首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two types of 32 arm star polymers incorporating amphiphilic block copolymer arms have been synthesized and characterized. The first type, stPCL-PEG 32, is composed of a polyamidoamine (PAMAM) dendrimer as the core with radiating arms having poly(epsilon-caprolactone) (PCL) as an inner lipophilic block in the arm and poly(ethylene glycol) (PEG) as an outer hydrophilic block. The second type, stPLA-PEG 32, is similar but with poly(L-lactide) (PLA) as the inner lipophilic block. Characterization with SEC, (1)H NMR, FTIR, and DSC confirmed the structure of the polymers. Micelle formation by both star copolymers was studied by fluorescence spectroscopy. The stPCL-PEG 32 polymer exhibited unimolecular micelle behavior. It was capable of solubilizing hydrophobic molecules, such as pyrene, in aqueous solution, while not displaying a critical micelle concentration. In contrast, the association behavior of stPLA-PEG 32 in aqueous solution was characterized by an apparent critical micelle concentration of ca. 0.01 mg/mL. The hydrophobic anticancer drug etoposide can be encapsulated in the micelles formed from both polymers. Overall, the stPCL-PEG 32 polymer exhibited a higher etoposide loading capacity (up to 7.8 w/w % versus 4.3 w/w % for stPLA-PEG 32) as well as facile release kinetics and is more suitable as a potential drug delivery carrier.  相似文献   

2.
The purpose of this research was to develop and characterize a gene delivery vehicle with a poly(ethylene glycol) (PEG) backbone with the aim of overcoming limitations, such as cytotoxicity and rapid clearance, associated with current commonly used non-viral carriers. PEG was functionalized with DNA-binding peptides (DBPs) to make a vehicle (DBP-PEG) capable of condensing DNA. Complexes of plasmid DNA and DBP-PEG were formed and characterized by measuring particle size, zeta potential, and transfection efficiency as a function of N:P charge ratios (DBP-PEG amino groups:DNA phosphate). Dynamic light scattering showed that DBP-PEG was able to condense DNA efficiently resulting in a population of particles in the range of 250-300 nm. Neutral or slightly positive zeta potentials were measured for charge ratios of 3.5:1 and greater. DBP-PEG/DNA complexes, made with plasmids encoding the green fluorescent protein (GFP) and beta-Galactosidase (beta-Gal) genes, were used to transfect Chinese hamster ovary (CHO) cells. DBP-PEG/DNA was capable of transfecting cells and maximum transfection efficiency was observed for N:P ratios from 4:1 to 5:1, corresponding to zeta potentials from -4 to +1.6 mV. The effect of the DBP-PEG vehicle on cell viability was assayed. DBP-PEG was associated with a higher percentage of viable cells ( approximately 95%) than either polyethylenimine (PEI) or poly-L-lysine (PLL), and with transfection efficiency greater than PLL, but with somewhat lower than PEI. The results of this work demonstrate that PEG can be used as the backbone for gene delivery vehicles.  相似文献   

3.
Guo Y  Sun Y  Gu J  Xu Y 《Analytical biochemistry》2007,363(2):204-209
Cationic polymers including polylysine (PLL) and polyethylenimine are being widely tested as gene delivery vectors in various gene therapy applications. In many cases, the polymers were further modified by hydrophilic polymer grafting or ligand conjugation, which had been shown to greatly affect the vector stability, delivery efficiency and specificity. The characterization of modified polycation is particularly critical for quality control and vector development. Here several different separation modes using capillary electrophoresis for the analytical characterization of the modified polymers are described. PLL molecules were grafted with poly(ethylene glycol) (PEG) chain or conjugated with epidermal growth factor and analyzed under various analytical conditions. Poly(N,N'-dimethylacrylamide)-coated capillary was used to analyze the modified PLL to reduce the interaction between the samples and the capillary wall. PLLs containing different numbers of conjugated ligands were well separated with the coating method but, for PLL-g-PEG, the separation was poor under the same conditions. A method using low buffer pH and hydroxypropylmethyl cellulose additive was developed. These methods are useful to characterize various polycations and important for the quality control and application of potential gene delivery vectors.  相似文献   

