首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lee J  Cordaux R  Han K  Wang J  Hedges DJ  Liang P  Batzer MA 《Gene》2007,390(1-2):18-27
The long interspersed element-1 (LINE-1 or L1) is a highly successful retrotransposon in mammals. L1 elements have continued to actively propagate subsequent to the human–chimpanzee divergence,  6 million years ago, resulting in species-specific inserts. Here, we report a detailed characterization of chimpanzee-specific L1 subfamily diversity and a comparison with their human-specific counterparts. Our results indicate that L1 elements have experienced different evolutionary fates in humans and chimpanzees within the past  6 million years. Although the species-specific L1 copy numbers are on the same order in both species (1200–2000 copies), the number of retrotransposition-competent elements appears to be much higher in the human genome than in the chimpanzee genome. Also, while human L1 subfamilies belong to the same lineage, we identified two lineages of recently integrated L1 subfamilies in the chimpanzee genome. The two lineages seem to have coexisted for several million years, but only one shows evidence of expansion within the past three million years. These differential evolutionary paths may be the result of random variation, or the product of competition between L1 subfamily lineages. Our results suggest that the coexistence of several L1 subfamily lineages within a species may be resolved in a very short evolutionary period of time, perhaps in just a few million years. Therefore, the chimpanzee genome constitutes an excellent model in which to analyze the evolutionary dynamics of L1 retrotransposons.  相似文献   

2.
Summary All modern mammals contain a distinctive, highly repeated (⩾50,000 members) family of long interspersed repeated DNA called the L1 (LINE 1) family. While the modern L1 families were derived from a common ancestor that predated the mammalian radiation ∼80 million years ago, most of the members of these families were generated within the last 5 million years. However, recently we demonstrated that modern murine (Old World rats and mice) genomes share an older long interspersed repeated DNA family that we called Lx. Here we report our analysis of the DNA sequence of Lx family members and the relationship of this family to the modern L1 families in mouse and rat. The extent of DNA sequence divergence between Lx members indicates that the Lx amplification occurred about 12 million years ago, around the time of the murine radiation. Parsimony analysis revealed that Lx elements were ancestral to both the modern rat and mouse L1 families. However, we found that few if any of the evolutionary intermediates between the Lx and the modern L1 families were extensively amplified. Because the modern L1 families have evolved under selective pressure, the evolutionary intermediates must have been capable of replication. Therefore, replicationcompetent L1 elements can reside in genomes without undergoing extensive amplification. We discuss the bearing of our findings on the evolution of L1 DNA elements and the mammalian genome.  相似文献   

3.
L1 retrotransposons constitute the largest single component of mammalian genomes. In contrast to the single remaining lineage of L1 retrotransposons in mammalian genomes, some teleost fishes contain a highly diverse L1 retrotransposon repertoire. Major evolutionary changes in L1 retrotransposon repertoires have therefore taken place in the land vertebrates (Tetrapoda). The lack of sequence data for L1 retrotransposons in the basal living Tetrapoda lineages prompted an investigation of their distribution and evolution in the genomes of the key tetrapod lineages, amphibians and reptiles, and in lungfishes. In this study, we combined genome database searches with PCR analysis to demonstrate that L1 retrotransposons are present in the genomes of lungfishes, amphibians, and lepidosaurs. Phylogenomic analysis shows that the genomes of Deuterostomia possess three highly divergent groups of L1 retrotransposons, with distinct distribution patterns. The analysis of L1 diversity shows the presence of a very large number of diverse L1 families, each with very low copy numbers, at the time of the origin of tetrapods. During the evolution of synapsids, all but one L1 lineage have been lost. This study establishes that the loss of L1 diversity and explosion in copy numbers occurred in the synapsid ancestors of mammals, and was most probably caused by severe population bottlenecks.  相似文献   

