首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chitinase enzyme was identified in isolated bacteria of maize rhizosphere as well as its potential for the biological control of fungi associated at seeds of the same plant. The production of chitinase enzyme was found in the genera identified as Acinetobacter, Bacterium, Burkholderia, Paenibacillus, Pseudomonas, Rhizobium, Shewanella, Sphingomonas and Stenotrophomonas. Bacterial isolates with ability to degrade fungal mycelium from maize fungi as Fusarium and Alternaria among others, were detected. Bacterial chitinase activity and the presence of the chiA gene were determined. The inoculation of chitinolytic bacteria showed a positive effect in the control of fungi in maize seeds. The results support the potential use of chitinase enzyme producing bacteria on the control of phytopathogenic fungi.  相似文献   

2.
Zea mays L. ssp. mexicana (teosinte) is a naturally occurring grass related to maize. The two plants have developed foliar fungal diseases that can be controlled with beneficial bacterial antagonists. While the beneficial effects on stem and root development of the application of bacteria of the genus Azospirillum is widely known, the effects of the bacteria on the control of the phytopathogenic fungi associated with teosinte leaves and seeds are unknown. Bacterium of the species A. brasilense that present acetylene reducing activity, siderophore production and the ability to antagonise pathogenic fungi in vitro and in vivo in teosinte plants were selected for this study, in which the incidence of fungal diseases caused by Alternaria, Bipolaris and Fusarium were reduced in plants. Furthermore, biomass (root and stem) production increased, improving teosinte plant health in greenhouse and field conditions.  相似文献   

3.
The interactions between biocontrol fungi and bacteria may play a key role in the natural process of biocontrol, although the molecular mechanisms involved are still largely unknown. Synergism can occur when different agents are applied together, and cell wall degrading enzymes (CWDEs) produced by fungi can increase the efficacy of bacteria. Pseudomonas spp. produce membrane-disrupting lipodepsipeptides (LDPs) syringotoxins (SP) and syringomycins (SR). SR are considered responsible for the antimicrobial activity, and SP for the phytotoxicity. CWDEs of Trichoderma spp. synergistically increased the toxicity of SP25-A or SRE purified from P. syringae against fungal pathogens. For instance, the fungal enzymes made Botrytis cinerea and other phytopathogenic fungi, normally resistant to SP25-A alone, more susceptible to this antibiotic. Pseudomonas produced CWDEs in culture conditions that allow the synthesis of the LDPs. Purified bacterial enzymes and metabolites were also synergistic against fungal pathogens, although this mixture was less powerful than the combination with the Trichoderma CWDEs. The positive interaction between LDPs and CWDEs may be part of the biocontrol mechanism in some Pseudomonas strains, and co-induction of different antifungal compounds in both biocontrol bacteria and fungi may occur. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Antimicrobial peptides (AMPs) from plant seeds, known to inhibit pathogen growth have a great potential in developing transgenic plants resistant to disease. Some of the nonspecific-lipid transfer proteins (ns-LTP) that facilitate in vitro transport of lipids, show antimicrobial activity in vitro. Rice seeds also contain ns-LTPs; however, these genes are expressed weakly in seedlings. We have transformed Pusa Basmati 1, an elite indica rice cultivar, with the gene for Ace-AMP1 from Allium cepa, coding for an effective antimicrobial protein homologous to ns-LTPs. The gene for Ace-AMP1 was cloned under an inducible rice phenylalanine ammonia-lyase (PAL) or a constitutive maize ubiquitin (UbI) promoter. Ace-AMP1 was expressed in transgenic lines and secreted in the apoplastic space. Protein extracts from leaves of transgenic plants inhibited three major rice pathogens, Magnaporthe grisea, Rhizoctonia solani and Xanthomonas oryzae, in vitro. Enhanced resistance against these pathogens was observed in in planta assays, and the degree of resistance correlating with the levels of Ace-AMP1 with an average increase in resistance to blast, sheath blight, and bacterial leaf blight disease by 86%, 67%, and 82%, respectively. Importantly, transgenic rice plants, with stable integration and expression of Ace-AMP1, retained their agronomic characteristics while displaying enhanced resistance to both fungal and bacterial pathogens.  相似文献   

