首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biosynthesis of methanopterin   总被引:6,自引:0,他引:6  
R H White 《Biochemistry》1990,29(22):5397-5404
The biosynthetic pathway for the generation of the methylated pterin in methanopterins was determined for the methanogenic bacteria Methanococcus volta and Methanobacterium formicicum. Extracts of M. volta were found to readily cleave L-7,8-dihydroneopterin to 7,8-dihydro-6-(hydroxymethyl)pterin, which was confirmed to be a precursor of the pterin portion of the methanopterin. [methylene-2H]-6-(Hydroxymethyl)pterin was incorporated into methanopterin by growing cells of M. volta to an extent of 30%. Both the C-11 and C-12 methyl groups of methanopterin originate from [methyl-2H3]methionine, as confirmed by the incorporation of two C2H3 groups into 6-ethyl-7-methylpterin, a pterin-containing fragment derived from methanopterin. Cells grown in the presence of [methylene-2H]-6-(hydroxymethyl)pterin, [ethyl-2H4]-6-[1 (RS)-hydroxyethyl]pterin, [methyl-2H3]-6- (hydroxymethyl)-7-methylpterin, [ethyl-2H4, methyl-2H3]-6-[1 (RS)-hydroxyethyl]-7-methylpterin, and [1-ethyl-3H]-6-[1 (RS)-hydroxyethyl]-7-methylpterin showed that only the non-7-methylated pterins were incorporated into methanopterin. Cells extracts of M. formicicum readily condensed synthetic [methylene-3H]-7,8-H2-6-(hydroxymethyl)pterin-PP with methaniline to generate demethylated methanopterin, which is then methylated to methanopterin by the cell extract in the presence of S-adenosylmethionine. These observations indicate that the pterin portion of methanopterin is biosynthetically derived from 7,8-H2-6-(hydroxymethyl)pterin, which is coupled to methaniline by a pathway analogous to the biosynthesis of folic acid. This pathway for the biosynthesis of methanopterin represents the first example of the modification of the specificity of a coenzyme through a methylation reaction.  相似文献   

2.
Analyses were made of the structures and levels of folates and modified folates present in extremely thermophilic bacteria. These procedures involved the chemical analysis of products resulting from the oxidative cleavage of the 6-substituted, folatelike tetrahydropterins present in the cells. Air-oxidized cell extracts of extreme thermophiles from two members of the archaebacterial order Thermococcales, Thermococcus celer and Pyrococcus furiosus, contained only 7-methylpterin, indicating that these cells contain a modified folate with a methylated pterin. Cell extracts also contained 6-acetyl-7-methyl-7,8-dihydropterin, another product derived from the oxidative cleavage of a dimethylated folate, demonstrating that both the C-7 and C-9 carbons of the pterin were methylated. Extracts, however, contained neither p-aminobenzoylpolyglutamates nor methaniline, the oxidative cleavage products of folates and methanopterin, respectively, indicating that they contain a previously undescribed C1 carrier(s). On the basis of the level of the 7-methylpterin isolated, the levels of modified folate were 2 to 10 times higher than those typically found in mesophilic bacteria and 10 to 100 times less than the level of methanopterin found in the methanogenic bacteria. Oxidized cell extracts of Sulfolobus spp. of the archaebacterial order Sulfolobales contained only pterin, and, like members of the order Thermococcales, they contained neither-p-aminobenzoylpolyglutamates nor methaniline. Oxidized cell extracts of the extreme thermophiles Pyrobaculum sp. strain H10 and Pyrodictium occultum, from the archaebacterial orders Thermoproteales and Pyrodictiales, respectively, and Thermotoga maritima from the eubacterial order Thermotogales, contained pterin and p-aminobenzoylpolyglutamates, indicating that these cells contained unmodified folates. The levels of p-aminobenzoylpolyglutamates in these archaebacterial cell extracts indicate that the folates were present in the cells at levels 4 to 10 times higher than generally found in those mesophilic eubacteria which do not folates in energy metabolism. The levels and chain lengths of the of p-aminobenzoylpolyglutamates present in Thermotoga maritima were typical of those found in mesophilic eubacteria.  相似文献   

