首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The rate of synthesis of total cellular proteins has been studied by pulse labelling cells at various periods after irradiation with UV or -rays, after treatment with mitomycin C (MMC) or after expression of the temperature sensitive mutation tif. Subsequent gel electrophoresis and autoradiography reveals changes in the rate of synthesis of several proteins. The most striking change is in a protein of molecular weight 40,000, protein X, which has been previously most extensively studied in cells treated with nalidixic acid (Gudas, 1976). Synthesis of large quantities of protein X is induced by UV, -rays, MMC treatment or tif expression in rec + but not recA cells. A feature of recA cells is that they break down their DNA excessively after irradiation or MMC treatment. However, if protein synthesis following irradiation is prohibited by chloramphenicol, post-irradiation degradation becomes excessive in recA + cells. This inverse relationship between DNA degradation and new protein synthesis is consistent with the hypothesis that an induced protein such as X is responsible for controlling DNA degradation following irradiation. Protein X is not induced in a lexB mutant following MMC treatment. In this respect the lexB mutant behaves like lexA and recA mutants in that the ability to induce protein X can be correlated with excessive DNA degradation.Studies on the induction of proteins in inf, tif and tif sfi mutants fail to reveal any correlation between induction of protein X and either the induction of prophage or septation.  相似文献   

2.
A combination of specific rifampicin-resistant (rpoB87) and nalidixic acid-resistant (gyrA87) mutations results in a marked increase in the survival of Escherichia coli against mitomycin C-induced lethality in mutants defective for SOS induction and excision repair. Although the response does not seem to be obligatorily dependent upon the RecA protein, the efficiency is markedly increased in its presence, even in a conventionally inactive form. This response is not elicited against lethality due to ultraviolet radiation or N-methyl-N' -nitro-N-nitrosoguanidine exposure. The combination of rpoB87 and gyrA87 mutations also greatly alleviates post-mitomycin C degradation of DNA under SOS non-inducible conditions. It is proposed that the rpoB subunit of RNA polymerase and gyrA subunit of DNA gyrase could participate in the repair of certain types of DNA damage, such as cross-links, in a mode independent of SOS-regulated excision repair and post-replication repair.  相似文献   

3.
  • 1.1. The phosphorylation of Escherichia coli proteins was analyzed comparatively before and after induction of the SOS response in a temperature-sensitive mutant strain.
  • 2.2. The presence of phosphorylated proteins was evidenced by gel electrophoresis and autoradiography after labelling with radioactive orthophosphate in vivo or radioactive adenosine triphosphate in vitro.
  • 3.3. Significant changes in the intensity of protein labelling were observed upon induction of the SOS functions: six proteins were found to be more phosphorylated while two others were less phosphorylated. Moreover, five additional proteins appeared to become phosphorylated exclusively during the SOS response. The molecular mass and isoelectric point of these various proteins were determined.
  • 4.4. For most proteins, the changes in the pattern of protein phosphorylation were concomitant with variations in the amount of protein synthesized.
  • 5.5. The changes in the pattern of phosphoproteins observed during the SOS response were not due to the temperature shift required experimentally for expressing the SOS phenotype.
  • 6.6. Phosphorylation was found to be catalyzed by protein kinases that modify amino acid residues at hydroxyl groups in protein substrates.
  • 7.7. Both in vivo and in vitro studies brought evidence that neither RecA nor LexA, the two key regulatory proteins of the SOS functions, were capable of undergoing phosphorylation.
  相似文献   

4.
Having one electron with unpaired spin, nitric oxide (NO) shows high reactivity and activates or inhibits free radical chain reactions. NO toxic and genotoxic effects appear to be the result of intracellular formation of peroxinitrite that can induce some cellular damages, including DNA strand breaks, DNA base oxidation, destruction of the key enzymes, etc. Taking into account the character of DNA damages being formed under NO activity, we proposed a formation of the SOS signal and induction the SOS DNA repair response in E. coli cells treated with NO physiological donors--DNIC and GSNO. The ability of NO donor compounds to induce the SOS DNA response in E. coli PQ37 with sfiA::lacZ operon fusion is reported here at the first time. So, the SOS DNA repair response induction is one of the function of nitric oxide.  相似文献   

5.
We have studied the levels of recA and umuC protein synthesis in Escherichia coli as a probe for regulatory and mechanistic events involved in mitomycin C mutagenesis. Both RecA and UmuC protein induction were greatly stimulated by mitomycin C in the wild-type strain, reached a peak at about 60 min for the recA gene, and at 90 min for the umuC gene, respectively, and maintained a plateau. The induction was blocked by recA and lexA(Ind-) mutations that conferred no mutagenesis on the cell. Mutation affecting uvrA protein markedly decreased induction of the recA gene as well as the umuC gene by mitomycin C. The results established that UvrA protein is involved in the induction of recA and umuC, and account, at least in part, for the mitomycin C nonmutability of uvrA mutants.  相似文献   

