首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The binding of LysTrpLys to single stranded poly(A) was studied by measurements of fluorescence, UV-absorbance, electrodichroism and field jump relaxation. The van't Hoff enthalpy determined at constant degree of peptide protonation is -3.5 kcal/mol (delta S = 9 e.u.). The electrodichroism of bound tryptophane residues is negative; its absolute value decreases with increasing degree of binding theta. The magnitude of the dichroism at low theta indicates a preferential orientation of the tryptophane residues in the plane of the adenine bases, suggesting stacking of Trp with adenine bases. The overall degree of orientation decreases, however, to virtually zero at high theta. Relaxation measurements by low theta demonstrate the existence of two steps in the binding reaction of LysTrpLys to poly(A): a fast bimolecular step controlled by diffusion is followed by a slow intramolecular conversion with a forward rate of 1.5 x 10(5) s-1 and a backward rate of 2.7 x 10(3) s-1. The forward rate is close to that expected for an insertion reaction into stacked poly(A), yet the corresponding stability constant (approximately 55) is unexpectedly high.  相似文献   

2.
3.
The equilibrium Kerr effect of a system of mobile charges constrained to the surface of biomacromolecules is calculated. Cylindrical and spherical geometries are considered. For the cylinder we determine the anisotropy of electric polarizability as a function of length, temperature, and number of charged species in the low-field regime, and the fraction of the maximum induced dipole in the field direction for higher electric fields. The results are compared to experimental data for DNA oligomers taken from the literature. With spherical geometry we calculate the fractional induced dipole moment as a function of electric field strength and from this deduce the orientation function. The field dependence of the orientation function is compared to experimental data in the literature for bovine disk membrane vesicles.  相似文献   

4.
Fluorescently labeled myosin heads (S1) were added to muscle fibers and myofibrils at various concentrations. The orientation of the absorption dipole of the dye with respect to the axis of F-actin was calculated from polarization of fluorescence which was measured by a novel method from video images of muscle. In this method light emitted from muscle was split by a birefringent crystal into two nonoverlapping images: the first image was created with light polarized in the direction parallel to muscle axis, and the second image was created with light polarized in the direction perpendicular to muscle axis. Images were recorded by high-sensitivity video camera and polarization was calculated from the relative intensity of both images. The method allows measurement of the fluorescence polarization from single myofibril irrigated with low concentrations of S1 labeled with dye. Orientation was also measured by fluorescence-detected linear dichroism. The orientation was different when muscle was irrigated with high concentration of S1 (molar ratio S1:actin in the I bands equal to 1) then when it was irrigated with low concentration of S1 (molar ratio S1:actin in the I bands equal to 0.32). The results support our earlier proposal that S1 could form two different rigor complexes with F-actin depending on the molar ratio of S1:actin.  相似文献   

5.
The thermodynamics of the interaction of glucocorticoids with their receptor were studied in cytosol from human lymphoblastoid cells. The rate and affinity constants of dexamethasone and cortisol between 0 degree and 25 degrees C were calculated by curve-fitting from time-course and equilibrium kinetics. The data were consistent with a simple reversible bimolecular interaction. Arrhenius and Van't Hoff plots were curvilinear for both steroids. At equilibrium, the solution for the equation delta G = delta H - T X delta S (eqn. 1) was (in kJ X mol-1) -47 = 36 - 83 (dexamethasone) and -42 = -9 - 33 (cortisol) at 0 degree C. Enthalpy and entropy changes decreased quasi-linearly with temperature such that, at 25 degrees C, the respective values were -50 = -75 + 25 and -43 = -48 + 5. Thus, for both steroids, the interaction was entropy-driven at low temperature and became entirely enthalpy-driven at 20 degrees C. Thermodynamic values for the transition state were calculated from the rate constants. For the forward reaction, eqn. (1) gave 45 = 84 - 39 (dexamethasone) and 46 = 60 - 14 (cortisol) at 0 degree C, and 44 = 24 + 20 (dexamethasone) and 46 = 28 + 18 (cortisol) at 25 degrees C. These data fit quite well with a two-step model [Ross & Subramanian (1981) Biochemistry 20, 3096-3102] proposed for ligand-protein interactions, which involves a partial immobilization of the reacting species governed by hydrophobic forces, followed by stabilization of the complex by short-range interactions. On the basis of this model, an analysis of the transition-state thermodynamics led to the conclusion that no more than half of the steroid molecular area is engaged in the binding process.  相似文献   

