results demonstrated that supplementation with 500 or 750?mg/kg of Zn from ZnO?CMMT was as efficacious as 2,000?mg/kg of Zn from ZnO in improving growth performance, alleviating postweaning diarrhea, and enhancing intestinal mucosal integrity and the digestive enzyme activities in pancreas and small intestinal contents of pigs. The results that feeding lower concentrations of ZnO?CMMT to weanling pigs maintained performance will be beneficial for the environment and for sustaining swine production.  相似文献   

2.
The developmental changes of both pancreatic and intestinal enzymes and the influence of dietary composition on enzyme activities were followed in suckling and weaning rabbits. In addition, whole tract digestibility of nutrients was recorded in response to two dietary energetic sources. Rabbits were fed ad libitum either a low fat and high starch diet (group LF), or a high fat and high fibre diet (group HF) between d 32 and d 42, with both groups receiving a growing finishing diet thereafter. Before weaning (d 32) nutrient digestion was high (>75% for organic matter, protein or fat), and then decreased sharply, except for fat. Between d 32 and d 42, digestion in the HF group was 7.5 and 4.6% lower, respectively, for organic matter and protein, while fibre and fat digestion was higher (+14.0 and +5.0%, respectively). Between d 25 and d 42 of age, pancreatic-specific activities of trypsin and chymotrypsin did not change while those of amylase and lipase increased by 1.5- and 76- fold (P<0.05), respectively. However, total activities and relative activities expressed on a LW basis were increased after weaning as a main consequence of a specific increased organ weight and pancreatic protein content. Relative activities of trypsin and chymotrypsin increased by 63 and 56% (P<0.01) after weaning, respectively. Total activities of pancreatic enzymes measured in the total small intestinal contents increased during the same period, but the range of variations was lower than those measured in the pancreatic gland. Total activities of lipase, trypsin and chymotrypsin measured in the small intestine contents were significantly correlated with pancreas enzyme potentialities. Total small intestine activity of lipase was 58% higher (P<0.001) in HF than in LF group while the other pancreatic and intestinal enzyme activities measured were not influenced by the energetic sources of the diet. Decreased digestibility of organic matter and protein observed with the HF diet could not be related to changes in pancreatic or intestinal enzymatic profiles and may be more dependent on quality of dietary ingredients.  相似文献   

3.
We previously demonstrated that feeding a diet containing a high level of amino acid mixture simulating casein (AA) induced an increase in pancreatic protease activities in rats. In the present study, this effect of dietary AA was further characterized with three separate experiments. These experiments (1) examined periodic changes in pancreatic and small intestinal trypsin activities after switching from a 20% (a normal nitrogen level) AA diet to a 60% AA (a high nitrogen level) diet; (2) measured the abundance of mRNA for four trypsinogen isozymes and for intestinal cholecystokinin (CCK) and secretin in rats fed 20% and 60% AA diets for 10 days compared with rats fed 20% and 60% casein diets; and (3) measured the abundance of mRNA for four trypsinogen isozymes after chronic administration of CCK. Trypsin activities were gradually increased in both the pancreas and the small intestinal lumen and reached maximum at 5 days after the switch to the 60% AA diet (Exp. 1). This result is evidence that the increase in the protease activity in the pancreas is due to enhancement of pancreatic trypsin production. In experiment 2, pancreatic trypsinogen isozymes I, II, III, and IV mRNA abundance were evaluated by the Northern blotting method using cDNA probes specific for each isozyme mRNA. Abundance of trypsinogen mRNA without trypsinogen I tended to increase in the rats fed the 60% casein diet but tended to decrease in the rats fed the 60% AA diet compared with the respective normal nitrogen level diet groups without significant difference. CCK mRNA abundance in the jejunal mucosa increased as a result of feeding the 60% casein diet, but not the 60% AA diet. Subcutaneous CCK injections (3.5 nmole/kg body weight/day, twice daily, at 8:30 am and 7:30 pm) for 10 days resulted in increased pancreatic trypsin activity, whereas the changes in mRNA of the four trypsinogen isozymes was similar between the 20% and 60% casein groups but differed between the 20% and 60% AA groups (Exp. 3). These results suggest that CCK is not involved in the induction of pancreatic trypsin that occurs with feeding of a high AA diet and that the mechanism of protease induction by dietary AA is different from that in the case of dietary protein.  相似文献   