5.
带叶兜兰种子原地共生萌发及有效菌根真菌的分离与鉴定   总被引:1,自引:0,他引:1  
为获得带叶兜兰(Paphiopedilum hirsutissimum)种子萌发的共生真菌,采用原地共生萌发技术获得了2株自然萌发的小幼苗,并分离和筛选出了有效的种子萌发共生菌——瘤菌根菌(Epulorhiza sp.)。为验证分离菌株对带叶兜兰种子萌发的有效性,将Phs34号菌株与带叶兜兰种子在灭菌后的原生境基质上进行室内共生萌发试验,结果表明,经过6周的培养,对照组没有观察到种子的萌发;接菌的种子胚明显膨大,突破种皮,形成原球茎,平均萌发率为(58.35±3.41)%。这表明分离得到的瘤菌根菌能促进带叶兜兰的种子萌发。  相似文献   

6.
Plant endo-β-1,3-glucanases and chitinases inhibit the growth of some fungi and generate elicitor-active oligosaccharides while depolymerizing polysaccharides of mycelial walls. Overexpression of the endo-β-1,3-glucanases and/ or chitinases in transgenic plants provides, in some cases, increased protection against fungal pathogens. However, most of the phytopathogenic fungi that have been tested in vitro are resistant to endo-β-1,3-glucanases and chitinases. Furthermore, some phytopathogenic fungi whose growth is inhibited by these enzymes are able to overcome the effect of these enzymes over a period of hours, indicating an ability of those fungi to adapt to the enzymes. Evidence is presented indicating that fungal pathogens secrete proteins that inhibit selective plant endo-β-1,3-glucanases.A glucanase inhibitor protein (GIP-1) has been purified to homogeneity from the culture fluid of the fungal pathogen of soybeans, Phytophthora sojae f. sp. glycines (Psg), and two basic pathogenesis-related endo-β-1,3-glucanases (EnGLsoy-A and EnGLsoy-B) have been purified from soybean seedlings. GIP-1 inhibits EnGLsoy-A but not EnGLsoy-B. Moreover, GIP-1 does not inhibit endo-β-1,3-glucanases secreted by Psg itself nor does GIP-1 inhibit PR-2c, a pathogenesis-related endo-β-1,3-glucanase of tobacco. Evidence is presented that Psg secretes other GIPs that inhibit other endo-β-1,3-glucanase(s) of soybean. Furthermore, GIP-1 does not exhibit proteolytic activity but does appear to physically bind to EnGLsoy-A. The results reported herein demonstrate specific interactions between gene products of the host and pathogen and establish the need to consider fungal proteins that inhibit plant endo-β-1,3-glucanases when attempting to use the genes encoding endo-β-1,3-glucanases to engineer resistance to fungi in transgenic plants.  相似文献   

7.
真菌病害占作物病害种类的一半以上,病原真菌是目前已知种类最多的作物病原菌。从作物根际与/或体内分离筛选具有生防活性的微生物,并应用于病害的防控,是除作物品种改良与化学防治外的另一种高效的病害防控策略。【目的】本研究拟筛选并分离鉴定对重要作物病原真菌具有拮抗作用的甘蔗内生细菌,为开发生物防治作物真菌病害新策略提供理论依据。【方法】采用平板对峙法初步筛选对病原真菌具有拮抗能力的甘蔗叶片内生细菌,通过16SrRNA基因测序鉴定其种属;进一步检测候选拮抗内生细菌对甘蔗鞭孢堆黑粉菌(Sporisorium scitamineum)致病发育过程关键步骤:有性配合/菌丝生长、冬孢子萌发的抑制率,田间试验检测其对甘蔗鞭黑穗病的防治效果;检测候选拮抗内生细菌对稻梨孢菌(Pyricularia oryzae)附着胞形成、离体叶片及盆栽条件下叶片病斑形成的抑制作用。【结果】分离自甘蔗叶片的细菌菌株,编号为CGB15,经分子鉴定为解淀粉芽孢杆菌(Bacillus amyloliquefaciens)。CGB15菌株能有效抑制甘蔗鞭孢堆黑粉菌有性配合/菌丝生长,对峙培养条件下使真菌菌落呈现光滑;抑制冬孢子萌发,...  相似文献   

