首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lithium preparations are commonly used drug in treating mental disorders and bipolar diseases, but metal's cytotoxic mechanisms have not yet been completely understood. In this study, we investigated the cytotoxic mechanisms of lithium in freshly isolated rat hepatocytes. Lithium cytotoxicity were associated with reactive oxygen species (ROS) formation and collapse of mitochondrial membrane potential and cytochrome c release into the hepatocyte cytosol. All of the mentioned lithium-induced cytotoxicity markers were significantly (P?相似文献   

2.
Tea phenolic acids and catechins containing gallic acid moieties are most abundant in green tea, and various medical benefits have been proposed from their consumption. In the following, the cytotoxicities of these major tea phenolics toward isolated rat hepatocytes have been ranked and the mechanisms of cytotoxicity evaluated. The order of cytotoxic effectiveness found was epigallocatechin-3-gallate>propyl gallate>epicatechin-3-gallate>gallic acid, epigallocatechin>epicatechin. Using gallic acid as a model tea phenolic and comparing it with the tea catechins and gallic acid-derivative food supplements, the major cytotoxic mechanism found with hepatocytes was mitochondrial membrane potential collapse and ROS formation. Epigallocatechin-3-gallate was also the most effective at collapsing the mitochondrial membrane potential and inducing ROS formation. Liver injury was also observed in vivo when these tea phenolics were administered ip to mice, as plasma alanine aminotransferase levels were significantly increased. In contrast, GSH conjugation, methylation, metabolism by NAD(P)H:quinone oxidoreductase 1, and formation of an iron complex were important in detoxifying the gallic acid. In addition, for the first time, the GSH conjugates of gallic acid and epigallocatechin-3-gallate have been identified using mass spectrometry. These results add insight into the cytotoxic and cytoprotective mechanisms of the simple tea phenolic acids and the more complex tea catechins.  相似文献   

3.
Coenzyme Q (CoQ) is an essential component of the mitochondrial electron transport chain and serves as an electron donor and acceptor in mitochondrial energy-linked respiration. CoQ1 was shown to prevent ROS formation and cell death in complex 1 inhibited cells. Low concentrations of capsaicin like CoQ1 inhibited ROS formation but CoQ1 was more effective at restoring the mitochondrial membrane potential collapse caused by complex 1 inhibitors such as rotenone. At low concentrations, capsaicin acts as a CoQ mimic by protecting against rotenone induced ROS formation and mitochondrial membrane potential collapse. Lipid peroxidation in isolated rat hepatocytes induced by cumene hydroperoxide and chloroacetaldehyde was also prevented. At higher concentrations, capsaicin and CoQ1 became cytotoxic. Hep G2 cells were more susceptible than hepatocytes. The cytotoxic mechanism for both capsaicin and CoQ1 was shown to involve a collapse of the mitochondrial membrane potential, however, only capsaicin caused ROS formation. The capsaicin side chain was required for capsaicin induced cytotoxicity. The anticancer properties of CoQ1 and capsaicin should prove useful for inducing tumor cell apoptosis.  相似文献   

4.
Xanthoangelol is a geranylated chalcone isolated from fruits of Amorpha fructicosa that exhibits antibacterial effects at low micromolar concentration against Gram-positive bacterial pathogens such as methicillin-resistant Staphylococcus aureus (MRSA), Enterococcus faecium and Enterococcus faecalis. We demonstrate that Xanthoangelol treatment of Gram-positive bacteria affects bacterial membrane integrity and leads to a leakage of intracellular metabolites. This correlates with a rapid collapse of the membrane potential and results in a fast and strong bactericidal effect. Proteomic profiling of Xanthoangelol-treated cells revealed signatures of cell wall and/or membrane damage and oxidative stress. Xanthoangelol specifically disturbs the membrane of Gram-positive bacteria potentially by forming pores resulting in cell lysis. In contrast, Xanthoangelol treatment of human cells showed only mildly hemolytic and cytotoxic effects at higher concentrations. Therefore, geranylated chalcones such as Xanthoangelol are promising lead structures for new antimicrobials against drug-resistant gram-positive pathogens.  相似文献   