6.
Red blood cell orientation in orbit C = 0.   总被引:4,自引:0,他引:4       下载免费PDF全文
M Bitbol 《Biophysical journal》1986,49(5):1055-1068
Two modes of behavior of single human red cells in a shear field have been described. It is known that in low viscosity media and at shear rates less than 20 s-1, the cells rotate with a periodically varying angular velocity, in accord with the theory of Jeffery (1922) for oblate spheroids. In media of viscosity greater than approximately 5 mPa s and sufficiently high shear rates, the cells align themselves at a constant angle to the direction of flow with the membrane undergoing tank-tread motion. Also, in low viscosity media, as the shear rate is increased, more and more cells lie in the plane of shear, undergoing spin with their axes of symmetry aligned with the vorticity axis of the shear field in an orbit "C = 0" (Goldsmith and Marlow, 1972). We have explored this latter phenomenon using two experimental methods. First, the erythrocytes were observed in the rheoscope and their diameters measured. Forward light scattering patterns were correlated with the red cell orientation mode. Light flux variations after flow onset or stop were measured, and the characteristic times of erythrocyte orientation and disorientation were assessed. The characteristic time of erythrocyte orientation in Orbit C = 0 is proportional to the inverse of the shear rate. The corresponding coefficient of proportionality depends on the suspending medium viscosity eta o. The disorientation time tau D, after flow has been stopped, is such that the ratio tau D/eta o is independent of the initial applied shear stress. However, tau D is much shorter than one would expect if pure Brownian motion were involved. The proportion of erythrocytes in orbit C = 0 was also measured. It was found that this proportion is a function of both the shear rate and eta o. At low values of eta o, the proportion increases with increasing shear rate and then reaches a plateau. For higher values of eta o (5 to 10 mPa s), the proportion of RBC in orbit C = 0 is a decreasing function of the shear stress. A critical transition between orbit C = 0 and parallel alignment was observed at high values of eta o, when the shear stress is on the order of 1 N/m2. Finally, the effect of altering membrane viscoelastic properties (by heat or diamide treatment) was tested. The proportion of oriented cells is a steep decreasing function of red cell rigidity.  相似文献   

7.
Structural and kinetic features of the Mn(II)-Leu-enkephalin binding equilibria were delineated by measuring 13C and 1H NMR spin-lattice relaxation rates. The temperature dependence of such rates showed that some carbons were experiencing slow exchange regimes such that kinetic parameters at room temperature could be calculated (k(off) = 1400 sec-1, delta H* = 12.0 kcal/mol, delta S* = -9.9 e.u.). The paramagnetic rates of fast exchanging carbons were interpreted by the Solomon-Bloembergen-Morgan theory to provide structural parameters. The terminal carboxyl and amino groups were shown to be the binding sites. The motional correlation time (tau c = 0.6 nsec at 298 K) was calculated by measuring selective and double-selective 1H spin-lattice relaxation rates for the free peptide. The number of coordinated ligands was evaluated by considering the distance of the Leu CO in the complex at 2.54 A, as shown by molecular models. Finally, carbon-Mn(II) distances were calculated and the molecular model of the 1:1 complex was built.  相似文献   