3.
Cofactor extracts of Methanogenium tationis were screened for the presence of pterin-derivatives. Methanopterin, sarcinapterin and 7-methylpterin were absent, while 2-amino-4-hydroxy-pteridine and another blue fluorescent compound with a pterin spectrum were detected. The latter pterin was purified by ion exchange and reversed-phase column chromatography. The structure of this compound was elucidated by combining spectrophotometry, amino acid analysis and 1H-NMR spectroscopy. The pterin, which we named tatiopterin, was identified as an aspartyl derivative of sarcinapterin with a 7-proton instead of a 7-methyl group in the pterin moiety. The IUPAC name is: N-[-1'-(2'-amino-4'-hydroxy-7'-proton-6'-pteridinyl)ethyl]-4- [2',3',4',5'-tetrahydroxypent-1'-yl(5'----1')O-alpha- ribofuranosyl-5'-phosphoric acid]aniline, in which the phosphate group is esterified with alpha-hydroxyglutarylglutamylaspartic acid.  相似文献   

4.
Biosynthesis of the 7-methylated pterin of methanopterin.   总被引:4,自引:3,他引:1       下载免费PDF全文
The incorporation of [15N]glycine and [U-methyl-2H]methionine into methanopterin by growing cells of a methanogenic bacterium was measured to establish the biosynthetic route of the methylated pterin in the structure. The tetrahydromethanopterin produced by the cells was oxidatively cleaved to produce 7-methylpterin, and the amount of label incorporated into this pterin was measured by gas chromatography-mass spectrometry of the ditrimethylsilyl derivative of this compound. Approximately 27% of the 7-methylpterin and the guanine present in the cell was derived from the fed [15N]glycine. [U-methyl-2H]methionine was incorporated with the initial retention of all three deuteriums. These results are consistent with the biosynthesis of the pterin of methanopterin originating from GTP and its 7-methyl group arising from the methyl group of methionine.  相似文献   

5.
Derivatives of methanopterin, a coenzyme involved in methanogenesis   总被引:16,自引:0,他引:16  
Degradational studies of methanopterin, a coenzyme involved in methanogenesis, are reported. The results of these studies are in full accordance with the proposed structure of methanopterin as N-[1'-(2'-amino-4'-hydroxy-7' -methyl-6'-pteridinyl)ethyl]-4-[2', 3', 4', 5'-tetrahydroxypent-1'-yl(5'-1' )O-alpha-ribofuranosyl-5'-phosphoric acid] aniline in which the phosphate group is esterified with alpha-hydroxyglutaric acid. Acid hydrolysis of methanopterin cleaved the 5'----1' glycosidic bond and yielded a 'hydrolytic product' which was identified as N-[1'-(2'-amino-4'-hydroxy-7' -methyl-6'-pteridinyl)ethyl]-4-[2', 3', 4', 5'-tetrahydroxypent-1'-yl]aniline. Alkaline permanganate oxidation of methanopterin yielded 7-methylpterin-6-carboxylic acid. Catalytic (or enzymatic) hydrogenation of methanopterin gave a mixture of 6-ethyl-7-methyl-7,8-dihydropterin, 6-ethyl-7-methylpterin and a third compound, named methaniline which was identified as 4-[2', 3', 4', 5'-tetrahydroxypent-1'-yl(5'----1')O-alpha -ribofuranosyl-5'-phosphoric acid]aniline, in which the phosphate group is esterified with alpha-hydroxyglutaric acid. Methanosarcina barkeri contains a closely related coenzyme called sarcinapterin, which was identified as a L-glutamyl derivative of methanopterin, where the glutamate moiety is attached to the alpha-carboxylic acid group of the alpha-hydroxyglutaric acid moiety of methanopterin via an amide linkage.  相似文献   