4.
5.
Nakajima T 《Bio Systems》2012,108(1-3):34-44
Epistatic interactions between genes in the genome constrain the accessible evolutionary paths of lineages. Two factors involving epistasis that can affect the evolutionary path and fate of lineages were investigated. The first factor concerns the impact of competition with another species lineage that has different epistatic constraints. Five enteric bacterial populations were evolved by point mutation in medium containing a single limiting resource. Single-species and two-species cultures were used to determine whether different asexual lineages have different capacities for producing variants due to epistatic constraints, and whether their survival is determined by local inter-lineage competition with different species. Local inter-lineage competition quickly resulted in one successful lineage, with another lineage becoming extinct before finding a higher peak. The second factor concerns a peak-shifting process, and whether the sexual recombination between different demes can cause peak shifts was investigated. An Escherichia coli population consisting of a male (Hfr) and female strain (F(-)) was evolved in a single limiting resource and compared to evolving populations containing the male or female strain alone. The E. coli sexual lineage was successful due to its ability to escape lower peaks and reach a higher peak, not because of a rapid approach to the nearest local peak the male or female asexual lineage could reach. The data in this study demonstrate that lineage survivability can be determined by the ability to produce beneficial mutations and checked by local competition between lineages of different species. Interspecific competition may prevent a population from evolving through crossing fitness valleys or adaptive ridges if it requires many generations to achieve peak shifts. The data also show that genomic recombination between different conspecific lineages can rapidly carry the combined lineage to a higher peak.  相似文献   

6.
We report an investigation of the structure, evolutionary history, and function of the highly repeated DNA family named Long Interspersed Sequence One (L1). Hybridization studies show, first, that L1 is present throughout marsupial and placental mammalian orders. Second, L1 is more homologous within these species than between them, which suggests that it has undergone concerted evolution within each mammalian lineage. Third, on the whole L1 diverges in accordance with the fossil record. This suggests that it arose in each lineage rather by inheritance from a common ancestral family, which was present in the progenitor to mammals, than by cross-species transmission. Alignment of 1.6 X 10(3) bases of primate and mouse L1 DNA sequences shows a predominance of silent mutations within aligned long open reading frames, indicating that at least this part of L1 has produced functional protein. The observation of additional long open reading frames in further unaligned DNA sequences suggests that a minimum of 3.2 X 10(3) bases or at least half of the L1 structure is a protein-coding sequence. Thus L1, which contains about 100,000 members in mouse, is by far the most repetitive family of which a subset comprises functional protein-encoding genes. The ability of the putative protein-encoding regions of mouse L1 to hybridize to L1 homologs throughout the Mammalia implies that these sequences have been subject to conservative selection upon protein function in all mammalian lineages, rather than in a few. L1 is therefore a highly repeated family of genes with both a widespread and an ancient history of function in mammals.  相似文献   

7.
Repair of single-stranded DNA breaks before DNA replication is critical in maintaining genomic stability; however, how cells deal with these lesions during S phase is not clear. Using combined approaches of proteomics and in vitro and in vivo protein–protein interaction, we identified the p58 subunit of DNA Pol α-primase as a new binding partner of XRCC1, a key protein of the single strand break repair (SSBR) complex. In vitro experiments reveal that the binding of poly(ADP-ribose) to p58 inhibits primase activity by competition with its DNA binding property. Overexpression of the XRCC1-BRCT1 domain in HeLa cells induces poly(ADP-ribose) synthesis, PARP-1 and XRCC1-BRCT1 poly(ADP-ribosyl)ation and a strong S phase delay in the presence of DNA damage. Addition of recombinant XRCC1-BRCT1 to Xenopus egg extracts slows down DNA synthesis and inhibits the binding of PCNA, but not MCM2 to alkylated chromatin, thus indicating interference with the assembly of functional replication forks. Altogether these results suggest a critical role for XRCC1 in connecting the SSBR machinery with the replication fork to halt DNA synthesis in response to DNA damage.  相似文献   

8.
A low rate of simultaneous double-nucleotide mutations in primates   总被引:1,自引:0,他引:1  
The occurrence of double-nucleotide (doublet) mutations is contrary to the normal assumption that point mutations affect single nucleotides. Here we develop a new method for estimating the doublet mutation rate and apply it to more than a megabase of human-chimpanzee-baboon genomic DNA alignments and more than a million human single-nucleotide polymorphisms. The new method accounts for the effect of regional variation in evolutionary rates, which may be a confounding factor in previous estimates of the doublet mutation rate. Furthermore we determine sequence context effects by using sequence comparisons over a variety of lineage lengths. This approach yields a new estimate of the doublet mutation rate of 0.3% of the singleton rate, indicating that doublet mutations are far rarer than previously thought. Our results suggest that doublet mutations are unlikely to have caused the correlation between synonymous and nonsynonymous substitution rates in mammals, and also show that regional variation and sequence context effects play an important role in primate DNA sequence evolution.  相似文献   