8.
Rate constants for binding of five inhibitors of human immunodeficiency virus (HIV) protease were determined by stopped-flow spectrofluorometry. The two isomers of quinoline-2-carbonyl-Asn-Phe psi-[CH(OH)CH2N]Pro-O-t-Bu (R diastereomer = 1R; S diastereomer = 1S) quenched the protein fluorescence of HIV protease and thus provided a spectrofluorometric method to determine their binding rate constants. The dissociation rate constants for acetyl-Thr-Ile-Leu psi(CH2NH)Leu-Gln-Arg-NH2 (2), (carbobenzyloxy)-Phe psi[CH(OH)CH2N]Pro-O-t-Bu (3), and pepstatin were determined by trapping free enzyme with 1R as 2, 3, and pepstatin dissociated from the respective enzyme.inhibitor complex. Association rate constants of 1R, 2, and pepstatin were calculated from the time-dependent inhibition of protease-catalyzed hydrolysis of the fluorescent substrate (2-aminobenzoyl)-Thr-Ile-Nle-Phe(NO2)-Gln-Arg-NH2 (4). The kinetic data for binding of 1S to the protease fit a two-step mechanism. Kd values for these inhibitors were calculated from the rate constants for binding and were similar to the respective steady-state Ki values.  相似文献   

9.
Cytochrome c1aa3 from Thermus thermophilus has optical and EPR properties similar to bovine cytochrome c oxidase. We have studied 87Fe-enriched samples with M?ssbauer spectroscopy in the fully oxidized and fully reduced states and in the oxidized state complexed with cyanide. The cytochromes a and c1 yielded spectra quite similar to those reported for the cytochromes c and b5; in the oxidized state the spectra reflect noninteracting, low spin ferric hemes, whereas the a- and c1-sites of the reduced enzyme are typical of low spin ferrous hemochromes. The spectra of the reduced enzyme show that reduced cytochrome a3 is high spin ferrous, with M?ssbauer parameters quite similar to those of deoxymyoglobin. Upon addition of cyanide to the oxidized enzyme, the a3-site exhibits in the absence of an applied magnetic field and at temperatures down to 1.3 K a quadrupole doublet with parameters typical of low spin ferric heme-CN complexes. The low temperature spectra taken in applied magnetic fields show that the electronic ground state of the a3-CN complex has integer electronic spin, suggesting ferromagnetic coupling of the low spin ferric heme (S = 1/2) to Cu2+ (S = 1/2) to yield as S = 1 ground state. We have examined the oxidized enzyme from two different preparations. Both had good activity and identical optical and EPR spectra. The M?ssbauer spectra, however, revealed that the a3-site had a substantially different electronic structure in the two preparations. Neither configuration had properties in accord with the widely accepted spin-coupling model proposed for the bovine enzyme.  相似文献   

10.
A W MacFarlane  R J Stanley 《Biochemistry》2001,40(50):15203-15214
DNA photolyase is a flavoprotein that repairs cyclobutylpyrimidine dimers by ultrafast photoinduced electron transfer. One unusual feature of this enzyme is the configuration of the FAD cofactor, where the isoalloxazine and adenine rings are nearly in vdW contact. We have measured the steady-state and transient absorption spectra and excited-state decay kinetics of oxidized (FAD-containing, folate-depleted) Escherichia coli DNA photolyase with and without dinucleotide and polynucleotide single-stranded thymidine dimer substrates. The steady-state absorption spectrum for the enzyme-polynucleotide substrate complex showed a blue shift, as seen previously by Jorns et al. (1). No shift was observed for the dinucleotide substrate, suggesting that there are significant differences in the binding geometry of dinucleotide versus polynucleotide dimer lesions. Evidence was obtained from transient absorption experiments for a long-lived charge-transfer complex involving the isoalloxazine of the FAD cofactor. No evidence of excited-state quenching was measurable upon binding either substrate. To explain these data, we hypothesize the existence of a large substrate electric field in the cavity containing the FAD cofactor. A calculation of the magnitude and direction of this dipolar electric field is consistent with electrochromic band shifts for both S(0) --> S(1) and S(0) --> S(2) transitions. These observations suggest that the substrate dipolar electric field may be a critical component in its electron-transfer-mediated repair by photolyase and that the unique relative orientation of the isoalloxazine and adenine rings may have resulted from the consequences of the dipolar substrate field.  相似文献   