5.
Diallyl disulfide (DADS) and diallyl sulfide (DAS) are the major metabolites found in garlic oil and have been reported to lower cholesterol and prevent cancer. The molecular cytotoxic mechanisms of DADS and DAS have not been determined.The cytotoxic effectiveness of hydrogen versus allyl sulfides towards hepatocytes was found to be as follows: NaHS > DADS > DAS. Hepatocyte mitochondrial membrane potential was decreased and reactive oxygen species (ROS) and TBARS formation was increased by all three allyl sulfides. (1) DADS induced cytotoxicity was prevented by the H2S scavenger hydroxocobalamin, which also prevented cytochrome oxidase dependent mitochondrial respiration suggesting that H2S inhibition of cytochrome oxidase contributed to DADS hepatocyte cytotoxicity. (2) DAS cytotoxicity on the other hand was prevented by hydralazine, an acrolein trap. Hydralazine also prevented DAS induced GSH depletion, decreased mitochondrial membrane potential and increased ROS and TBARS formation. Chloral hydrate, the aldehyde dehydrogenase 2 inhibitor, however had the opposite effects, which could suggest that acrolein contributed to DAS hepatocyte cytotoxicity.  相似文献   

6.
Decreases in GSH pools detected during ischemia sensitize neurons to excitotoxic damage. Thermodynamic analysis predicts that partial GSH depletion will cause an oxidative shift in the thiol redox potential. To investigate the acute bioenergetic consequences, neurons were exposed to monochlorobimane (mBCl), which depletes GSH by forming a fluorescent conjugate. Neurons transfected with redox-sensitive green fluorescent protein showed a positive shift in thiol redox potential synchronous with the formation of the conjugate. Mitochondria within neurons treated with mBCl for 1 h failed to hyperpolarize upon addition of oligomycin to inhibit their ATP synthesis. A decreased ATP turnover was confirmed by monitoring neuronal oxygen consumption in parallel with mitochondrial membrane potential (Deltapsi(m)) and GSH-mBCl formation. mBCl progressively decreased cell respiration, with no effect on mitochondrial proton leak or maximal respiratory capacity, suggesting adequate glycolysis and a functional electron transport chain. This approach to "state 4" could be mimicked by the adenine nucleotide translocator inhibitor bongkrekic acid, which did not further decrease respiration when administered after mBCl. The cellular ATP/ADP ratio was decreased by mBCl, and consistent with mitochondrial ATP export failure, respiration could not respond to an increased cytoplasmic ATP demand by plasma membrane Na(+) cycling; instead, mitochondria depolarized. More prolonged mBCl exposure induced mitochondrial failure, with Deltapsi(m) collapse followed by cytoplasmic Ca(2+) deregulation. The initial bioenergetic consequence of neuronal GSH depletion in this model is thus an inhibition of ATP export, which precedes other forms of mitochondrial dysfunction.  相似文献   

7.
《Free radical research》2013,47(9):1081-1094
Abstract

The imbalance between reactive oxygen species (ROS) production and their elimination by antioxidants leads to oxidative stress. Depending on their concentration, ROS can trigger apoptosis or stimulate cell proliferation. We hypothesized that oxidative stress and mitochondrial dysfunction may participate not only in apoptosis detected in some myelodysplastic syndrome (MDS) patients, but also in increasing proliferation in other patients. We investigated the involvement of oxidative stress and mitochondrial dysfunction in MDS pathogenesis, as well as assessed their diagnostic and prognostic values. Intracellular peroxides, superoxide, superoxide/peroxides ratio, reduced glutathione (GSH), and mitochondrial membrane potential (Δψmit) levels were analyzed in bone marrow cells from 27 MDS patients and 12 controls, by flow cytometry. We observed that all bone marrow cell types from MDS patients had increased intracellular peroxide levels and decreased GSH content, compared with control cells. Moreover, oxidative stress levels were MDS subtype— and risk group—dependent. Low-risk patients had the highest ROS levels, which can be related with their high apoptosis; and intermediate-2-risk patients had high Δψmit that may be associated with their proliferative potential. GSH levels were negatively correlated with transfusion dependency, and peroxide levels were positively correlated with serum ferritin level. GSH content proved to be an accurate parameter to discriminate patients from controls. Finally, patients with high ROS or low GSH levels, as well as high superoxide/peroxides ratio had lower overall survival. Our results suggest that oxidative stress and mitochondrial dysfunction are involved in MDS development, and that oxidative stress parameters may constitute novel diagnosis and/or prognosis biomarkers for MDS.  相似文献   