4.
Improved non-viral vector systems are needed for efficient delivery of DNA to target cell nuclei in gene therapy. A series of linear polyamine poly(ethylene glycol) (PEG) constructs has been synthesised by reaction of appropriately Boc-protected thermine derivatives with omega-methoxyPEG oxiranylmethyl ethers. Constructs carrying 1-3 MeOPEG units and 0, 2 or 4 N-methyl groups have been prepared by this method. H2N(CH2)3NBoc(CH2)3NBoc(CH2)3NHBoc was prepared efficiently by mono-trifluoroacetylation of thermine, attachment of Boc and removal of the trifluoroacetyl group in one pot. A similar process gave H2N(CH2)3NBoc(CH2)3NBoc(CH2)3NH2. BocMeN(CH2)3NHMe was alkylated by 1,3-dibromopropane to give BocMeN(CH2)3NMe(CH2)3NMe(CH2)3NMeBoc. A cyanoethylation/reduction sequence extended H2N(CH2)3NBoc(CH2)3NBoc(CH2)3NH2 to give H2N(CH2)3NBoc(CH2)3NBoc(CH2)3NBoc(CH2)3NBoc(CH2) 3NH2, which was converted to its mono- and di-MeOPEG550 derivatives. Deprotection gave the linear polyamine MeOPEG constructs. A branched triamine-poly(ethylene glycol) construct was prepared by acylation of (BocHN(CH2)3)2N(CH2)3NH2 with omega-methoxyPEG 550 chloroformate, followed by deprotection. A cyanoethylation/reduction/protection sequence from (H2N(CH2)3)2 N(CH2)3NHBoc gave a protected pentamine. Alkylation with Br(CH2)5CONH(CH2)2NHBoc, deprotection, acylation with MeOPEG chloroformate and deprotection gave a pentamine MeOPEG construct in which the MeOPEG is attached through a linker to the central amine. The linear hexamine construct carrying MeOPEG550 at only one terminus was the most effective DNA-interactive member of the two series in an ethidium displacement assay and was effective in delivering a reporter gene to RIF-1 tumours.  相似文献   

5.
The covalently cross-linked chitosan-poly(ethylene glycol)1540 derivatives have been developed as a controlled release system with potential for the delivery of protein drug. The swelling characteristics of the hydrogels based on these derivatives as the function of different PEG content and the release profiles of a model protein (bovine serum albumin, BSA) from the hydrogels were evaluated in simulated gastric fluid with or without enzyme in order to simulate the gastrointestinal tract conditions. The derivatives cross-linked with difunctional PEG1540-dialdehyde via reductive amination can swell in alkaline pH and remain insoluble in acidic medium. The cumulative release amount of BSA was relatively low in the initial 2 h and increased significantly at pH 7.4 with intestinal lysozyme for additional 12 h. The results proved that the release-and-hold behavior of the cross-linked CS–PEG1540H-CS hydrogel provided a swell and intestinal enzyme controlled release carrier system, which is suitable for oral protein drug delivery.  相似文献   

6.
This protocol describes the synthesis of oligo(poly(ethylene glycol) fumarate) (OPF; 1-35 kDa; a polymer useful for tissue engineering applications) by a one-pot reaction of poly(ethylene glycol) (PEG) and fumaryl chloride. The procedure involves three parts: dichloromethane and PEG are first dried; the reaction step follows, in which fumaryl chloride and triethylamine are added dropwise to a solution of PEG in dichloromethane; and finally, the product solution is filtered to remove by-product salt, and the OPF product is twice crystallized, washed and dried under vacuum. The reaction is affected by the molecular weight of PEG and reactant molar ratio. The OPF product is cross-linked by radical polymerization by either a thermally induced or ultraviolet-induced radical initiator, and the physical properties of the OPF oligomer and resulting cross-linked hydrogel are easily tailored by varying PEG molecular weight. OPF hydrogels are injectable, they polymerize in situ and they undergo biodegradation by hydrolysis of ester bonds. The expected time required to complete this protocol is 6 d.  相似文献   