11.
The binding of substrates and the herbicide N-(phosphonomethyl)glycine (glyphosate) to enolpyruvoylshikimate-3-phosphate (EPSP) synthase was evaluated by stopped-flow and equilibrium fluorescence measurements. Changes in protein fluorescence were observed upon the binding of EPSP and upon the formation of the enzyme-shikimate 3-phosphate-glyphosate ternary complex; no change was seen with either shikimate 3-phosphate (S3P) or glyphosate alone. By fluorescence titrations, the dissociation constants were determined for the formation of the enzyme binary complexes with S3P (Kd,S = 7 +/- 1.2 microM) and EPSP (Kd,EPSP = 1 +/- 0.01 microM). The dissociation constant for S3P was determined by competition with EPSP or by measurements in the presence of a low glyphosate concentration. At saturating concentrations of S3P, glyphosate bound to the enzyme--S3P binary complex with a dissociation constant of 0.16 +/- 0.02 microM. Glyphosate did not bind significantly to free enzyme, so the binding is ordered with S3P binding first: (formula; see text) where S refers to S3P, G refers to glyphosate, and E.S.G. represents the complex with altered fluorescence. The kinetics of binding were measured by stopped-flow fluorescence methods. The rate of glyphosate binding to the enzyme--S3P complex was k2 = (7.8 +/- 0.2) X 10(5) M-1 s-1, from which we calculated the dissociation rate k-2 = 0.12 +/- 0.02 s-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
M?ssbauer spectra from frozen solutions of ovotransferrin were recorded in a variety of applied external magnetic fields and at various temperatures in a small applied field. The results were fitted to a simple model for the electronic structure at the iron site. This model requires admixtures of the free ion 6S and 4P states, indicating a weak cubic crystal field. Possible implications of this model regarding the binding site are discussed.  相似文献   

13.
Alekseev  S. I.  Ziskin  M. C.  Fesenko  E. E. 《Biophysics》2011,56(3):525-528
The possibility of using thermocouples for artifact-free measurement of skin temperature during millimeter-wave exposure was studied. The distributions of the specific absorption rate (SAR) in the human skin were calculated for different orientations of the thermocouple relative to the E vector of the electromagnetic field. It was shown that, at the parallel orientation of the thermocouple relative to the E-field, SAR significantly increased about the tip of the thermocouple, which could lead to overheating. At the perpendicular orientation of the thermocouple, SAR distortions were insignificant. The data obtained confirm that the skin temperature can be measured with a thermocouple during exposure, provided that the thermocouple is perpendicular to the E-field. For accurate determination of SAR from the initial rate of temperature rise, the kinetics measured with the thermocouple must be fitted with the bio-heat transfer equation.  相似文献   

14.
Soybean lipoxygenase is a non-heme iron enzyme that catalyzes the hydroperoxidation of linoleic acid by dioxygen. Exposure of ferrous lipoxygenase to nitric oxide yields a species displaying an electron paramagnetic resonance spectrum characteristic of a nearly axial S = 3/2 electronic spin system arising from the ferrous-nitrosyl complex. That spectrum is pH-sensitive, reflecting changes in the environment of the metal ion between pH 7 and 11. Addition of ethanol abolishes the effects of pH in a saturable fashion, resulting in a spectrum similar to that seen at pH 7. Exchange of lipoxygenase into H2(17)O leads to no significant line broadening in the low field portion of the spectrum, suggesting no coordination of water. The ferrous enzyme displays greater affinity for NO at pH 9 (where the enzyme is most active) than at pH 7. The binding of linoleic acid is competitive with that of NO at pH 9, but not at pH 7. These results are interpreted in terms of a model including only one iron site for exogenous ligands and an otherwise relatively stable iron coordination environment.  相似文献   