6.
The partial characterization of the modified folate present in Sulfolobus solfataricus has been carried out. Separation of ethanol-water extracts of these cells on a DEAE-Sephadex column led to the isolation of a small amount of intact oxidized cofactor, which, when subjected to reductive cleavage with Zn-HCl, produced 6-methylpterin. This indicated that the modified folate in these cells contained a nonmethylated pterin linked, via a methylene group at the C-6 position of the pterin, to an arylamine, as is found in folate. Oxidative cleavage of intact reduced cofactor produced pterin and a single arylamine. The azo dye derivative of this arylamine was prepared and purified by chromatography on a Bio-Gel P-6 column. The resulting purified compound was shown to be readily hydrolyzed in dilute acid to the azo dye derivative of 5-(p-aminophenyl)-1,2,3,4-tetrahydroxypantane, which was, in turn, readily cleaved to 5-(p-aminophenyl)-1,2,3,4- tetrahydroxypentane by Zn-HCl reduction. The stereochemistry of the resulting 5-(p-aminophenyl)-1,2,3,4-tetrahydroxypentane was shown to be ribo, the same as that of the 5-(p-aminophenyl)-1,2,3,4- tetrahydroxypentane moiety found in methanopterin. The complete arylamine side chain of the modified folate thus contains 5-(p-aminophenyl)-1,2,3,4-tetrahydroxypentane attached, via an acid-labile bond, to a currently unidentified substituent. The modified folate present in S. solfataricus thus contains structural features common to both folates and methanopterin.  相似文献   

7.
The pathway of CO2 reduction to methane in Methanogenium tationis and Methanogenium thermophilicum is similar to that observed in other methanogens. In M. tationis a novel pterin, tatiopterin, is present. This pterin appears to be a structural and functional analog of methanopterin and sarcinapterin. Folate could not substitute for tatiopterin.  相似文献   

8.
Quantification of coenzymes and related compounds from methanogens was performed in extracts obtained from whole cells with aqueous ethanol at 80°C. By means of high-performance liquid chromatography the following compounds could be detected and quantified in extracts from Methanobacterium thermoautotrophicum: coenzyme MF430, the prosthetic group of methylcoenzyme M reductase, F560, an oxidation product of this compound, coenzyme F420, F342, methanopterin, and carboxytetrahydromethanopterin, previously known as YFC. Coenzyme MF430, coenzyme F420, and methanopterin could be determined in extracts from Methanosarcina barkeri. Structural differences were noticed between the coenzymes from the methanogenic bacteria studied.  相似文献   

9.
7-Methylpterin and 7-methyllumizine were isolated and identified in extracts of methanogenic bacteria which had been extracted in air with ethanol-water. Ethanol-water preparations of cells extracted under nitrogen or hydrogen were devoid of these compounds. Extracts of cells obtained in the presence of air also had an increased amount of a complex arylamine which, on acid hydrolysis, gave 1 mol each of phosphate, 5-(p-aminophenyl)-1,2,3,4-tetrahydroxypentane, and alpha-hydroxyglutaric acid. Gas chromatography-mass spectrometry was used to identify the 5-(p-aminophenyl)-1,2,3,4-tetrahydroxypentane as its tetratrimethylsilyl derivative and the alpha-hydroxyglutaric acid as the n-butyl ester derivative of its gamma-lactone. When exposed to air, extracts of cells prepared in the absence of air produced 6-acetyl-7-methylpterin and 7-methylxanthopterin in addition to 7-methylpterin and 7-methyllumizine. It is concluded that these compounds are derived from the oxidative cleavage of the tetrahydromethanopterin, which is present in these bacteria, by a series of reactions analogous to those known to occur in the oxidative cleavage of tetrahydrofolic acid.  相似文献   