6.
Mutations in uvrD induce the SOS response in Escherichia coli.   总被引:5,自引:3,他引:2       下载免费PDF全文
We have isolated three new mutations in uvrD that increase expression of the Escherichia coli SOS response in the absence of DNA damage. Like other uvrD (DNA helicase II) mutants, these strains are sensitive to UV irradiation and have high spontaneous mutation frequencies. Complementation studies with uvrD+ showed that UV sensitivity and spontaneous mutator activity were recessive in these new mutants. The SOS-induction phenotype, however, was not completely complemented, which indicated that the mutant proteins were functioning in some capacity. The viability of one of the mutants in combination with rep-5 suggests that the protein is functional in DNA replication. We suggest that these mutant proteins are deficient in DNA repair activities (since UV sensitivity is complemented) but are able to participate in DNA replication. We believe that defective DNA replication in these mutants increases SOS expression.  相似文献   

7.
Summary The dnaN and dnaQ genes encode the subunit and the subunit of the DNA polymerase III holoenzyme. Using translational fusions to lacZ we found that DNA damage caused by mitomycin C induces expression of the dnaA and dnaQ genes. This induction was not observed in lexA and recA mutants which block the induction of the SOS response, suggesting a relationship between the mechanism(s) of genetic control of DNA polymerase III holoenzyme and the SOS regulatory network. Nevertheless, there is evidence that the mitomycin C induction of dnaN and dnaQ is not a simple lexA-regulated process, because nalidixic acid (an excellent SOS inducer) does not increase dnaN and dnaQ gene expression, and the time course of induction is abnormally slow.  相似文献   

8.
9.
10.
Exposure of cells of Escherichia coli to mitomycin C (5 mug/ml) resulted in a marked change in the sedimentation profiles of the cell-free extracts, indicating a specific decomposition of ribosomal particles. When the extracts were prepared in the presence of 0.01 m Mg(++) and analyzed by sucrose density gradient centrifugations, the 100S fraction disappeared rapidly from the treated cells. The 70S ribosomes were also degraded, but more slowly, with a concomitant accumulation of a fraction having a sedimentation coefficient of about 50S. However, decomposition of the 70S ribosomes was preceded by an almost complete loss of the 50S ribosomal subunits, as revealed by sedimentation analyses in the presence of 10(-4)m Mg(++). Synthesis of the ribosomes in the treated cells was also suppressed, being demonstrated by a lower incorporation of uracil-2-(14)C into the ribosomal fractions. However, the change in the ribosomal profile in the treated cells apparently resulted from the decomposition of pre-existing ribosomes, rather than from the inhibition of the net synthesis of ribosomes. Sedimentation analyses and chromatography of the nucleic acids extracted from the treated cells indicated extensive but delayed degradation of the ribosomal ribonucleic acid (RNA), but not of the soluble RNA or deoxyribonucleic acid fractions. Altered structure of the ribosomes in the treated cells was also indicated by their lower melting temperature, broadened thermal profile, higher electrophoretic mobility, and extreme sensitivity to ribonuclease treatment, compared with normal ribosomes. The synthesis of messenger RNA was inhibited progressively with time in the treated cells.  相似文献   

11.
12.
Adaptive response to mitomycin C (MC) (lethal effect and recovery of molecular mass of DNA) in hyper-radioresistant mutant Escherichia coli Gamr444 have been investigated. This mutant is more resistant to MC than parent strain E. coli K12 AB1157. Adaptation of Gamr444 mutant to MC in nonlethal concentrations increases its resistance to MC in lethal concentrations with dose modification factor (DMF) 2.4 at the LD90 level. During the adaptation of this mutant to methyl-methane sulfonate (MMS) its resistance to this agent increases with DMF by 2.2 and resistance to MC with DMF by 1.5 times. During the adaptation of Gamr444 mutant to MC its resistance to MMS increases with DMF by 1.5 times. Adaptive response to MC abolishes by chloroamphenicol treatment during the adaptation. Adaptive response to nitrogen mustard (HN2) in E. coli Gamr444 is absent (HN2 induces cross-links in DNA as MC). Degradation of DNA following the formation of cross-links in DNA takes place. Adaptation to MC in Gamr444 mutant leads to restoration of DNA molecular mass which is more quicker than in the case without adaptation. Adaptive restoration of DNA molecular mass after the MC treatment is absent in E. coli K12 AB1157. The repair of cross-links in DNA after the treatment of HN2 in Gamr444 mutant takes place with equal rate both in the case of adaptation to HN2 and in the case without adaptation. It is proposed, that under the treatment of MC in E. coli Gamr444 the ada-alkA-dependent adaptive response takes place. This adaptive response is connected with alkylation of O6-guanine and elimination of the product by O6-alkyl-DNA-alkyltransferase. Partial recA-dependency of the adaptive response to MC allows to suggest the participation of another inducible system. The nature of this system is unknown.  相似文献   