4.
A study was performed to investigate the effect of weaning at 4 weeks of age on the activity of digestive enzymes in the stomach and pancreatic tissue and in digesta from 3 days prior to weaning to 9 days postweaning in 64 piglets. In stomach tissue the activity of pepsin and gastric lipase was determined. Pepsin activity declined abruptly after weaning but 5 days postweaning the weaning level was regained and in the gastric contents no change in pepsin activity was observed. Weaning did not influence the activity of gastric lipase. The activity of eight enzymes and a cofactor was measured in pancreatic tissue. The effect of weaning on the enzyme activity was highly significant for all enzymes except elastase. The activity of all enzymes remained at the weaning level during day 1–2 postweaning followed by a reduction of the activity. The activity of trypsin, carboxypeptidase A, amylase and lipase exhibited minimum activity 5 days postweaning. Trypsin activity increased to the preweaning level on day 7–9 whereas the activity of the others increased but did not reach the preweaning level. The activity of chymotrypsin, carboxypeptidase B and carboxyl ester hydrolase decreased during the entire experimental period. In digesta no effect of weaning was observed on the activity of amylase and trypsin. The activity of chymotrypsin was reduced after weaning in the proximal third of the small intestine and lipase and carboxyl ester hydrolase activity was reduced in the middle and distal parts of the small intestine after weaning. The present study shows that the activities of the digestive enzymes in the pancreatic tissue are affected by weaning. Even though the pancreatic secretion cannot be judged from these results they show that the enzymes respond differently to weaning. In general the activity of the digestive enzymes in pancreatic tissue is low on day 5 postweaning which in interaction with other factors may increase the risk of developing postweaning diarrhoea.  相似文献   

5.
A study was performed to investigate the effect of weaning at 4 weeks of age on the activity of digestive enzymes in the stomach and pancreatic tissue and in digesta from 3 days prior to weaning to 9 days postweaning in 64 piglets. In stomach tissue the activity of pepsin and gastric lipase was determined. Pepsin activity declined abruptly after weaning but 5 days postweaning the weaning level was regained and in the gastric contents no change in pepsin activity was observed. Weaning did not influence the activity of gastric lipase. The activity of eight enzymes and a cofactor was measured in pancreatic tissue. The effect of weaning on the enzyme activity was highly significant for all enzymes except elastase. The activity of all enzymes remained at the weaning level during day 1-2 postweaning followed by a reduction of the activity. The activity of trypsin, carboxypeptidase A, amylase and lipase exhibited minimum activity 5 days postweaning. Trypsin activity increased to the preweaning level on day 7-9 whereas the activity of the others increased but did not reach the preweaning level. The activity of chymotrypsin, carboxypeptidase B and carboxyl ester hydrolase decreased during the entire experimental period. In digesta no effect of weaning was observed on the activity of amylase and trypsin. The activity of chymotrypsin was reduced after weaning in the proximal third of the small intestine and lipase and carboxyl ester hydrolase activity was reduced in the middle and distal parts of the small intestine after weaning. The present study shows that the activities of the digestive enzymes in the pancreatic tissue are affected by weaning. Even though the pancreatic secretion cannot be judged from these results they show that the enzymes respond differently to weaning. In general the activity of the digestive enzymes in pancreatic tissue is low on day 5 postweaning which in interaction with other factors may increase the risk of developing postweaning diarrhoea.  相似文献   