8.
Estrogen and estrogen-related compounds have been shown to have very potent cytoprotective properties in a wide range of disease models, including an in vitro model of Friedreich's ataxia (FRDA). This study describes a potential estrogen receptor (ER)-independent mechanism by which estrogens act to protect human FRDA skin fibroblasts from a BSO-induced oxidative insult resulting from inhibition of de novo glutathione (GSH) synthesis. We demonstrate that phenolic estrogens, independent of any known ER, are able to prevent lipid peroxidation and mitochondrial membrane potential (ΔΨm) collapse, maintain ATP at near control levels, increase oxidative phosphorylation and maintain activity of aconitase. Estrogens did not, however, prevent BSO from depleting GSH or induce an increased expression level of GSH. The cytoprotective effects of estrogen appear to be due to a direct overall reduction in oxidative damage to the mitochondria, enabling the FRDA fibroblast mitochondria to generate sufficient ATP for energy requirements and better survive oxidative stress. These data support the hypothesis that phenol ring containing estrogens are possible candidate drugs for the delay and/or prevention of FRDA symptoms.  相似文献   

9.
Atractyloside (Atr) binds to the adenine nucleotide translocator (ANT) and inhibits ANT-mediated ATP/ADP exchange on the inner mitochondrial membrane. In addition, Atr can trigger opening of a non-specific ion channel, within the ANT-containing permeability transition pore complex (PTPC), which is subject to redox regulation and inhibited by cyclosporin A (CsA). Here we show that the cytotoxic effects of Atr, both in vivo and in vitro, are determined by its capacity to induce PTPC opening and consequent mitochondrial membrane permeabilization (MMP). Thus, the Atr-induced MMP and death of cultured liver cells are both inhibited by CsA as well as by glutathione (GSH) and enhanced by GSH depletion. Similarly, the hepatorenal toxicity of Atr, assessed in vivo, was reduced by treating mice with CsA or a diet rich in sulfur amino acids, a regime which enhances mitochondrial GSH levels. Atr injection induced MMP in hepatocytes and proximal renal tubular cells, and MMP was reduced by either CsA or GSH. Acetaminophen (paracetamol)-induced acute poisoning was also attenuated by CsA and GSH, both in vitro and in vivo. Altogether these data indicate that PTPC-mediated MMP may determine the hepatorenal toxicity of xenobiotics in vivo.  相似文献   

10.
A general strategy for the synthesis of 3'-prenylated chalcones was established and a series of prenylated hydroxychalcones, including the hop (Humulus lupulus L.) secondary metabolites xanthohumol (1), desmethylxanthohumol (2), xanthogalenol (3), and 4-methylxanthohumol (4) were synthesized. The influence of the A-ring hydroxylation pattern on the cytotoxic activity of the prenylated chalcones was investigated in a HeLa cell line and revealed that non-natural prenylated chalcones, like 2',3,4',5-tetrahydroxy-6'-methoxy-3'-prenylchalcone (9, IC(50) 3.2+/-0.4microM) as well as the phase 1 metabolite of xanthohumol (1), 3-hydroxyxanthohumol (8, IC(50) 2.5+/-0.5microM), were more active in comparison to 1 (IC(50) 9.4+/-1.4microM). A comparison of the cytotoxic activity of xanthohumol (1) and 3-hydroxyxanthohumol (8) with the non-prenylated analogs helichrysetin (12, IC(50) 5.2+/-0.8) and 3-hydroxyhelichrysetin (13, IC(50) 14.8+/-2.1) showed that the prenyl side chain at C-3' has an influence on the cytotoxicity against HeLa cells only for the dihydroxylated derivative. This offers interesting synthetic possibilities for the development of more potent compounds. The ORAC activity of the synthesized compounds was also investigated and revealed the highest activity for compounds 12, 4'-methylxanthohumol (4), and desmethylxanthohumol (2), with 4.4+/-0.6, 3.8+/-0.4, and 3.8+/-0.5 Trolox equivalents, respectively.  相似文献   