13.
《Phytomedicine》2014,21(4):430-434
The role of RecA protein in bacterial resistance to antibiotics makes this protein attractive from a pharmacological point of view. In this study we demonstrate that curcumin is able to inhibit the SOS response in Escherichia coli induced by levofloxacin. The blaTEM-1 gene has been placed under the control of the LexA-binding box and used as reporter gene. The expression of TEM-1 β-lactamase enzyme was increased in the presence of ssDNA induced by levofloxacin, while, the presence of curcumin at 8 μg/ml, reduced dramatically the expression of the reporter gene. Moreover a simple microplate assay suitable for high-throughput screening has been developed.  相似文献   

14.
The expression of genes belonging to the Ada regulon of Escherichia coli under the action of mono- and bifunctional alkylating agents--high-efficiency antitumor HMM, ACNU, and BCNU preparations--was studied. The functional specificity of the alkA, alkB, and aidB1 genes concerning both the structure and volume of DNA alkylation and the specificity of cell preadaptation was revealed. Additional experimental evidence for the role of the aidB1 gene as a unique "hazard gene", a component of the E. coli ada operon, was obtained. A phenomenon of positive interference between alternative SOS and Ada responses was observed for the first time upon gene expression.  相似文献   

15.
Although pressure is an important environmental parameter in microbial niches such as the deep sea and is furthermore used in food preservation to inactivate microorganisms, the fundamental understanding of its effects on bacteria remains fragmentary. Our group recently initiated differential fluorescence induction screening to search for pressure-induced Escherichia coli promoters and has already reported induction of the heat shock regulon. Here the screening was continued, and we report for the first time that pressure induces a bona fide SOS response in E. coli, characterized by the RecA and LexA-dependent expression of uvrA, recA, and sulA. Moreover, it was shown that pressure is capable of triggering lambda prophage induction in E. coli lysogens. The remnant lambdoid e14 element, however, could not be induced by pressure, as opposed to UV irradiation, indicating subtle differences between the pressure-induced and the classical SOS response. Furthermore, the pressure-induced SOS response seems not to be initiated by DNA damage, since DeltarecA and lexA1 (Ind-) mutants, which are intrinsically hypersensitive to DNA damage, were not sensitized or were only very slightly sensitized for pressure-mediated killing and since pressure treatment was not found to be mutagenic. In light of these findings, the current knowledge of pressure-mediated effects on bacteria is discussed.  相似文献   

16.
17.
Hydroxyurea at concentrations higher than 10(-2) M induced the recA and sfiA genes of E. coli as well as the lambda prophage by a pathway independent of the recBC genes. In addition, the hydroxyurea-mediated induction of the SOS response is accompanied by a recA-dependent decrease on the cellular ATP pool. The presence of the multicopy plasmid pPS2, harboring the nrdAB genes (encoding the ribonucleoside reductase enzyme), abolished the hydroxyurea-induced expression of the recA gene. These data lead us to suggest that induction of the SOS response by hydroxyurea is due to the blocking of DNA replication by the inhibition of the ribonucleoside reductase complex activity.  相似文献   

18.
RecF, RecO and RecR, three of the important proteins of the RecF pathway of recombination, are also needed for repair of DNA damage due to UV irradiation. recF mutants are not proficient in cleaving LexA repressor in vivo following DNA damage; therefore they show a delay of induction of the SOS response. In this communication, by measuring the in vivo levels of LexA repressor using anti-LexA antibodies, we show that recO and recR mutant strains are also not proficient in LexA cleavage reactions. In addition, we show that recO and recR mutations delay induction of β-galactosidase activity expressed from a lexA-regulated promoter following exposure of cells to UV, thus further supporting the idea that recF, recO and recR gene products are needed for induction of the SOS response.  相似文献   

19.
20.
The kinetics of SOS system induction in Escherichia coli PQ37 cells by gamma-irradiation has been studied by the SOS chromotest technique. It was shown that the synthesis of constitutive alkaline phosphatase is not immediately stopped in cells that suffered lethal damages from gamma-irradiation. The production of DNA damages inducing the SOS system was 0.021/Gy per genome. The SOS system was switched off approximately 200 min after gamma-irradiation. A correction is proposed to the calculation of the SOS system induction factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号