10.
Identification of a novel tatiopterin derivative in Methanogenium tationis   总被引:2,自引:0,他引:2  
Recently, a novel pterin has been isolated from Methanogenium tationis. This pterin derivative, which was called tatiopterin, was characterized as a methanopterin-like structure with an additional aspartyl and glutamyl group in the side chain and with a 7-proton instead of a 7-methyl group in the pterin moiety. The sequence of the aspartyl and glutamyl group remained unsolved. In this study, a novel pterin was purified from Mg.tationis and analyzed by 600 MHz 1H-NMR spectroscopy and fast atom bombardment-mass spectroscopy. This pterin was found to be an aspartyl derivative of methanopterin with a 7-proton in the pterin part of the molecule. No glutamyl group could be detected. Apparently, Mg.tationis is able to synthesize two types of tatiopterin derivatives. For these cofactors the trivial names 'tatiopterin-0' (lacking a glutamyl group) and 'tatiopterin-I' (containing one glutamyl group) are introduced here.  相似文献   

11.
The unusual compound beta-aminoglutaric acid (beta-glutamate) has been identified by 13C nuclear magnetic resonance spectroscopy in soluble extracts of marine methanogenic bacteria. We examined several methanogen species representing nine genera and found that beta-glutamate occurred in methanococci and two methanogenium strains (Methanogenium cariaci JR1 and "Methanogenium anulus" AN9). The presence of this compound in the methanococci examined was further restricted to thermophilic members of the genus Methanococcus, including Methanococcus thermolithotrophicus strains, Methanococcus jannaschii, and "Methanococcus igneus." The two Methanogenium strains examined were mesophiles. Studies using Methanococcus thermolithotrophicus showed that levels of beta-glutamate in cells of that species were not affected by variation in growth temperature (40 to 65 degrees C), NH4+ (2 to 80 mM), Mg2+ (10 to 50 mM), or K+ (2 to 10 mM) in the medium. In contrast, soluble pools of beta-glutamate and L-alpha-glutamate (the other major free amino acid in all the methanococci) were proportional to NaCl levels in the growth medium. This dependence of beta-glutamate and L-alpha-glutamate concentrations on salt levels in the medium suggests that they function as osmolytes in these cells.  相似文献   

12.
Abstract A blue fluorescent compound was extracted and purified from cells of Methanobacterium thermoautotrophicum . The compound was identified as 7-methylpterin on the basis of its (physico-) chemical properties and by comparison with 7-methylpterin prepared by organic synthesis. The compound is present in all methanogenic bacteria studied so far and it provides methanogenic bacteria the characteristic blue fluorescence observed upon fluorescence microscopy.  相似文献   

13.
The unusual compound beta-aminoglutaric acid (beta-glutamate) has been identified by 13C nuclear magnetic resonance spectroscopy in soluble extracts of marine methanogenic bacteria. We examined several methanogen species representing nine genera and found that beta-glutamate occurred in methanococci and two methanogenium strains (Methanogenium cariaci JR1 and "Methanogenium anulus" AN9). The presence of this compound in the methanococci examined was further restricted to thermophilic members of the genus Methanococcus, including Methanococcus thermolithotrophicus strains, Methanococcus jannaschii, and "Methanococcus igneus." The two Methanogenium strains examined were mesophiles. Studies using Methanococcus thermolithotrophicus showed that levels of beta-glutamate in cells of that species were not affected by variation in growth temperature (40 to 65 degrees C), NH4+ (2 to 80 mM), Mg2+ (10 to 50 mM), or K+ (2 to 10 mM) in the medium. In contrast, soluble pools of beta-glutamate and L-alpha-glutamate (the other major free amino acid in all the methanococci) were proportional to NaCl levels in the growth medium. This dependence of beta-glutamate and L-alpha-glutamate concentrations on salt levels in the medium suggests that they function as osmolytes in these cells.  相似文献   