8.
李绍锋  王国红  饶佳媚  杨民和 《生态学报》2015,35(21):7011-7022
内生真菌是一类共生于植物体内,能够不同程度影响宿主植物生态适应性和竞争能力的微生物。分析内生真菌在豚草种子中的分布、种群结构,以及内生真菌发酵液对种子发芽和幼苗生长的作用。结果显示:发生于6个地区的豚草种子均能分离获得内生真菌,分离率在19%—92.63%之间,不同地区之间差异极显著(P0.01)。内生真菌主要存在于种子的总苞部位,分离率达到65.52%。发生于福建省长乐市松下镇的豚草种带内生真菌种群包含5个属,以链格孢属(Alternaria)真菌为优势菌群,占82.26%;其次为镰孢属(Fusarium)真菌,占9.68%;其它3个属的真菌发生较少,均低于5%。内生真菌主要以水平传播方式在豚草不同世代之间传播。供试的7个内生真菌菌株的发酵液均不同程度地抑制豚草种子发芽,降低幼苗地上部高度、根长度、根数量和总生物量,但不同菌株发酵液之间抑制程度差异明显,显示不同菌株对豚草种子发芽和幼苗生长产生不同的影响。内生真菌发酵液处理后的种子仍然保持较高程度的活力;不同内生真菌发酵液处理后,有活力的种子维持在50%—87.5%之间,均高于(或等于)清水处理的种子,说明内生真菌代谢产物只是抑制种子的发芽,但并不导致种子的腐烂和死亡。这些研究结果初步显示种子携带的内生真菌可能在豚草入侵生物学中发挥重要的作用。  相似文献   

9.

2,3-Butanediol (2,3-BDO) is of considerable importance in the chemical, plastic, pharmaceutical, cosmetic, and food industries. The main bacterial species producing this compound are considered pathogenic, hindering large-scale productivity. The species Paenibacillus brasilensis is generally recognized as safe (GRAS) and is phylogenetically similar to P. polymyxa, a species widely used for 2,3-BDO production. Here, we demonstrate, for the first time, that P. brasilensis strains produce 2,3-BDO. Total 2,3-BDO concentrations for 15 P. brasilensis strains varied from 5.5 to 7.6 g/l after 8 h incubation at 32 °C in modified YEPD medium containing 20 g/l glucose. Strain PB24 produced 8.2 g/l of 2,3-BDO within a 12-h growth period, representing a yield of 0.43 g/g and a productivity of 0.68 g/l/h. An increase in 2,3-BDO production by strain PB24 was observed using higher concentrations of glucose, reaching 27 g/l of total 2,3-BDO in YEPD containing about 80 g/l glucose within a 72-h growth period. We sequenced the genome of P. brasilensis PB24 and uncovered at least six genes related to the 2,3-BDO pathway at four distinct loci. We also compared gene sequences related to the 2,3-BDO pathway in P. brasilensis PB24 with those of other spore-forming bacteria, and found strong similarity to P. polymyxa, P. terrae, and P. peoriae 2,3-BDO-related genes. Regulatory regions upstream of these genes indicated that they are probably co-regulated. Finally, we propose a production pathway from glucose to 2,3-BDO in P. brasilensis PB24. Although the gene encoding S-2,3-butanediol dehydrogenase (butA) was found in the genome of P. brasilensis PB24, only R,R-2,3- and meso-2,3-butanediol were detected by gas chromatography under the growth conditions tested here. Our findings can serve as a basis for further improvements to the metabolic capabilities of this little-studied Paenibacillus species in relation to production of the high-value chemical 2,3-butanediol.

