首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The high incidence of progressive multifocal leukoencephalopathy (PML) in AIDS patients compared with many other immunosuppressive diseases suggests that HIV-1 infection is strictly related to the activation of JC virus (JCV) propagation. In this report, propagation of PML-type JCV in COS-7-derived cell lines stably expressing HIV-1 Tat (COS-tat cells) has been examined. In COS-tat cells, production of viral particles and replication of genomic DNA were markedly increased compared to COS-7 cells, as judged by HA and real-time PCR analyses. These results demonstrate that COS-tat cells provide a useful model system for studying HIV-1 Tat-mediated propagation of PML-type JCV.  相似文献   

3.
Pathogenic JCV with rearranged regulatory regions (PML-type) causes PML, a demyelinating disease, in the brains of immunocompromised patients. On the other hand, archetype JCV persistently infecting the kidney is thought to be converted to PML-type virus during JCV replication in the infected host under immunosuppressed conditions. In addition, Tat protein, encoded by HIV-1, markedly enhances the expression of a reporter gene under control of the JCV late promoter.
In order to examine the influence of Tat on JCV propagation, we used kidney-derived COS-7 cells, which only permit archetype JCV, and established COS-tat cells, which express HIV-1 Tat stably. We found that the extent of archetype JCV propagation in COS-tat cells is significantly greater than in COS-7 cells. On the other hand, COS-7 cells express SV40 T antigen, which is a strong stimulator of archetype JCV replication. The expression of SV40 T antigen was enhanced by HIV-1 Tat slightly according to real-time RT-PCR, this was not closely related to JCV replication in COS-tat cells. The efficiency of JCV propagation depended on the extent of expression of functional Tat. To our knowledge, this is the first report of increased production of archetype JCV in a culture system using cell lines stably expressing HIV-1 Tat. We propose here that COS-tat cells are a useful tool for studying the role of Tat in archetype JCV replication in the development of PML.  相似文献   

4.
5.
Productive infection of oligodendrocytes, which are responsible for the formation of myelin sheath in the central nervous system, with the human neurotropic virus JC virus (JCV) causes the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML). In addition to encoding T antigen and the capsid proteins, which are produced at the early and late phases of the infection cycle, respectively, JCV encodes a small regulatory protein named agnoprotein that is important for successful completion of the virus life cycle. Here we used bipotential CG-4 cells to examine the impact of agnoprotein on oligodendrocyte differentiation and survival in the absence of JCV lytic infection. We demonstrate that the expression of agnoprotein delayed the formation of complex outgrowth networks of the cells during oligodendrocyte differentiation. These alterations were accompanied by high levels of DNA damage, induction of proapoptotic proteins, and suppression of prosurvival signaling. Accordingly, apoptosis was significantly increased upon the induction of CG-4 cells toward differentiation in cells expressing agnoprotein. These observations provide the first evidence for the possible involvement of agnoprotein, independent from its role in viral replication, in a series of biological events that may contribute to the pathological features seen in PML lesions.  相似文献   

6.
7.
8.
Astrocytes protect neurons, but also evoke proinflammatory responses to injury and viral infections, including HIV. There is a prevailing notion that HIV-1 Rev protein function in astrocytes is perturbed, leading to restricted viral replication. In earlier studies, our finding of restricted viral entry into astrocytes led us to investigate whether there are any intracellular restrictions, including crippled Rev function, in astrocytes. Despite barely detectable levels of DDX3 (Rev-supporting RNA helicase) and TRBP (anti-PKR) in primary astrocytes compared to astrocytic cells, Rev function was unperturbed in wild-type, but not DDX3-ablated astrocytes. As in permissive cells, after HIV-1 entry bypass in astrocytes, viral-encoded Tat and Rev proteins had robust regulatory activities, leading to efficient viral replication. Productive HIV-1 infection in astrocytes persisted for several weeks. Our findings on HIV-1 entry bypass in astrocytes demonstrated that the intracellular environment is conducive to viral replication and that Tat and Rev functions are unperturbed.  相似文献   

9.
HIV-1 Tat is essential for virus replication and is a potent transactivator of viral gene expression. Evidence suggests that Tat also influences virus infectivity and cytopathicity. Here, we find that the second coding exon of Tat contributes a novel function for the replication/infectivity of macrophage-tropic HIV-1. We show that macrophage-tropic HIV-1 which expresses the full-length two-exon form of Tat replicates better in monocyte-derived macrophages (MDM) than an otherwise isogenic virus which expresses only the one-exon form of Tat. Similarly, two-exon Tat expressing HIV-1 also replicates better than one-exon Tat expressing HIV-1 in two different models of human cells/tissue reconstituted SCID mice.  相似文献   