9.
Complexes formed between DNA polymerase and genomic DNA at the replication fork are key elements of the replication machinery. We used sedimentation velocity, fluorescence anisotropy, and surface plasmon resonance to measure the binding interactions between bacteriophage T4 DNA polymerase (gp43) and various model DNA constructs. These results provide quantitative insight into how this replication polymerase performs template-directed 5' --> 3' DNA synthesis and how this function is coordinated with the activities of the other proteins of the replication complex. We find that short (single- and double-stranded) DNA molecules bind a single gp43 polymerase in a nonspecific (overlap) binding mode with moderate affinity (Kd approximately 150 nm) and a binding site size of approximately 10 nucleotides for single-stranded DNA and approximately 13 bp for double-stranded DNA. In contrast, gp43 binds in a site-specific (nonoverlap) mode and significantly more tightly (Kd approximately 5 nm) to DNA constructs carrying a primer-template junction, with the polymerase covering approximately 5 nucleotides downstream and approximately 6-7 bp upstream of the 3'-primer terminus. The rate of this specific binding interaction is close to diffusion-controlled. The affinity of gp43 for the primer-template junction is modulated specifically by dNTP substrates, with the next "correct" dNTP strengthening the interaction and an incorrect dNTP weakening the observed binding. These results are discussed in terms of the individual steps of the polymerase-catalyzed single nucleotide addition cycle and the replication complex assembly process. We suggest that changes in the kinetics and thermodynamics of these steps by auxiliary replication proteins constitute a basic mechanism for protein coupling within the replication complex.  相似文献   

10.
In mammals Dnmt1 is the DNA methyltransferase chiefly responsible for maintaining genomic methylation patterns through DNA replication cycles, but how its maintenance activity is controlled is still not well understood. Interestingly, Uhrf1, a crucial cofactor for maintenance of DNA methylation by Dnmt1, is endowed with E3 ubiquitin ligase activity. Here, we show that both Dnmt1 and Uhrf1 coprecipitate with ubiquitin specific peptidase 7 (Usp7), a de-ubiquitinating enzyme. Overexpression of Uhrf1 and Usp7 resulted in opposite changes in the ubiquitination status and stability of Dnmt1. Our findings suggest that, by balancing Dnmt1 ubiquitination, Usp7 and Uhrf1 fine tune Dnmt1 stability.  相似文献   

11.
L1 elements are the most successful retrotransposons in mammals and are responsible for at least 30% of human DNA. Far from being indolent genomic parasites, L1 elements have evolved and amplified rapidly during human evolution. Indeed during just the last 25 million years (MY) five distinct L1 families have emerged and generated tens of thousands of copies. The most recently evolved human specific L1 family is currently active and L1 copies have been accumulating in the human genome at about the same rate per generation as the currently active L1 families in Old World rats and mice. At times during the last 25 MY L1 activity constituted a significant enough genetic load to be subject to negative selection. During these same times, and in apparent response to the host, L1 underwent adaptive evolution. Understanding the molecular basis for these evolutionary changes should help illuminate one of the least understood but most important aspects of L1 biology, namely the extent and nature of the interaction between L1 and its host.  相似文献   

12.
Herpes simplex virus type 1 (HSV-1) replication generates high-molecular-weight intermediates containing branched DNA and concatemers carrying adjacent genomes with inverted L components. We have studied replicative intermediates generated by (i) wild-type HSV-1; (ii) 5dl1.2, an ICP27 null mutant which fails to synthesize normal amounts of DNA and late proteins; (iii) RBMu3, a mutant containing a deletion in the inverted repeats which fails to generate genomic isomers; and (iv) amplicon plasmids and vectors which contain no inverted sequences. Replication intermediates were analyzed by pulsed-field gel electrophoresis, after restriction enzyme digestion of infected-cell DNA, followed by blot hybridization. DNA fragments were statistically quantified after phosphorimaging. We observed that (i) the four possible configurations of L components of two adjacent genomes in the concatemers are present at equimolar amounts at any time during virus replication, (ii) ICP27 is not required for inversions or for branched DNA to occur, and (iii) replication intermediates of both RBMu3 mutant and amplicon plasmids or vectors do contain branched structures, although the concatemers they generate contain no inversions. These data indicate that inversions are generated by a mechanism intrinsically linked to virus DNA replication, most likely homologous recombination between inverted repeats. Branched structures are detected in all replicating molecules, including those that do not invert, suggesting that they are constitutively linked to virus DNA synthesis. Our results are consistent with the notion that the four HSV-1 genomic isomers are generated by alternative cleavage frames of replication concatemers containing equimolar amounts of L-component inversions.  相似文献   