6.
This study evaluated dietary supplementation with sodium butyrate and polyhydroxybutyrate (PHB) on the enzymatic activity, in vitro nutrient digestibility, and intestinal morphology of Pacific white shrimp (Litopenaeus vannamei). The treatments were: shrimp fed diet supplemented with 2% butyrate, shrimp fed diet supplemented with 2% PHB, and shrimp fed unsupplemented diet. Shrimp fed with PHB-supplemented diet showed higher values of intestinal protease, trypsin, chymotrypsin, and amylase. Shrimp fed with butyrate-supplemented diet showed higher intestinal lipase than unsupplemented shrimp. Butyrate increased hepatopancreatic protease, trypsin, and chymotrypsin activity and in vitro protein digestibility. Shrimp fed with PHB-supplemented diet and butyrate had higher digestibility of polysaccharides and lipids. Shrimp fed with PHB-supplemented diet presented increase in the length, width, and perimeter of intestinal villi. Animals fed with both diets retained overall integrity of their intestinal mucous membrane. The findings show that dietary supplementation with PHB and butyrate can alter intestinal morphology and could improve the digestive capacity of L. vannamei.  相似文献   

7.
The effects of neurotensin on pancreatic exocrine secretion were examined in fasted, conscious White Leghorn hens. A cannula was surgically implanted in the central duct serving the ventral lobe of the pancreas in order to collect pure pancreatic juice. Following recovery, neurotensin was infused intravenously at 3.6 or 10.8 pmol/kg*min. The volume and pH of the pancreatic secretions were recorded and total pancreatic protein concentration, amylase, lipase, trypsin, and chymotrypsin activity were measured every 30 min for 2 hr and compared to secretions following the infusion of 0.9% saline. Our results demonstrated that neurotensin did not affect the pH nor the pancreatic juice protein concentration, but did increase secretion rate following neurotensin infusion at 3.6 pmol/kg*min. Amylase activity was significantly depressed during neurotensin infusions, while lipase (both pancreatic and carboxylester lipase) activity was significantly elevated. The ratio of amylase to lipase activity was especially depressed by neurotensin infusion at 10.8 pmol/kg*min. Insufficient secretory activity prevented a balanced statistical analysis of chymotrypsin activity, but from a pooled analysis, neurotensin had no effect on protease activity in the pancreatic juice. These results support our current research indicating that neurotensin may be a hormonal regulator of postprandial lipid digestion in chickens.  相似文献   

8.
The purpose of this study was to estimate the effects of cholecystokinin (CCK), somatostatin (SS) pancreatic polypeptide (PP) and their interaction with each other, given them in single doses, on pancreatic secretion and pancreatic growth after long-term treatment in rats. The acute secretory effects of the above mentioned peptides were studied on conscious rats supplied with pancreatic, gastric and jugular vein cannulae. The pancreatic growth was characterized by measurements of pancreatic weight, desoxyribonucleic acid (DNA), protein, trypsin and amylase content after 5 days treatment. Amylase output was increased by caerulein alone, and given it in combination with somatostatin (SS), while its value decreased by SS alone. After 5 days treatment, the pancreatic weight, trypsin and amylase activity (hypertrophy) was increased by caerulein, and these values were not altered by S alone. In combinative administration of caerulein with somatostatin, the stimulatory effect by caerulein was decreased. PP given alone or in combination with caerulein decreased both the basal and stimulated amylase output. PP given for 5 days decreased pancreatic trypsin and amylase contents and counteracted the stimulatory effect by caerulein to these enzymes' contents. It has been concluded that: 1. caerulein stimulates both pancreatic enzyme secretion and pancreatic growth; 2. somatostatin inhibits the pancreatic secretion and caerulein induced pancreatic growth, but it does not affect the spontaneous growth of pancreas; 3. pancreatic polypeptide inhibits the pancreatic secretion and decreases pancreatic trypsin and amylase contents.  相似文献   