7.
Zeng F  Liu J  Allen C 《Biomacromolecules》2004,5(5):1810-1817
Amphiphilic diblock copolymers with various block compositions were synthesized with monomethoxy-terminated poly(ethylene glycol) (MePEG) as the hydrophilic block and poly(5-benzyloxy-trimethylene carbonate) (PBTMC) as the hydrophobic block. When the copolymerization was conducted using MePEG as a macroinitiator and stannous 2-ethylhexanoate (Sn(Oct)2) as a catalyst, the molecular weight of the second block was uncontrollable, and the method only afforded a mixture of homopolymer and copolymer with a broad molecular weight distribution. By contrast, the use of the triethylaluminum-MePEG initiator yielded block copolymers with controllable molecular weight and a more narrow molecular weight distribution than the copolymers obtained using Sn(Oct)2. GPC and 1H NMR studies confirmed that the macroinitiator was consumed and the copolymer composition was as predicted. Two of the newly synthesized MePEG-b-PBTMC copolymers were evaluated in terms of properties primarily relating to their use in micellar drug delivery. MePEG-b-PBTMC micelles with a narrow monomodal size distribution were prepared using a high-pressure extrusion technique. The MePEG-b-PBTMC copolymers were also confirmed to be biodegradable and noncytotoxic.  相似文献   

8.
A star polymer composed of amphiphilic block copolymer arms has been synthesized and characterized. The core of the star polymer is polyamidoamine (PAMAM) dendrimer, the inner block in the arm is lipophilic poly(epsilon-caprolactone) (PCL), and the outer block in the arm is hydrophilic poly(ethylene glycol) (PEG). The star-PCL polymer was synthesized first by ring-opening polymerization of epsilon-caprolactone with a PAMAM-OH dendrimer as initiator. The PEG polymer was then attached to the PCL terminus by an ester-forming reaction. Characterization with SEC, (1)H NMR, FTIR, TGA, and DSC confirmed the star structure of the polymers. The micelle formation of the star copolymer (star-PCL-PEG) was studied by fluorescence spectroscopy. Hydrophobic dyes and drugs can be encapsulated in the micelles. A loading capacity of up to 22% (w/w) was achieved with etoposide, a hydrophobic anticancer drug. A cytotoxicity assay demonstrated that the star-PCL-PEG copolymer is nontoxic in cell culture. This type of block copolymer can be used as a drug delivery carrier.  相似文献   