  相似文献   

10.
Bacteria isolated on nutrient agar and King's medium B from sunflower leaves, crown and roots inhibited in vitro growth of the leaf spot and wilt pathogens Alternaria helianthi, and Sclerotium rolfsii, respectively, and also the root rot pathogensRhizoctonia solani and Macrophomina phaseolina. Antagonistic bacteria from leaves were mainly actinomycetes and pigmented Gram-positive bacteria, while those from roots and crowns were identified asPseudomonas fluorescens-putida, P. maltophilia, P. cepacia, Flavobacterium odoratum andBacillus sp. In soil bioassays, when used as seed inoculum in the presence ofS. rolfsii, P. cepacia strain N24 increased significantly the percentage of seedling emergence. Bacterial strains which exhibited broad spectrum in vitro antagonistic activity were tested for colonisation of sunflower roots, when used as a seed inoculum. Good colonisers (104 to 106 bacteria/g root) were consistent in their ability to reduce disease and fungal wilt. A seedling having a primary root length < 5 cm with fewer lateral roots, necrosed cotyledons or crown and a wilted shoot indicated its diseased status. On an average, only 30% of seedlings were diseased when treated with the antagonistic strains, in the presence of the pathogen, while 60% of the seedlings were diseased in the presence of the pathogen alone. In microplots treated with strain N24, only 1 to 3% of the seedlings were wilted, while 14% of the seedlings were wilted in the presence of the pathogen alone. The results obtained show that bacterial antagonists of sclerotial fungi can be used as seed inocula to improve plant growth through disease suppression  相似文献   

11.
【背景】多年生林下参在自然环境下生长多年,其体内存在的内生菌具有更强的适应性和定殖性,可以提高植物自身抗性,抑制病原菌的生长,更好地发挥与植物的互作。【目的】筛选定殖能力强、繁殖能力快且对病原菌具有拮抗作用的优势菌株。【方法】采用常规组织分离方法,从健康林下参根部组织中分离内生菌,通过对峙试验筛选出对人参病原菌有拮抗作用的内生细菌并对其以传统的鉴定方法进行鉴定。【结果】在得到的6株内生细菌中,菌株LXS-N2对人参立枯病病原菌、人参猝倒病病原菌均有明显抑菌性,而且具有定殖性好、繁殖快的特点,通过破坏病原真菌细胞壁和细胞膜以及改变菌丝形态从而抑制病原真菌生长。【结论】经形态学观察、生理生化反应及16S rRNA基因序列分析鉴定内生菌LXS-N2为贝莱斯芽孢杆菌,具有良好的应用开发潜力。  相似文献   

12.
A novel, highly chitinolytic strain of Alcaligenes xylosoxydans was isolated which showed potential for use as an antifungal biocontrol agent for the control of two fungal plant pathogens. It could degrade and utilize dead mycelia of Rhizoctonia bataticola and Fusarium sp. (fungal plant pathogens of Cajanus cajan). In vitro it could inhibit the growth of Fusarium sp. and R. bataticola. Chitin at 10–15 g/l was found to be good carbon and nitrogen source. Alcaligenes xylosoxydans showed optimum chitinase production at 72 h, pH optima at 8 and growth peak at 120 h. Yeast extract, arabinose, Tween 20 and several other surfactants enhanced chitinase production.  相似文献   

13.
The present study tested the ability of Bacillus amyloliquefaciens and Microbacterium oleovorans to reduce Fusarium verticillioides populations and fumonisin accumulation in the maize agroecosystem. The impact of releasing these biocontrol agents on rhizospheric bacterial and fungal groups was also evaluated through isolation and identification of culturable microorganisms. When applied as seed coatings at a concentration of 107 CFU ml−1 both agents were effective in reducing F. verticillioides counts and fumonisin B1 and B2 content from maize grains. Rhizospheric counts of the pathogen were also decreased by use of B. amyloliquefaciens at 107 CFU ml−1. Richness and diversity indexes calculated for bacteria and fungi inhabiting the rhizosphere of maize remained unchanged following the addition of both biocontrol agents to seeds. Our research is being continued to further characterize the bacterial and fungal isolates with additional field assays.  相似文献   