15.
Parameters of the EPR signals of monomeric dinitrosyl-iron complexes with 1H-1,2,4-triazole-3-thiol (DNIC-MT), obtained by treating MT+ferrous iron in DMSO solution with gaseous NO, have been compared with those of the crystalline monomeric DNIC-MT with tetrahedral structure. Dissolved DNIC-MT were characterized by the isotropic EPR signal centered at g=2.03 with half-width of 0.7 mT and quintet hyperfine structure when recorded at ambient temperature or the anisotropic EPR signal with g( perpendicular)=2.045, g( parallel)=2.014 from frozen solution at 77 kappa, Cyrillic. DNIC-MT in crystalline state showed the structure-less symmetrical singlet EPR signal centered at g=2.03 and half-width of 1.7 mT at both room and liquid nitrogen temperature. The Lorentz shape of this signal indicates the strong exchange interaction between these complexes in the DNIC-MT crystal. Being dissolved in DMSO the crystalline sample of DNIC-MT demonstrated the EPR signal typical for DNIC-MT, obtained by treating MT+ferrous iron in DMSO solution with gaseous NO. Low spin (S=1/2) d(9) electron configuration of DNIC-MT with tetrahedral structure (formula [(MT-S(.))(2)Fe(-1)(NO(+))(2)](+)) was suggested to be responsible for the signal of DNIC-MT in crystalline state. Dissolving of the crystals of DNIC-MT may result in the change of their spatial and electronic structure, namely, tetrahedral structure of the complexes characterized by low spin d(9) electronic configuration transforms into a plane-square structure with d(7) electronic configuration and low spin S=1/2 state (formula [(MT- S(-))(2)Fe(+)(NO(+))(2)](+)). The latter was suggested to be characteristic of other DNICs with various thiol-containing ligands in the solutions. The proposed mechanism of these DNICs formation from ferrous iron, thiol and NO shows that the process could be accompanied by the ionization of NO molecules to NO(+) and NO(-) ions in the complexes. Detailed analysis of the shape of the EPR signals of these complexes provided additional information about the exchange interaction typical for DNIC-MT in crystals.  相似文献   

16.
Room temperature circular dichroism (CD) and low temperature magnetic circular dichroism (MCD) spectra of air-oxidized and dithionite-reduced Azotobacter vinelandii ferredoxin I (FdI), a [( 4Fe-4S]2+/1+, [3Fe-4S]1+/0) protein, are reported. Unlike the CD of oxidized FdI, the CD of dithionite-reduced FdI exhibits significant pH dependence, consistent with protonation-deprotonation at or near the cluster reduced: the [3Fe-4S] cluster. The MCD of reduced FdI, which originates in the paramagnetic reduced [3Fe-4S]0 cluster, is also pH-dependent. Detailed studies of the field dependence and temperature dependence of the MCD of oxidized and reduced FdI, in the latter case at pH 6.0 and 8.3, are reported. The low-field temperature dependence of the MCD of oxidized FdI, which originates in the paramagnetic oxidized [3Fe-4S]1+ cluster, establishes the absence of a significant population of excited electronic states of this cluster up to 60 K. The low-field temperature dependence of the MCD of reduced FdI establishes that the ground-state manifold of the reduced [3Fe-4S]0 cluster possesses S greater than or equal to 2 at both pH 6.0 and 8.3. Analysis, assuming S = 2 and an axial zero-field splitting Hamiltonian, leads to D = -2.0 and -3.5 cm-1 at pH 6.0 and 8.3, respectively. The site of the (de)protonation affecting the spectroscopic properties of the [3Fe-4S] cluster remains unknown.  相似文献   

17.
There is little dispute that high density lipoprotein (HDL) binds to cells, however, the nature of the interaction is not fully understood. We now present evidence for a new binding site of higher affinity but lower capacity than the sites previously described in the literature. This new site is characterized by high affinity/low capacity for HDL binding (Kd = 0.94 microgram/ml, Bmax = 36 ng/mg), while the low affinity site (Kd = 36 micrograms/ml, Bmax approximately 700 ng/mg) appears to be consistent with the literature values for the interaction of HDL with cells and isolated membranes. Proteolysis of HDL with trypsin abolished its interaction with the high affinity site, suggesting an apolipoprotein requirement, while having no effect on binding to the lower affinity site. Kinetic rates of association/dissociation were determined in order to further characterize the high affinity site. At a concentration which favored the binding of HDL with the high affinity site (1 microgram/ml, 37 degrees C), the time course of association of HDL with rat liver plasma membranes, displayed a biphasic pattern, requiring 6-8 h to reach the level of binding predicted from the saturation studies. The second phase was highly sensitive to temperature, being considerably slower at 24 degrees C and totally abolished at 0 degrees C. A kinetic Kd, derived from the measured association and dissociation rate constants (Kd = 0.31 microgram/ml), was found to be of a similar magnitude to the Kd calculated for the high affinity site by Scatchard analysis (Kd = 0.94 microgram/ml). In summary, the high affinity site on rat liver plasma membranes displays an apoprotein requirement and kinetic parameters, consistent with a ligand-receptor interaction.  相似文献   