14.
The phospholipid composition of Hydrogenobacter thermophilus strain TK-6, an obligately chemolithoautotrophic, extremely thermophilic hydrogen bacterium, was analyzed. Two of four phospholipids detected from the strain were assumed to be phosphatidylinositol and phosphatidylglycerol. An aminophospholipid named PX, whose content among the phospholipids was 65%, was found to have a novel chemical structure by analysis of the dilyso form with nuclear magnetic resonance and fast atom bombardment-mass spectrometry (FAB-MS) and by analysis of the intact PX with FAB-MS as 1,2-diacyl-3-O-(phospho-2'-O-(1'-amino)-2',3',4',5'-pentanetetrol)-sn-glycerol. Structurally similar phospholipids have been identified in Methanospirillum hungatei, Methanolacinia paynteri, and Methanogenium cariaci, which all belong to the Archaea.  相似文献   

15.
Carbon dioxide reduction (CDR) factor is contained in a low molecular weight fraction of cell extract that is required for methane production from CO2 by resolved cell extracts. This fraction has been separated into two components both of which have been highly purified. One component is methanopterin, and for the other component the name CDR factor is retained. No known coenzymes tested substitute in the methane-producing assay for CDR factor and methanopterin, both of which are stable to boiling and exposure to air. The ultraviolet-visible spectrum of CDR factor has a peak at 273 nm, a shoulder at 280 nm, and at pH 1, a peak at 219 nm. The ultraviolet-visible spectrum of methanopterin isolated from the CDR fraction is similar to the spectrum previously reported for this compound (Keltjens, J. T., and Vogels, G. D. (1981) in Microbial Growth on C1 Compounds (Dalton, H., ed) pp. 152-158, Heyden and Son, Ltd., London). The addition of CDR factor (0.8 micrograms) and methanopterin (50 micrograms) to the assay mixture increased by 12-fold the amount of methane formed from CO2.  相似文献   

16.
Growing cultures of Methanobacterium thermoautotrophicum were supplemented with [U-14C]adenosine or [1-14C]adenosine. 7,8-Didemethyl-8-hydroxy-5-deazariboflavin (factor F0) and 7-methylpterin were isolated from the culture medium. Hydrolysis of cellular RNA yielded purine and pyrimidine nucleotides. The ribose side chain of proffered adenosine is efficiently incorporated into cellular adenosine and guanosine nucleotide pools but not into pyrimidine nucleotides. Thus, M. thermoautotrophicum can utilize exogenous adenosine by direct phosphorylation without hydrolysis of the glycosidic bond, and AMP can be efficiently converted to GMP. Factor F0 and 7-methylpterin had approximately the same specific activities as the purine nucleotides. It follows that the ribityl side chain of factor F0 is derived from the ribose side chain of a nucleotide precursor by reduction. The pyrazine ring of methanopterin is formed by ring expansion involving the ribose side chain of the precursor, GTP.Abbreviations Factor F0 8-hydroxy-6,7-didemethyl-5-deazariboflavin - APRT adenine phosphoribosyltransferase - GPRT guanine phosphoribosyltransferase - PRPP phosphoribosylpyrophosphate - HPLC high performance liquid chromatography  相似文献   

17.
Methanopterin is a coenzyme involved in methanogenesis. From 2 kg wet cells of Methanobacterium thermoautotrophicum about 35 mumol methanopterin were isolated. The structure of this compound was elucidated by various two-dimensional nuclear-magnetic-resonance techniques. Methanopterin was identified as N-[1'-(2"-amino-4"-hydroxy-7" - methyl-6"- pteridinyl) ethyl]-4-[2',3',4',5'- tetrahydroxypent-1'- yl (5' leads to 1") O-alpha-ribofuranosyl-5"-phosphoric acid] aniline, in which the phosphate group is esterified with alpha-hydroxyglutaric acid. The molecular formula of the sodium salt of methanopterin at pH 7.0 is C30H38O16N6PNa3 X chiH2O (chi is about 4). The anhydrous sodium salt of methanopterin has a molecular mass of 838.60 Da and the molar absorption coefficient at 342 nm is 7.4 mM-1 cm-1 at pH 7.0.  相似文献   