9.
Shock and multiple organ failure remain primary causes of late-stage morbidity and mortality in victims of trauma. During shock, the intestine is subject to extensive cell death and is the source of inflammatory factors that cause multiorgan failure. We (34) showed previously that ischemic, but not nonischemic, small intestines and pancreatic protease digested homogenates of normal small intestine can generate cytotoxic factors capable of killing naive cells within minutes. Using chloroform/methanol separation of rat small intestine homogenates into lipid fractions and aqueous and sedimented protein fractions and measuring cell death caused by those fractions, we found that the cytotoxic factors are lipid in nature. Recombining the lipid fraction with protein fractions prevented cell death, except when homogenates were protease digested. Using a fluorescent substrate, we found high levels of lipase activity in intestinal homogenates and cytotoxic levels of free fatty acids. Addition of albumin, a lipid binding protein, prevented cell death, unless the albumin was previously digested with protease. Homogenization of intestinal wall in the presence of the lipase inhibitor orlistat prevented cell death after protease digestion. In vivo, orlistat plus the protease inhibitor aprotinin, administered to the intestinal lumen, significantly improved survival time compared with saline in a splanchnic arterial occlusion model of shock. These results indicate that major cytotoxic mediators derived from an intestine under in vitro conditions are free fatty acids. Breakdown of free fatty acid binding proteins by proteases causes release of free fatty acids to act as powerful cytotoxic mediators.  相似文献   

10.
Coffee consumption has been associated with pancreatic disorders, but the mechanisms involved remain to be elucidated. This investigation examines the effects of caffeine consumption on the structure and function of the exocrine pancreas. Groups of rats, fed ad libitum commercial laboratory diet, were given drinking water which contained either caffeine (0.09 mg/ml) or nothing at all. The rats were allowed drink ad libitum and were killed 6 weeks later. Final body and pancreatic weights were not significantly different between the groups at the end of the experimental period. Although no ultrastructural effects of caffeine on the pancreas were observed, amylase and trypsinogen activity was 35% higher in pancreatic homogenates from caffeine-fed rats compared with controls. In addition, levels of immunoreactive cationic trypsin(ogen) were 41% higher than control levels in pancreases from the caffeine-fed rats. Also, the circulating levels of amylase and immunoreactive cationic trypsin(ogen) in serum were lower in the caffeine group compared with controls. When dispersed pancreatic acini isolated from the caffeine-fed rats were incubated in vitro with increasing concentrations of CCK-8 or nicotine, the rate of release of amylase, trypsinogen, and chymotrypsinogen was lower than in the control rats. This effect did not appear to be due to inhibition of protein synthesis, as determined by [3H]leucine incorporation into acinar protein. These data suggest that prolonged intake of caffeine at common dietary levels inhibits pancreatic enzyme secretion.  相似文献   

11.
We have previously demonstrated that feeding a diet with a high amino acid (60% AA diet) content, as a mixture simulating casein, induced pancreatic growth and pancreatic protease production in rats. In the present study, we examined the effects of an increasing dietary content of essential amino acids (EAA, x1 - x3 in exp. 1 and x1 - x3.3 in exp. 2) and non-essential amino acids (NEAA, x1 - x3 in exp. 1 and x1 - x5.2 in exp. 2) on pancreatic growth, amylase and protease adaptation using casein-type amino acid mixtures (exp. 1, basal diet; 20% AA diet) and egg white-type amino acid mixtures (exp. 2, basal diet; 12% AA diet). Pancreatic growth and trypsin activity were induced as the dietary content of NEAA was increased in experiments 1 and 2. Amylase activity in the pancreas was also induced as the dietary content of NEAA was increased, even with the decrease in dietary carbohydrate in experiment 2. The values of all pancreatic variables decreased with the increase in dietary EAA (x2 and x3) without an increase in NEAA. The changes in the pancreas were coincident with increases in plasma arginine and lysine concentrations and a decrease in the plasma alanine concentration. In rats fed a 60% AA diet (EAA and NEAA x3), in the case of which the EAA content was balanced with the NEAA content, pancreatic growth and protease production increased and reached maximum levels as the plasma amino acid concentrations decreased, except for alanine. These results show that NEAA, not EAA, are associated with induction of pancreatic growth and protease production upon feeding a diet with a high AA content, and that some metabolites may be involved in the induction process. The suppression of pancreatic growth and protease production in rats fed the high EAA diets without balanced NEAA may be associated with impairment of amino acid metabolism rather than the increments in the concentration of one or more essential amino acids. Our results also suggest that there is an unknown mechanism or unknown factors involved in regulating pancreatic amylase.  相似文献   