14.
The pink-pigmented facultative methylotrophic bacteria (PPFMB) of the genus Methylobacteriumare indispensible inhabitants of the plant phyllosphere. Using maize Zea maysas a model, the ways of plant colonization by PPFMB and some properties of the latter that might be beneficial to plants were studied. A marked strain, Methylobacterium mesophilicumAPR-8 (pULB113), was generated to facilitate the detection of the methylotrophic bacteria inoculated into the soil or applied to the maize leaves. Colonization of maize leaves by M. mesophilicumAPR-8 (pULB113) occurred only after the bacteria were applied onto the leaf surface. In this case, the number of PPFMB cells on inoculated leaves increased with plant growth. During seed germination, no colonization of maize leaves with M. mesophilicumcells occurred immediately from the soil inoculated with the marked strain. Thus, under natural conditions, colonization of plant leaves with PPFMB seems to occur via soil particle transfer to the leaves by air. PPFMB monocultures were not antagonistic to phytopathogenic bacteria. However, mixed cultures of epiphytic bacteria containing Methylobacterium mesophilicumor M. extorquensdid exhibit an antagonistic effect against the phytopathogenic bacteria studied (Xanthomonas campestris, Pseudomonas syringae, Erwinia carotovora, Clavibacter michiganense,andAgrobacterium tumifaciens). Neither epiphytic nor soil strains of Methylobacterium extorquens, M. organophillum, M. mesophilicum, andM. fujisawaensecatalyzed ice nucleation. Hence, they cause no frost injury to plants. Thus, the results indicate that the strains of the genus Methylobacteriumcan protect plants against adverse environmental factors.  相似文献   

15.
An endophytic bacterium was isolated from Chinese medicinal plant Scutellaria baicalensis Georgi. The phylogenetic and physiological characzterization indicated that the isolate, strain ES-2, was Bacillus amyloliquefaciens, which produced two families of secondary metabolites with broad-spectrum antibacterial and antifungal activities. Culture filtrate of ES-2 displayed antagonism against some phytopathogenic, food-borne pathogenic and spoilage bacteria and fungi owing to the existence of antimicrobial compounds. A HPLC-MS analysis showed two series of ion peaks from the culture filtrate. A further electrospray ionization/collision-induced dissociation spectrum revealed that the two series ion peaks represented different fengycin homologues and surfactin homologues, respectively, which had a potential for food preservation and the control of several fungal plant diseases.  相似文献   

16.
Summary We have investigated whether direct physical interactions occur between arbuscular mycorrhizal (AM) fungi and plant growth promoting rhizobacteria (PGPRs), some of which are used as biocontrol agents. Attachment of rhizobia and pseudomonads to the spores and fungal mycelium ofGigaspora margarita has been assessed in vitro and visualized by a combination of electron and confocal microscopy. The results showed that both rhizobia and pseudomonads adhere to spores and hyphae of AM fungi germinated under sterile conditions, although the degree of attachment depended upon the strain.Pseudomonas fluorescens strain WCS 365 andRhizobium leguminosarum strains B556 and 3841 were the most effective colonizers. Extracellular material of bacterial origin containing cellulose produced around the attached bacteria may mediate fungal/bacterial interactions. These results suggest that antagonistic and synergistic interactions between AM fungi and rhizosphere bacteria may be mediated by soluble factors or physical contact. They also support the view that AM fungi are a vehicle for the colonization of plant roots by soil rhizobacteria.Abbreviations AM arbuscular mycorrhiza - PGPR plant growth promoting rhizobacteria - CBH cellobiohydrolase - DAPG 2,4-(diacetyl-phloroglucinol - TY triptone-yeast - LB Lauria-Bertani Dedicated to Prof. Dr. Dr. h.c. Eberhard Schnepf on the occasion of his retirement  相似文献   