9.
Synthesis and characterization of poly(ethylene glycol)-insulin conjugates   总被引:8,自引:0,他引:8  
Human insulin was modified by covalent attachment of short-chain (750 and 2000 Da) methoxypoly (ethylene glycol) (mPEG) to the amino groups of either residue PheB1 or LysB29, resulting in four distinct conjugates: mPEG(750)-PheB1-insulin, mPEG(2000)-PheB1-insulin, mPEG(750)-LysB29-insulin, and mPEG(2000)-LysB29-insulin. Characterization of the conjugates by MALDI-TOF mass spectrometry and N-terminal protein sequence analyses verified that only a single polymer chain (750 or 2000 Da) was attached to the selected residue of interest (PheB1 or LysB29). Equilibrium sedimentation experiments were performed using analytical ultracentrifugation to quantitatively determine the association state(s) of insulin derivatives. In the concentration range studied, all four of the conjugates and Zn-free insulin exist as stable dimers while Zn(2+)-insulin was exclusively hexameric and Lispro was monomeric. In addition, insulin (conjugate) self-association was evaluated by circular dichroism in the near-ultraviolet wavelength range (320-250 nm). This independent method qualitatively suggests that mPEG-insulin conjugates behave similarly to Zn-free insulin in the concentration range studied and complements results from ultracentrifugation studies. The physical stability/resistance to fibrillation of mPEG-insulin conjugates in aqueous solution were assessed. The data proves that mPEG(750 and 2000)-PheB1-insulin conjugates are substantially more stable than controls but the mPEG(750 and 2000)-LysB29-insulin conjugates were only slightly more stable than commercially available preparations. Circular dichroism studies done in the far ultraviolet region confirm insulin's tertiary structure in aqueous solution is essentially conserved after mPEG conjugation. In vivo pharmacodynamic assays reveal that there is no loss in biological activity after conjugation of mPEG(750) to either position on the insulin B-chain. However, attachment of mPEG(2000) decreased the bioactivity of the conjugates to about 85% of Lilly's HumulinR formulation. The characterization presented in this paper provides strong testimony to the fact that attachment of mPEG to specific amino acid residues of insulin's B-chain improves the conjugates' physical stability without appreciable perturbations to its tertiary structure, self-association behavior, or in vivo biological activity.  相似文献   

10.
3,4-Dihydroxyphenylalanine (DOPA) residues are known for their ability to impart adhesive and curing properties to mussel adhesive proteins. In this paper, we report the preparation of linear and branched DOPA-modified poly(ethylene glycol)s (PEG-DOPAs) containing one to four DOPA endgroups. Gel permeation chromatography-multiple-angle laser light scattering analysis of methoxy-PEG-DOPA in the presence of oxidizing reagents (sodium periodate, horseradish peroxidase, and mushroom tyrosinase) revealed the formation of oligomers of methoxy-PEG-DOPA, presumably resulting from oxidative polymerization of DOPA endgroups. In the case of PEG-DOPAs containing two or more DOPA endgroups, oxidative polymerization resulted in polymer network formation and rapid gelation. The amount of time required for gelation of aqueous PEG-DOPA solutions was found to be as little as 1 min and was dependent on the polymer architecture as well as the type and concentration of oxidizing reagent used. Analysis of reaction mixtures by UV-vis spectroscopy allowed the identification of reaction intermediates and the elucidation of reaction pathways. On the basis of the observed reaction intermediates, oxidation of the catechol side chain of DOPA resulted in the formation of highly reactive DOPA-quinone, which further reacted to form cross-linked products via one of several pathways, depending on the presence or absence of N-terminal protecting groups on the PEG-DOPA. N-Boc protected PEG-DOPA cross-linked via phenol coupling and quinone methide tanning pathways, whereas PEG-DOPA containing a free amino group cross-linked via a pathway that resembled melanogenesis. Similar differences were observed for the rate of gel formation as well as the molecular weight between cross-links ((-)M(c)), calculated using equilibrium swelling and the Flory-Rehner equation.  相似文献   

11.
Carboplatin is a low-molecular-weight anticancer drug that acts by binding to the nuclear DNA of cells. Thus, efficient delivery of the platinum drugs to the nucleus of the cancer cells may enhance the cytotoxicity of the drug. Efficient drug delivery to the nucleus of cancer cells requires three levels of localization: targeting to the cancerous tissue, accumulation in the cancer cells, and intracellular localization in the nucleus. Nuclear localization signals (NLS) are short positively charged basic peptides that actively transport large proteins across the nuclear membrane. We have prepared conjugates in which the NLS is tethered to poly(ethyleneglycol)carboplatin conjugate (NLS-PEG-Pt) and compared their pharmacological properties to those of their untargeted analogues that do not possess the NLS (PEG-Pt). NLS-PEG-Pt conjugates are rapidly internalized into cancer cells and accumulate in the nucleus. Despite their rapid nuclear localization, they form less Pt-DNA adducts than the untargeted analogues, PEG-Pt, and are also less cytotoxic. These results support the hypothesis that carboplatin (unlike cisplatin) may require cytosolic activation prior to its binding to nuclear DNA.  相似文献   