10.
高效抗逆转录病毒治疗(HAART)可以有效地抑制人类免疫缺陷病毒Ⅰ型(HIV-1)的复制及血浆病毒载量,延缓发病进程,改善、提高患者的生活质量和存活时间。但是,一旦停止治疗就会导致血浆病毒血症迅速反弹,HIV-1以原病毒的形式在静息记忆CD4+T等细胞中的持续存在是清除HIV-1的一个障碍。HIV-1基因转录的激活与阻抑决定了受感染细胞进入产毒性感染或潜伏感染。本文从原病毒整合位置与转录干扰、细胞转录因子与HIV-1启动子相互作用招募RNA聚合酶起始转录、转录的表观遗传调控和反式激活因子Tat及其相关蛋白促进转录延伸等方面探讨了HIV-1原病毒转录调控机制。  相似文献   

11.
12.
13.
HIV-1 transactivating protein Tat is essential for virus replication and progression of HIV disease. HIV-1 Tat stimulates transactivation by binding to HIV-1 transactivator responsive element (TAR) RNA, and while secreted extracellularly, it acts as an immunosuppressor, an activator of quiescent T-cells for productive HIV-1 infection, and by binding to CXC chemokine receptor type 4 (CXCR4) as a chemokine analogue. Here we present a novel HIV-1 Tat antagonist, a neomycin B-hexaarginine conjugate (NeoR), which inhibits Tat transactivation and antagonizes Tat extracellular activities, such as increased viral production, induction of CXCR4 expression, suppression of CD3-activated proliferation of lymphocytes, and upregulation of the CD8 receptor. Moreover, Tat inhibits binding of fluoresceine isothiocyanate (FITC)-labeled NeoR to human peripheral blood mononuclear cells (PBMC), indicating that Tat and NeoR bind to the same cellular target. This is further substantiated by the finding that NeoR competes with the binding of monoclonal Abs to CXCR4. Furthermore, NeoR suppresses HIV-1 binding to cells. Importantly, NeoR accumulates in the cell nuclei and inhibits the replication of M- and T-tropic HIV-1 laboratory isolates (EC(50) = 0.8-5.3 microM). A putative model structure for the TAR-NeoR complex, which complies with available experimental data, is presented. We conclude that NeoR is a multitarget HIV-1 inhibitor; the structure, and molecular modeling and dynamics, suggest its binding to TAR RNA. NeoR inhibits HIV-1 binding to cells, partially by blocking the CXCR4 HIV-1 coreceptor, and it antagonizes Tat functions. NeoR is therefore an attractive lead compound, capable of interfering with different stages of HIV infection and AIDS pathogenesis.  相似文献   

14.
Overexpression of trans-acting response element (TAR)-containing sequences (TAR decoys) in CEM SS cells renders cells resistant to human immunodeficiency type 1 (HIV-1) replication. Mutagenesis of TAR was used to investigate the molecular mechanism underlying the observed inhibition. A nucleotide change which disrupts the stem structure of TAR or sequence alterations in the loop abolish the ability of the corresponding TAR decoy RNAs to inhibit HIV replication. A compensatory mutation which restores the stem structure also restores TAR decoy RNA function. Synthesis of viral RNA is drastically reduced in cells expressing a functional TAR decoy RNA, but it is unaffected in cells expressing a mutant form of TAR decoy RNA. It is therefore concluded that overexpression of TAR-containing sequences in CEM SS cells interferes with the process of Tat-mediated transactivation of viral gene expression. However, the phenotype of several mutations suggests that TAR decoy RNA does not inhibit HIV-1 gene expression by simply sequestering Tat but rather does so by sequestering a transactivation protein complex, implying that transactivation requires the cooperative binding of both Tat and a loop-binding cellular factor(s) to TAR. Expression of wild-type or mutant forms of TAR had no discernible effects on cell viability, thus reducing concerns about using TAR decoy RNAs as part of an intracellular immunization protocol for the treatment of AIDS.  相似文献   

15.
16.
The agnoprotein of polyomaviruses: a multifunctional auxiliary protein   总被引:3,自引:0,他引:3  
The late region of the three primate polyomaviruses (JCV, BKV, and SV40) encodes a small, highly basic protein known as agnoprotein. While much attention during the last two decades has focused on the transforming proteins encoded by the early region (small and large T-antigens), it has become increasingly evident that agnoprotein has a critical role in the regulation of viral gene expression and replication, and in the modulation of certain important host cell functions including cell cycle progression and DNA repair. The importance of agnoprotein is underscored by its expression during lytic infection of glial cells by JCV that occurs in progressive multifocal leukoencephalopathy (PML), and also in some JCV-associated human neural tumors particularly medulloblastoma. In this review, we will discuss the structure and function of agnoprotein in the viral life cycle during the course of lytic infection and the consequences of agnoprotein expression for the host cell.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号