17.
We report the construction of two Gateway fungal expression vectors pCBGW and pGWBF. The pCBGW was generated by introducing an expression cassette, which consists of a Gateway recombinant cassette (attR1-Cmr-ccdB-attR2) under the control of fungal promoter PgpdA and a terminator TtrpC, into the multiple cloning site of fungal vector pCB1004. The pGWBF is a binary vector, which was generated from the plant expression vector pGWB2 by replacing the CaMV35S promoter with PgpdA. The pGWBF can be transformed into fungi efficiently with Agrobacterium-mediated transformation. The applicability of two newly constructed vectors was tested by generating the destination vectors pGWBF-GFP and pCBGW-GFP and examining the expression of GFP gene in Trichoderma viride and Gibberella fujikuroi, respectively. Combining with the advantage of Gateway cloning technology, pCBGW and pGWBF will be useful in fungi for large-scale investigation of gene functions by constructing the interested gene destination/expression vectors in a high-throughput way.  相似文献   

18.
Bacillus subtilis KB-1111 and KB-1122 were studied to illustrate their phenotypic and biological properties. Comparison of KB-1111 with KB-1122 in morphology was carried out by microscopy and agar plate assays. Biological assay of the test strains showed that they may possess different physiological pathways from those of reference strain ATCC6501. The assessment of antagonism against the indicator fungi showed that both test strains had broad antifungal characteristics against eight phytopathogenic fungi. Of those fungal species, Magnaporthe grisea P131, Sclerotinia sclerotiorum, and F. oxysporium exhibited high sensitivity to the test strains.  相似文献   

19.
Antimicrobial peptide magainin II, isolated from the skin of the African clawed toad, has shown activity in vitro against a range of micro-organisms. Transgenic potato lines expressing a synthetic magainin gene show improved resistance to the bacterial plant pathogen, Erwinia carotovora. Culturable bacterial and fungal communities associated with magainin-producing potato plants were compared with those communities from the non-transgenic parental control and with another potato cultivar. Total numbers of aerobic bacteria recovered from the leaves of the magainin-producing line, its non-transgenic parent line and an unrelated cultivar did not differ significantly. There were no detectable differences in the numbers of Gram-positive and Gram-negative bacteria, pseudomonad populations or fungi recovered from foliage from the three plant lines. Bacterial populations recovered from the roots of a magainin-expressing plant line did not differ significantly from populations recovered from the unmodified parental line. Tubers from the magainin-expressing transgenic potatoes, however, had significantly lower total numbers of bacteria than tubers produced by unmodified plants. In vitro testing of rhizosphere isolates against magainin analogues found that bacterial isolates varied in their susceptibility to the peptides. There were no significant differences in the total numbers of fungi and yeasts recovered from the various plant lines, with one exception: higher numbers of fungi were recovered from roots of magainin-expressing plants than the unmodified control plants.  相似文献   

20.
为充分开发黄花倒水莲(Polygala fallax)的内生真菌资源,获得具有抗植物病原真菌、抗氧化活性的内生真菌,该文以黄花倒水莲内生真菌为研究对象,使用平板对峙法检测内生真菌对6种植物病原真菌的抑菌活性,测定内生真菌发酵液的DPPH清除自由基能力和总还原能力,评价内生真菌的抗氧化活性,并对具有强抑菌活性和抗氧化活性的菌株进行形态和ITS鉴定。结果表明:(1)黄花倒水莲内生真菌中有2株内生真菌对香蕉专化尖孢镰刀菌、柑橘树脂病菌、叶点霉菌、香蕉具条叶斑病菌、茄病镰刀菌、三七根腐病菌具有明显的抑菌活性,抑菌率在50.3%~91.4%之间,其中HNLF-5对柑橘树脂病菌的抑菌率为73.2%,HNLF-44对香蕉专化尖孢镰刀菌抑菌率为91.4%。(2)内生真菌发酵液具有良好的抗氧化活性,DPPH清除率均在80%以上,总还原能力吸光值范围为0.279 2~0.748 8。(3)HNLF-44菌株为链格孢属真菌。该研究表明,药用植物黄花倒水莲内生真菌具有较好的生物活性,为后续从黄花倒水莲内生真菌中挖掘潜在新型抑菌活性和抗氧化活性物质奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号