13.
By the use of a highly sensitive mapping procedure allowing the identification of the start sites of DNA replication in single-copy genomic regions of untreated, exponentially growing cultured cells (M. Giacca, L. Zentilin, P. Norio, S. Diviacco, D. Dimitrova, G. Contreas, G. Biamonti, G. Perini, F. Weighardt, S. Riva, and A. Falaschi, Proc. Natl. Acad. Sci. USA 91:7119-7123, 1994), the pattern of DNA replication of the Chinese hamster dihydrofolate reductase (DHFR) gene domain was investigated. The method entails the purification of short stretches of nascent DNA issuing from DNA replication origin regions and quantification, within this sample, of the abundance of different adjacent segments by competitive PCR. Distribution of marker abundance peaks around the site from which newly synthesized DNA had emanated. The results obtained by analysis of the genomic region downstream of the DHFR single-copy gene in asynchronous cultures of hamster CHO K1 cells are consistent with the presence of a single start site for DNA replication, located approximately 17 kb downstream of the gene. This site is coincident with the one detected by other studies using different techniques in CHO cell lines containing an amplified DHFR gene domain.  相似文献   

14.
To gain an understanding of the genomic structure and evolutionary history of the giant panda major histocompatibility complex (MHC) genes, we determined a 636,503-bp nucleotide sequence spanning the MHC class II region. Analysis revealed that the MHC class II region from this rare species contained 26 loci (17 predicted to be expressed), of which 10 are classical class II genes (1 DRA, 2 DRB, 2 DQA, 3 DQB, 1 DYB, 1 DPA, and 2 DPB) and 4 are non-classical class II genes (1 DOA, 1 DOB, 1 DMA, and 1 DMB). The presence of DYB, a gene specific to ruminants, prompted a comparison of the giant panda class II sequence with those of humans, cats, dogs, cattle, pigs, and mice. The results indicated that birth and death events within the DQ and DRB-DY regions led to major lineage differences, with absence of these regions in the cat and in humans and mice respectively. The phylogenetic trees constructed using all expressed alpha and beta genes from marsupials and placental mammals showed that: (1) because marsupials carry loci corresponding to DR, DP, DO and DM genes, those subregions most likely developed before the divergence of marsupials and placental mammals, approximately 150 million years ago (MYA); (2) conversely, the DQ and DY regions must have evolved later, but before the radiation of placental mammals (100 MYA). As a result, the typical genomic structure of MHC class II genes for the giant panda is similar to that of the other placental mammals and corresponds to BTNL2∼DR1∼DQ∼DR2∼DY∼DO_box∼DP∼COL11A2. Over the past 100 million years, there has been birth and death of mammalian DR, DQ, DY, and DP genes, an evolutionary process that has brought about the current species-specific genomic structure of the MHC class II region. Furthermore, facing certain similar pathogens, mammals have adopted intra-subregion (DR and DQ) and inter-subregion (between DQ and DP) convergent evolutionary strategies for their alpha and beta genes, respectively.  相似文献   

15.
Export of unspliced mRNA to the cytoplasm is required for the replication of all retroviruses. In simian type D retroviruses, the RNA export is mediated by the constitutive transport element (CTE) that binds the cellular nuclear export factor 1, NXF1(TAP). To search for potential cellular RNA substrates for NXF1, we have set up an in vitro selection procedure, using an RNA library expressed from total human genomic DNA. A sequence that was isolated most frequently as independent clones exhibits extensive homology to the 3' untranslated region of expressed LINE1 (L1) retrotransposons. This region, termed L1-NXF1 binding element (L1-NBE) bears no structural resemblance to the viral CTE, but binds NXF1 as strongly as CTE, based on gel mobility shift competition assays. A deletion analysis of the NXF1 protein reveals that CTE and L1-NBE have different, but overlapping, binding domains on NXF1. Placed in an intron, L1-NBE is capable of mediating nuclear export of lariat RNA species in Xenopus laevis oocytes and of an unspliced HIV-1 derived RNA in human 293 cells, suggesting that it may function as a nuclear export element for the intronless L1 mRNA.  相似文献   