12.
The bile salt hydrolase activity in intestinal homogenates reflects composite activities of the gastrointestinal microbial consortia. We have proposed that specific transformations of conjugated bile acids by the intestinal microflora result in the production of metabolites which depress the growth of poultry. The influence of dietary carbohydrates on the physical and kinetic properties of cholyltaurine hydrolase activity, one such bile acid-transforming enzyme in gastrointestinal homogenates of young chickens, was characterized by using a sensitive radiochemical assay. Cholyltaurine hydrolase activity in crude extracts of ileal homogenates was increased twofold by 0.25% Triton X-100 and a freeze-thaw cycle. The pH optimum for cholyltaurine hydrolase from ileal homogenates was very broad and reflected the pH range of poultry intestinal contents (i.e., 5.8 to 6.4). The carbohydrate component of the diet did not affect the apparent temperature optimum (41 degrees C) or stability profile, nor did it affect the apparent Km for taurocholic acid hydrolysis (approximately 0.43 mM). The enzymes in intestinal homogenates were active on all taurine-conjugated bile acids tested. The carbohydrate component of the diet did, however, affect the specific activity of cholyltaurine hydrolase in ileal homogenates from chickens. The levels of cholyltaurine hydrolase activity (rye greater than sucrose greater than corn) in homogenates from birds fed the different diets were directly related to the amount of growth depression (rye greater than sucrose greater than corn) associated with feeding these dietary carbohydrates. These data suggest that intestinal levels of cholyltaurine hydrolase are correlated with the amount of carbohydrate-induced growth depression in poultry.  相似文献   

13.
The bile salt hydrolase activity in intestinal homogenates reflects composite activities of the gastrointestinal microbial consortia. We have proposed that specific transformations of conjugated bile acids by the intestinal microflora result in the production of metabolites which depress the growth of poultry. The influence of dietary carbohydrates on the physical and kinetic properties of cholyltaurine hydrolase activity, one such bile acid-transforming enzyme in gastrointestinal homogenates of young chickens, was characterized by using a sensitive radiochemical assay. Cholyltaurine hydrolase activity in crude extracts of ileal homogenates was increased twofold by 0.25% Triton X-100 and a freeze-thaw cycle. The pH optimum for cholyltaurine hydrolase from ileal homogenates was very broad and reflected the pH range of poultry intestinal contents (i.e., 5.8 to 6.4). The carbohydrate component of the diet did not affect the apparent temperature optimum (41 degrees C) or stability profile, nor did it affect the apparent Km for taurocholic acid hydrolysis (approximately 0.43 mM). The enzymes in intestinal homogenates were active on all taurine-conjugated bile acids tested. The carbohydrate component of the diet did, however, affect the specific activity of cholyltaurine hydrolase in ileal homogenates from chickens. The levels of cholyltaurine hydrolase activity (rye greater than sucrose greater than corn) in homogenates from birds fed the different diets were directly related to the amount of growth depression (rye greater than sucrose greater than corn) associated with feeding these dietary carbohydrates. These data suggest that intestinal levels of cholyltaurine hydrolase are correlated with the amount of carbohydrate-induced growth depression in poultry.  相似文献   