11.
Dicycloplatin, a new supramolecular platinum-based antitumor drug, has been approved by the State Food and Administration (SFDA) of China. In this study, we investigated the anticancer activity of dicycloplatin in cancer cells and signaling pathways involved in dicycloplatin-induced apoptosis. Dicycloplatin inhibited the proliferation of cancer cells and increased the percentage of apoptosis in a concentration-dependent manner. Besides, some apoptosis related events were observed after treatment with dicycloplatin, including increase of reactive oxygen species (ROS), collapse of mitochondrial membrane potential (Δψm), release of cytochrome c from the mitochondria to the cytosol, upregulation of p53, which were accompanied by activation of caspase-9, caspase-3, caspase-8, and poly (ADP-ribose) polymerase cleavage in a concentration-dependent manner. The role of apoptosis in dicycloplatin-mediated cell death was further confirmed by the concomitant treatment with caspase-8 or caspase-9 inhibitors, which inhibited apoptosis and PARP cleavage. Intracellular glutathione (GSH) was also found to inhibit the cytotoxic effect of dicycloplatin. In conclusion, these findings suggest that dicycloplatin induces apoptosis through ROS stress-mediated death receptor pathway and mitochondrial pathway which is similar to carboplatin.  相似文献   

12.
BackgroundGlioblastoma (GBM) is the most aggressive tumor residing within the central nervous system, with extremely poor prognosis. Although the cytotoxic effects of ginsenoside F2 (GF2) on GBM were previously suggested, the precise anti-GBM mechanism of GF2 remains unclear. The aim of this study was to explore the anti-cancer molecular mechanism of GF2 toward human GBM.MethodsGF2-driven cellular toxicity was confirmed in two different GBM cells, U373 and Hs683. To test mitochondrial impairment driven by GF2, we examined the mitochondrial membrane potential, OCR, and ATP production. An intracellular redox imbalance was identified by measuring the relative ratio of reduced glutathione to oxidized glutathione (GSH/GSSG), glutaredoxin (GLRX) mRNA expression, intracellular NAD+ level, and AMPK phosphorylation status.ResultsGF2 increased the percentage of cleaved caspase 3-positive cells and γH2AX signal intensities, confirming that GF2 shows the cytotoxicity against GBM. GO enrichment analysis suggested that the mitochondrial function could be negatively influenced by GF2. GF2 reduced the mitochondrial membrane potential, basal mitochondrial respiratory rate, and ATP production capacity. Our results showed that GF2 downregulated the relative GSH/GSSG, intracellular NAD+ level, and GLRX expression, suggesting that GF2 may alter the intracellular redox balance that led to mitochondrial impairment.ConclusionGF2 reduces mitochondrial membrane potential, inhibits cellular oxygen consumption, activates AMPK signaling, and induces cell death. Our study examined the potential vulnerability of mitochondrial activity in GBM, and this may hold therapeutic promise.  相似文献   

13.
Transport of glutathione across the mitochondrial membranes   总被引:4,自引:0,他引:4  
Transport of glutathione (GSH) into mitochondria was observed when mitochondria in state 4 respiration were incubated with high concentrations of GSH. This transport was suppressed by antimycin A or dicyclohexyl-carbodiimide, or in state 3 respiration. Upon dissipation of the proton gradient by a proton ionophore, mitochondrial GSH was released into the medium. GSH moved freely across the proton-permeated mitochondrial membrane, its movement depending only on the GSH gradient across the inner membrane. These results indicate that there is a transport system for GSH in the mitochondrial membrane, and that a proton gradient is necessary to maintain GSH in the matrix, and to transport GSH into mitochondria.  相似文献   