12.
Branched disulfide-containing poly(amido ethyleneimines) (SS-PAEIs) are biodegradable polymeric gene carrier analogues of the well-studied, nondegradable, and often toxic branched polyethylenimines (bPEIs), but with distinct advantages for cellular transgene delivery. Clinical success of polycationic gene carriers is hampered by obscure design and formulation requirements. This present work reports synthetic and formulation properties for a graft copolymer of poly(ethylene glycol) (PEG) and a branched SS-PAEI, poly(triethylentetramine/cystaminebisacrylamide) (p(TETA/CBA)). Several laboratories have previously demonstrated the advantages of PEG conjugation to gene carriers, but have also shown that PEG conjugation may perturb plasmid DNA (pDNA) condensation, thereby interfering with nanoparticle formation. With this foundation, our studies sought to mix various amounts of p(TETA/CBA) and p(TETA/CBA)-g-PEG2k to alter the relative amount of PEG in each formulation used for polyplex formation. The influence of different PEG/polycation amounts in the formulations on polymer/nucleic acid nanoparticle (polyplex) size, surface charge, morphology, serum stability and transgene delivery was studied. Polyplex formulations were prepared using p(TETA/CBA)-g-PEG2k, p(TETA/CBA), and mixtures of the two species at 10/90 and 50/50 volumetric mixture ratios (wt/wt %), respectively. As expected, increasing the amount of PEG in the formulation adversely affects polyplex formation. However, optimal polymer mixtures could be identified using this facile approach to further clarify design and formulation requirements necessary to understand and optimize carrier stability and biological activity. This work demonstrates the feasibility to easily overcome typical problems observed when polycations are modified and thus avoids the need to synthesize multiple copolymers to identify optimal gene carrier candidates. This approach may be applied to other polycation-PEG preparations to alter polyplex characteristics for optimal stability and biological activity.  相似文献   

13.
Cross-linking peptides have been developed by inserting multiple Cys residues into a 20 amino acid condensing peptide that polymerizes through disulfide bond formation when bound to DNA resulting in small, highly stable DNA condensates that mediate efficient in vitro gene transfer [McKenzie et al. (2000) J. Biol. Chem. 275, 9970-9977]. In the present study, a minimal peptide of four Lys and two terminal Cys residues was found to substitute for Cys-Trp-(Lys)(17)-Cys, resulting in DNA condensates with similar particle size and gene expression in HepG2 cells. Substitution of His for Lys residues resulted in an optimal peptide of Cys-His-(Lys)(6)-His-Cys that, in addition to the attributes described above, also provided buffering capacity to enhance in vitro gene expression in the absence of chloroquine. The reported structure-activity relationships systematically explore peptides with combinations of Lys, Cys, and His residues resulting in low molecular weight peptides with improved gene transfer properties.  相似文献   

14.
Abstract

Candida antarctica lipase catalyzes a number of elementary reactions like alcoholysis, ammoniolysis and aminolysis in poly(ethylene glycol) (PEG) media. Reaction rates were comparable to or better than those observed in conventional organic reaction media and ionic liquids. It is envisaged that PEGs could have added benefits for performing biotransformations with highly polar substrates, which are sparingly soluble in common organic solvents.  相似文献   