14.
The authors investigated whether lorglumide a specific CCK-receptor antagonist affects the pancreatic actions of caerulein in female newborn Wistar rats. Pancreatic secretory response (expressed as the decrease in specific trypsin activity in the pancreas) was studied in 11-day-old rats following acute administration of saline (control), caerulein (0.3, 1, or 3 micrograms/kg s.c.) either without or with lorglumide (10 mg/kg s.c.). Lorglumide was given 15 min before caerulein. In chronic studies rats were treated 3x/day for 10 days from the day of birth (Day 1) with caerulein and lorglumide as above. On Day 11 the rats were decapitated and exsanguinated, their pancreas removed and analyzed. Acute administration of caerulein induced a dose-dependent depletion of specific trypsin activity from the pancreas and this was antagonized by lorglumide. Chronic treatment with each dose of the peptide increased total pancreatic trypsin content. Besides, the 3 micrograms/kg dose caused to increase pancreatic protein, DNA, and amylase content and to increase plasma corticosterone level. Chronic administration of lorglumide did not influence normal pancreatic growth, while it strongly inhibited the increase in trypsin content evoked by caerulein. However, lorglumide, given alone or in combination with caerulein, induced a significant increase in pancreatic amylase content without affecting plasma corticosterone level.  相似文献   

15.
The time-course response of rat pancreatic enzymes to a diet containing 25% sunflower oil was investigated. A 1.2-fold enhancement in lipase specific activity was observed as early as the first day of diet consumption and was further increased up to 1.9-fold on the 5th day. On the other hand, colipase activity was slightly decreased during the first two days of high-lipid diet intake and then increased. An immediate and direct effect was also exerted by the 25% lipid diet on lipase biosynthesis. Both fractional synthetic rate and specific activity of lipase were comparably induced. Due to a 1.6-fold increase in the overall protein synthesis following 5 days of lipid diet consumption, the absolute synthesis of lipase and amylase was increased by 3.5-fold and 0.98-fold, respectively, as compared to control animals. By contrast, the synthesis of procarboxypeptidases and serine proteases did not increase before day 5, probably as the result of a distinct adaptive mechanism. The pancreatic mRNA levels in control and adapted animals, which were determined by dot-blot hybridization with amylase and lipase cDNAs, were consistent with a biphasic induction of lipase synthesis since a first increase in the level of the enzyme-specific mRNA during the first two days of diet intake (4-fold on day 1) was followed by a second increase after the fourth day (6.5-fold on day 5). On the other hand, amylase mRNA level was unchanged during the dietary manipulation. Thus, hyperlipidic diets exerted an both lipase activity and synthesis but a delayed effect on procarboxypeptidase and serine protease synthesis. In a similar manner, the immediate induction of lipase mRNA level by dietary fat, followed by another increase a few days later, suggested that at least two different mechanisms are involved in lipase mRNA induction.  相似文献   

16.
17.
Hydrolytic enzymes were measured in gut contents from four sudden death victims. Pancreatic amylase and total protease activities decreased distally from the small bowel to the sigmoid/rectum region of the large intestine, showing that considerable breakdown or inactivation of the enzymes occurred during gut transit. To determine whether pancreatic enzymes were substrates for the gut microflora, mixed populations of bacteria were grown in a 3-stage continuous culture system on a medium that contained pancreatic extract as the sole nitrogen source. The multichamber system (MCS) was designed to reproduce in vitro , the low pH, high nutrient, fast growth conditions of the caecum and right colon and the neutral pH, low nutrient, slow growth conditions of the left colon. Results showed that pancreatic amylase was resistant to breakdown by intestinal bacteria compared with the peptide hydrolases in pancreatic secretions. Leucine aminopeptidase, trypsin and to a lesser degree, chymotrypsin, were easily degraded by gut bacteria, but pancreatic elastase was comparatively resistant to breakdown. Protein degradation in the MCS, as determined by enzyme activities, protein concentration and ammonia and phenol production, increased concomitantly with system retention time over the range 24–69 h. These results suggest that intestinal bacteria play an important role in the breakdown of hydrolytic enzymes secreted by the pancreas and that this process and protein fermentation in general, is likely to occur maximally in individuals with extended colonic retention times.  相似文献   