18.
The activities of formylmethanofuran dehydrogenase, methylenetetrahydromethanopterin dehydrogenase, methylenetetrahydromethanopterin reductase, and heterodisulfide reductase were tested in cell extracts of 10 different methanogenic bacteria grown on H2/CO2 or on other methanogenic substrates. The four activities were found in all the organisms investigated: Methanobacterium thermoautotrophicum,M. wolfei, Methanobrevibacter arboriphilus, Methanosphaera stadtmanae, Methanosarcina barkeri (strains Fusaro and MS), Methanothrix soehngenii, Methanospirillum hungatei, Methanogenium organophilum, and Methanococcus voltae. Cell extracts of H2/CO2 grown M. barkeri and of methanol grown M. barkeri showed the same specific activities suggesting that the four enzymes are of equal importance in CO2 reduction to methane and in methanol disproportionation to CO2 and CH4. In contrast, cell extracts of acetate grown M. barkeri exhibited much lower activities of formylmethanofuran dehydrogenase and methylenetetrahydromethanopterin dehydrogenase suggesting that these two enzymes are not involved in methanogenesis from acetate. In M. stadtmanae, which grows on H2 and methanol, only heterodisulfide reductase was detected in activities sufficient to account for the in vivo methane formation rate. This finding is consistent with the view that the three other oxidoreductases are not required for methanol reduction to methane with H2.  相似文献   

19.
Oral administration of alcoholic extracts of Schouwia thebica Webb showed that extracts are safe for human use. The studied extracts are considered safe, since they failed to induce death of mice in doses up to 4000 mg/kg body weight. Hepatoprotective activity was studied for the total alcoholic extracts. The total extract was fractionated in turn with diethyl ether, chloroform, ethyl acetate, and n-butanol, respectively. These extracts were tested for possible hepatoprotective activity. It was found that the ethyl acetate and n-butanol extracts of S. thebica Webb showed hepatoprotective activity. These extracts significantly reduced the increase in activities of ALT, AST, and GGT, and levels of glucose, triglycerides, and cholesterol in serum of CCl(4)-treated rats. The extracts showing activity were found to contain flavonoids; one new compound, chrysoeriol-7-O-xylosoide- (1,2)-arabinofuranoside (2), in addition to another known four compound chrysoeriol (1), quercetin (3), quercetin-7-O-rhamnoside (4), and kaempferol-3-O-beta-D-glucoside (5). The isolated new compound was mainly found to be responsible for this activity when tested on animals in the laboratory. The structures were established by melting point, UV spectroscopy, EI-Mass, Fab-Mass, and 1D and 2D NMR spectroscopic techniques on a 600MHz instrument.  相似文献   

20.
Methanopterin and methanogenic bacteria   总被引:2,自引:0,他引:2  
Methanogenic bacteria comprise a selected group of microorganisms that derive their energy for growth from the hydrogen-dependent reduction of CO2 to methane or the disproportionation of reduced one-carbon compounds and acetate to CO2 and methane. In the reduction and oxidation steps at the formyl, hydroxymethyl and methyl level the one-carbon unit remains bound to the reduced form of methanopterin, a pterin derivative typical of methanogenic bacteria. In addition, the reduced methanopterin, 5,6,7,8-tetrahydromethanopterin, is involved in a number of anabolic reactions. Methanopterin is structurally and functionally the counterpart of folic acid found in other organisms. In this review the occurrence and properties of methanopterin and its derivatives, as well as the biosynthesis and the role in the different catabolic and anabolic reactions are discussed against the background of folic acid biochemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号