15.
Poly(ethylene glycol) (PEG) with the terminal group of active ester was coupled to the amino group of gelatin to prepare PEG-grafted gelatin (PEG-gelatin). The affinity chromatographic study revealed that the PEG-gelatin with high degrees of PEGylation did not adsorb onto the gelatin affinity column, in remarked contrast to gelatin alone and the PEG-gelatin with low PEGylation degrees. The former PEG-gelatin showed a critical micelle concentration while it had the apparent molecular size of about 100 nm and a surface charge of almost zero. These findings indicate that the PEG-gelatin formed a micelle structure of which the surface is covered with PEG molecules grafted. When the body distribution of 125I-labeled gelatin and PEG-gelatin after intravenous injection was evaluated, the radioactivity of micellar PEG-gelatin was retained in the blood circulation compared with that of gelatin and the PEG-gelatin of no micelle formation. At the same PEGylation degree, the blood concentration was significantly higher for the PEG-gelatin prepared from PEG with a molecular weight of 12 000 than that of molecular weights of 2000 and 5000. It is concluded that the PEG-gelatin is a drug carrier with a micelle structure which retains in the blood circulation.  相似文献   

16.
Heterobifunctional block copolymers of poly(ethylene glycol) (PEG) and poly(N-isopropylacrylamide) (PNIPAM) were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization of NIPAM using a macromolecular trithiocarbonate PEG-based chain transfer agent. The polymerization showed all the expected features of living radical polymerization and allowed the synthesis of copolymers with different lengths of the PNIPAM block. The synthesized block copolymers contained a carboxylic acid group from L-lysine at the focal point and a trithiocarbonate group at the terminus of the PNIPAM block. The trithiocarbonate functionality was converted into a thiol group and used for conjugation of biotin to the end of the PNIPAM block. The copolymers exhibited temperature-dependent association behavior in aqueous solution with a phase transition of approximately 32 degrees C. The described heterobifunctional block copolymers show promise for surface modifications with the potential for stimulus-controlled surface presentation of ligands attached to the terminus of the PNIPAM block.  相似文献   

17.
A library of benzoindolizines (pyrrolo [1,5-a] quinolines 10 and pyrrolo [1,5-a] quinolines 9) has been synthesized using poly(ethylene glycol) (PEG) as soluble polymer support. The PEG-supported isoquinolinium salt 4 reacted, respectively, with active alkenes 11 using tetrakispyridinecobalt(II) dichromate (TPCD) as oxidant or alkynes 12 to give 10, of which yields were from moderate to high. By analogy, the reaction of PEG-supported quinolinium salt 3 with 12 was to produce 9. However, in the presence of TPCD the reaction of 3 with 11 afforded indolizines 8, which was discovered firstly.  相似文献   

18.
Spherical, well-defined core-shell nanoparticles that consist of poly(methyl methacrylate) (PMMA) cores and branched poly(ethylenimine) shells (PEI) were synthesized via a graft copolymerization of methyl methacrylate from branched PEI induced by a small amount of tert-butyl hydroperoxide. The PMMA-PEI core-shell nanoparticles were between 130 to170 nm in diameter and displayed zeta-potentials near +40 mV at pH 7 in 1 mM aqueous NaCl. Plasmid DNA (pDNA) was mixed with nanoparticles and formed complexes of approximately 120 nm in diameter and was highly monodispersed. The complexes were characterized with respect to their particle size, zeta-potential, surface morphology, and DNA integrity. The complexing ability of the nanoparticles was strongly dependent on the molecular weight of the PEI and the thickness of the PEI shells. The stability of the complexes was influenced by the loading ratio of the pDNA and the nanoparticles. The condensed pDNA in the complexes was significantly protected from enzymatic degradation by DNase I. Cytotoxity studies using MTT colorimetric assays suggested that the PMMA-PEI (25 kDa) core-shell nanoparticles were three times less toxic than the branched PEI (25 kDa). Their transfection efficiencies were also significantly higher. Thus, the PEI-based core-shell nanoparticles show considerable potential as carriers for gene delivery.  相似文献   