18.
Trypsin inhibitor and proteolytic activities were studied in incubated eggs, embryos, and newly hatched chicks. After rupture of the secondary seroamniotic suture at 11 days, the trypsin inhibitor content of the albumen gradually passes into the amniotic cavity; from there it is taken up orally by the chick embryo. It is supposed that between 11 and 18 days of embryonic development the trypsin inhibitor passes from the gut to the yolk sac through the vitellointestinal duct. The thin yolk contained only traces of trypsin inhibitor, and the allantoic fluid was entirely free from it. The amylase activity demonstrable in the liquid intestinal contents of the chick embryo indicates the presence of pancreatic secretion. The trypsin inhibitor probably suppresses the proteases not only directly, but also through prevention of the activation of zymogens. Enterocytes of chick embryos showed no morphological indication of the absorption of undigested proteins on histological examination. The cloacal membrane of the newly hatched chick ruptures shortly after the bird has dried up, and the trypsin inhibitor is subsequently eliminated along with the intestinal contents. The intestinal proteolytic enzymes appear immediately afterward. The proteolytic activity appeared regardless of whether the birds were or were not fed. Maximum proteolytic activity was measured in the small intestine of chicks that were fasted for 2 days after hatching. The pattern of proteolytic enzymes as well as their sensitivity to protease inhibitors did not notably differ from that of mammals.  相似文献   

19.
Chronic diversion of pancreatic and biliary secretions away from the proximal small intestine resulted in rapid increases in pancreatic size and protein content in adult rats. The effect was detectable as early as 10 days postsurgery. Differential changes in pancreatic enzymes were evident after bypass. The concentration of trypsinogen remained stable while amylase concentrations showed a marked decrease. Total pancreatic trypsinogen content, however, was increased, while amylase content remained similar to controls. Feeding bypassed rats with chows containing various pancreatic and biliary supplements had no effect on the hyperplastic response of their pancreata. Trypsinogen and amylase levels in supplemented groups remained similar to the bypassed group fed nonsupplemented chow, with the exception of increases in trypsinogen concentration and content in the groups supplemented with bile and cotazyme plus bile acids. The adequacy of oral refeeding of pancreatic biliary components was supported by its effectiveness in restoring mucosal enterokinase activity and trypsin levels in segment 1. However, there was no correlation between tryptic activity in the contents of the bypassed segment and the eventual pancreatic weight. These results indicate that factors other than those supplemented in this study are required in maintaining the steady state of pancreatic growth in normal rats.  相似文献   

20.
ObjectivesPostnatal gut maturation in neonatal mammals, either at natural weaning or after precocious inducement, is coinciding with enhanced enzymes production by exocrine pancreas. Since the involvement of enzymes in gut functional maturation was overlooked, the present study aimed to investigate the role of enzymes in gut functional maturation using neonatal rats.MethodsSuckling rats (Rattus norvegicus) were instagastrically gavaged with porcine pancreatic enzymes (Creon), microbial-derived amylase, protease, lipase and mixture thereof, while controls received α-lactalbumin or water once per day during 14–16 d of age. At 17 d of age the animals were euthanized and visceral organs were dissected, weighed and analyzed for structural and functional properties. For some of the rats, gavage with the macromolecular markers such as bovine serum albumin and bovine IgG was performed 3 hours prior to blood collection to assess the intestinal permeability.ResultsGavage with the pancreatic or pancreatic-like enzymes resulted in stimulated gut growth, increased gastric acid secretion and switched intestinal disaccharidases, with decreased lactase and increased maltase and sucrase activities. The fetal-type vacuolated enterocytes were replaced by the adult-type in the distal intestine, and macromolecular transfer to the blood was declined. Enzyme exposure also promoted pancreas growth with increased amylase and trypsin production. These effects were confined to the proteases in a dose-dependent manner.ConclusionFeeding exogenous enzymes, containing proteases, induced precocious gut maturation in suckling rats. This suggests that luminal exposure to proteases by oral loading or, possibly, via enhanced pancreatic secretion involves in the gut maturation of young mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号