18.
Neutral liposomes composed of DMPC (dimyristoylphosphatidylcholine), DPPC (dipalmitoylphosphatidylcholine) or DSPC (distearoylphosphatidylcholine) are found to exhibit non-zero zeta potentials in an electric field even when they are dispersed in solution at pH 7.4. A model for the orientation of lipid head groups is proposed to explain the observed non-zero zeta potentials. The dependence of the zeta potential on temperature and ionic strength is analyzed via this model to obtain the information on the direction of the lipid head group in the liposome surface region. The direction of the lipid head group is found to be sensitive to the temperature and the ionic strength of the medium. At low ionic strengths, the phosphatidyl groups are located at the outer portion of the head group region. At constant temperature, as the ionic strength increases, the choline group approaches the outer region of the bilayer surface while the phosphatidyl group hides behind the surface. At the phase transition temperature of the lipid, the phosphatidyl group lies in the outer-most region of the surface and the choline group is in the inner-most region.  相似文献   

19.
The crystal structure of rat transthyretin (rTTR) complex with 3,5,3',5'-tetraiodothyroacetic acid (T4Ac) was determined at 1.8 A resolution with low temperature synchrotron data collected at CHESS. The structure was refined to R = 0.207 and Rfree = 0.24 with the use of 8-1.8 A data. The additional 8000 reflections from the incomplete 2.1-1.8 data shell, included in the refinement, reduced the Rfree index by 1.3%. Structure comparison with the model refined against the complete 8-2.1 A data revealed no differences in the ligand orientation and the conformation of the polypeptide chain in the core regions. However, the high-resolution data included in the refinement improved the model in the flexible regions poorly defined with the lower resolution data. Also additional sixteen water molecules were found in the difference map calculated with the extended data. The structure revealed both forward and reverse binding of tetraiodothyroacetic acid in one binding site and two modes of forward ligand binding in the second site, with the phenolic iodine atoms occupying different sets of the halogen binding pockets.  相似文献   

20.
The thermodynamics and dynamics of the Cys21-Cys48 disulfide "S" if "R" conformational isomerism in the three-iron, single cubane cluster ferredoxin (Fd) from the hyperthermophilic archaeon Pyrococcus furiosus (Pf) have been characterized by (1)H NMR spectroscopy in both water and water/methanol mixed solvents. The mean interconversion rate at 25 degrees C is 3 x 10(3) s(-1) and DeltaG(298) = -0.2 kcal/mol [DeltaH = 4.0 kcal/mol; DeltaS = 14 cal/(mol.K)], with the S orientation as the more stable form at low temperature (< 0 degrees C) but the R orientation predominating at >100 degrees C, where the organism thrives. The distinct pattern of ligated Cys beta-proton contact shifts for the resolved signals and their characteristic temperature behavior for the forms of the 3Fe Fd with alternate disulfide orientations have been analyzed to determine the influences of disulfide orientation and methanol cosolvent on the topology of the inter-iron spin coupling in the 3Fe cluster. The Cys21-Cys48 disulfide orientation influences primarily the spin couplings involving the iron ligated to Cys17, whose carbonyl oxygen is a hydrogen bond acceptor to the Cys21 peptide proton. Comparison of the Cys beta-proton contact shift pattern for the alternate disulfide orientations with the pattern exhibited upon cleaving the disulfide bridge confirms an earlier [Wang, P.-L., Calzolai, L., Bren, K. L., Teng, Q., Jenney, F. E., Jr., Brereton, P. S., Howard, J. B., Adams, M. W. W., and La Mar, G. N. (1999) Biochemistry 38, 8167-8178] proposal that the structure of the same Fd with the R disulfide orientation resembles that of the Fd upon cleaving the disulfide bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号