19.
Recently, we developed a new type of cationic lipid that consists of an amine-terminated poly(amidoamine) dendron and two long alkyl groups. These dendron-bearing lipids achieved efficient gene transfection of cells through synergetic action of the proton sponge effect and membrane fusion in combination with fusogenic lipid dioleoylphosphatidylethanolamine. Using those dendron-bearing lipids as a base material, we developed in this study a functional component of gene vectors that stabilizes lipoplexes by multiple PEG chains and promotes gene transfection through the proton sponge effect. We combined a poly(ethylene glycol) (PEG, 550 Da) graft to each of four chain ends of the G2 dendron-bearing lipid (P4-DL). An analogous molecule having single PEG graft was also synthesized using the G0 dendron-bearing lipid (P1-DL). Inclusion of P4-DL decreased the size of the G3 dendron-bearing lipid-based lipoplexes more efficiently than P1-DL. In addition, P4-DL-containing lipoplexes exhibited two-orders-higher transfection efficiency than P1-DL-containing lipoplexes with the same PEG graft density. These results indicate the superiority of multiple attachments of PEG graft chains to a lipid for heightened ability to increase colloidal stability of lipoplexes while retaining their transfection activity. The lipoplexes stabilized by P4-DL were small, around 250 nm, and achieved efficient transfection in the presence of serum. Therefore, P4-DL and its analogues will form the basis for production of efficient nonviral vectors for in vivo use.  相似文献   

20.
Epidermal growth factor (EGF)-conjugated copolymer micelles were prepared from a mixture of diblock copolymers of methoxy poly(ethylene glycol)-block-poly(delta-valerolactone) (MePEG-b-PVL) and EGF-PEG-b-PVL for targeted delivery to EGF receptor (EGFR)-overexpressing cancers. The block copolymers and functionalized block copolymers were synthesized using PEG as the macroinitiator and HCl-diethyl ether as the catalyst. The MePEG-b-PVL and the carboxyl-terminated PEG-b-PVL (HOOC-PEG-b-PVL) copolymers were found to have molecular weights of 5940 and 5900, respectively, as determined by gel permeation chromatography (GPC) analyses. The HOOC-PEG-b-PVL copolymers were then activated by N-hydroxysuccinimide and subsequently reacted with EGF to form the EGF-PEG-b-PVL copolymers. The efficiency for the conjugation of EGF to the copolymer was found to be 60.9%. A hydrophobic fluorescent probe, CM-DiI, was loaded into both the nontargeted MePEG-b-PVL micelles and the targeted EGF-conjugated PEG-b-PVL micelles. The effective mean diameters of the CMDiI-loaded nontargeted and the CMDiI-loaded targeted micelles were found to be 32 +/- 1 nm and 45 +/- 2 nm, respectively, as determined by dynamic light scattering (DLS). The zeta potentials for the nontargeted micelles (no CM-DiI-loaded), CM-DiI-loaded nontargeted micelles, and CM-DiI-loaded targeted micelles were found to be -6.5, -8.7, and - 13.5 mV, respectively. Evaluation of the in vitro release of CM-DiI from the MePEG-b-PVL micelles in phosphate buffer saline (0.01 M, pH = 7.4) containing 10% (v/v) fetal bovine serum at 37 degrees C revealed that approximately 20% of the probe was released within the first 2 h. Confocal laser scanning microscopy (CLSM) analysis revealed that the targeted micelles containing CM-DiI accumulated intracellularly in EGFR-overexpressing MDA-MB-468 breast cancer cells following a 2 h incubation period, while no detectable cell uptake was observed for the nontargeted micelles. Results obtained from the confocal images were confirmed in an independent study by measuring the intracellular CM-DiI fluorescence in cell lysate. In addition, the presence of free EGF was found to decrease the extent of uptake of the targeted micelles. Nuclear staining of the cells with Hoechst 33258 indicated that the targeted micelles mainly localized in the perinuclear region and some of the micelles were localized in the nucleus. These results demonstrate that the EGF-conjugated copolymer micelles developed in this study have potential as vehicles for targeting hydrophobic drugs to EGFR-overexpressing cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号