16.
Fluorescence in situ hybridization (FISH) is a useful method of determining the replication timing of specific genomic loci in mammals and of delineating replicon structures on DNA fibers in combination with in vivo replication labeling. In the case of simultaneous detection of a FISH probe and replicated forks, however, the DNA fibers are damaged by the DNA denaturation step for FISH detection, and the resulting fragmented fluorescence signals prevent analysis at high resolution. Here we found that hybridization of the probe to the genomic DNA was possible even under non-denaturing condition, but only at the time its genomic region replicated. Using the method designated non-denaturing FISH, we determined the replication timing of a specific BAC clone and the standard clones, and found that at least one replication origin exists within the genomic region covered by its BAC clone as an example.  相似文献   

17.
L1 (LINE-1) elements constitute a large family of mammalian retrotransposons that have been replicating and evolving in mammals for more than 100 Myr and now compose 20% or more of the DNA of some mammals. Here, we investigated the evolutionary dynamics of the active human Ta L1 family and found that it arose approximately 4 MYA and subsequently differentiated into two major subfamilies, Ta-0 and Ta-1, each of which contain additional subsets. Ta-1, which has not heretofore been described, is younger than Ta-0 and now accounts for at least 50% of the Ta family. Although Ta-0 contains some active elements, the Ta-1 subfamily has replaced it as the replicatively dominant subfamily in humans; 69% of the loci that contain Ta-1 inserts are polymorphic for the presence or absence of the insert in human populations, as compared with 29% of the loci that contain Ta-0 inserts. This value is 90% for loci that contain Ta-1d inserts, which are the youngest subset of Ta-1 and now account for about two thirds of the Ta-1 subfamily. The successive emergence and amplification of distinct Ta L1 subfamilies shows that L1 evolution has been as active in recent human history as it has been found to be for rodent L1 families. In addition, Ta-1 elements have been accumulating in humans at about the same rate per generation as recently evolved active rodent L1 subfamilies.  相似文献   

18.
In mammals, heterochromatin is characterized by DNA methylation at CpG dinucleotides and methylation at lysine 9 of histone H3. It is currently unclear whether there is a coordinated transmission of these two epigenetic modifications through DNA replication. Here we show that the methyl-CpG binding protein MBD1 forms a stable complex with histone H3-K9 methylase SETDB1. Moreover, during DNA replication, MBD1 recruits SETDB1 to the large subunit of chromatin assembly factor CAF-1 to form an S phase-specific CAF-1/MBD1/SETDB1 complex that facilitates methylation of H3-K9 during replication-coupled chromatin assembly. In the absence of MBD1, H3-K9 methylation is lost at multiple genomic loci and results in activation of p53BP2 gene, normally repressed by MBD1 in HeLa cells. Our data suggest a model in which H3-K9 methylation by SETDB1 is dependent on MBD1 and is heritably maintained through DNA replication to support the formation of stable heterochromatin at methylated DNA.  相似文献   

19.
The bipartite geminiviruses such as tomato golden mosaic virus (TGMV) and squash leaf curl virus (SqLCV) have two single-stranded circular genomic DNAs, the A and B components, thought to be replicated from double-stranded circular DNA intermediates. Although it has been presumed that the origin sequences for viral replication are located in the highly conserved 200-nucleotide common region (CR) present in both genomic components and that the viral-encoded AL1 protein interacts with these sequences to effect replication, there has been no evidence that this is in fact so. We have investigated these questions, demonstrating selectivity and sequence specificity in this protein-DNA interaction. Simple component switching between the DNAs of TGMV and SqLCV and analysis of replication in leaf discs showed that whereas the A components of both TGMV and SqLCV promote their own replication and that of their cognate B component, neither replicates the noncognate B component. Furthermore, using an in vivo functional replication assay, we found that cloned viral CR sequences function as a replication origin and direct the replication of nonviral sequences in the presence of AL1, with both circular single-stranded and double-stranded DNA being synthesized. Finally, by the creation of chimeric viral CRs and specific subfragments of the viral CR, we demonstrated sequence-specific recognition of the replication origin by the AL1 protein, thereby localizing the origin to an approximately 90-nucleotide segment in the AL1 proximal side of the CR that includes the conserved geminiviral stem-loop structure and approximately 60 nucleotides of 5' upstream sequence. By deletional analysis, we further demonstrated that the conserved stem-loop structure is essential for replication. These studies identify the functional viral origin of replication within the CR, demonstrating that sequence-specific recognition of this origin by the AL1 protein is required for replication.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号