14.
Digitonin can be used to permeabilize selectively the plasma membrane of Trypanosoma cruzi epimastigotes without significantly affecting the functional integrity of mitochondria. Addition of digitonin at concentrations close to 64 microM caused decrease in the rate of basal respiration of epimastigotes similar to that caused by oligomycin. A further addition of carbonyl cyanide p-trifluorophenylhydrazone (FCCP) brought respiration to the same rate observed prior to the inclusion of digitonin or oligomycin. This suggests that like oligomycin, digitonin is shifting respiration to a nonphosphorylating state probably by depleting the cells from adenine nucleotides due to permeabilization of the plasma membrane. The use of low concentrations of digitonin allowed the quantitative determination of the mitochondrial membrane potential of these cells in situ using safranine O. The response of epimastigotes mitochondrial membrane potential to phosphate, FCCP, valinomycin, nigericin, ADP, and Ca2+ indicates that these mitochondria behave similarly to vertebrate mitochondria regarding the properties of their electrochemical proton gradient. In addition, T. cruzi mitochondria are able to build up and retain a membrane potential of a value comparable to that of mammalian mitochondria. The trypanocidal drug crystal violet, as well as other cationic drugs such as dequalinium, induced a rapid dose-related collapse of the inner mitochondrial membrane potential.  相似文献   

15.
A Cuéllar  A Cárabez  E Chávez 《Life sciences》1987,41(17):2047-2054
Ca2+ energy-coupled transport was analized in adrenal cortex mitochondria using the sesquiterpenic drug perezone. Perezone promotes Ca2+ efflux by inducing collapse of the membrane potential and oxidation of pyridine nucleotides. The effect of perezone on mitochondrial Ca2+ release follows a dose-response relationship and is dependent of the reduction of the drug. These data suggest that perezone may produce a cytotoxic effect through an impairment in Ca2+ homeostasis.  相似文献   

16.
17.
Reactive oxygen species are important regulators of protozoal infection. Promastigotes of Leishmania donovani, the causative agent of Kala-azar, undergo an apoptosis-like death upon exposure to H2O2. The present study shows that upon activation of death response by H2O2, a dose- and time-dependent loss of mitochondrial membrane potential occurs. This loss is accompanied by a depletion of cellular glutathione, but cardiolipin content or thiol oxidation status remains unchanged. ATP levels are reduced within the first 60 min of exposure as a result of mitochondrial membrane potential loss. A tight link exists between changes in cytosolic Ca2+ homeostasis and collapse of the mitochondrial membrane potential, but the dissipation of the potential is independent of elevation of cytosolic Na+ and mitochondrial Ca2+. Partial inhibition of cytosolic Ca2+ increase achieved by chelating extracellular or intracellular Ca2+ by the use of appropriate agents resulted in significant rescue of the fall of the mitochondrial membrane potential and apoptosis-like death. It is further demonstrated that the increase in cytosolic Ca2+ is an additive result of release of Ca2+ from intracellular stores as well as by influx of extracellular Ca2+ through flufenamic acid-sensitive non-selective cation channels; contribution of the latter was larger. Mitochondrial changes do not involve opening of the mitochondrial transition pore as cyclosporin A is unable to prevent mitochondrial membrane potential loss. An antioxidant like N-acetylcysteine is able to inhibit the fall of the mitochondrial membrane potential and prevent apoptosis-like death. Together, these findings show the importance of non-selective cation channels in regulating the response of L. donovani promastigotes to oxidative stress that triggers downstream signaling cascades leading to apoptosis-like death.  相似文献   

18.
Hepatocyte susceptibility to glyoxal is dependent on cell thiamin content   总被引:1,自引:0,他引:1  
Glyoxal, a reactive dicarbonyl, is detoxified primarily by the glyoxalase system utilizing glutathione (GSH) and by the aldo-keto reductase enzymes which utilizes NAD[P]H as the co-factor. Thiamin (Vitamin B(1)) is an essential coenzyme for transketolase (TK) that is part of the pentose phosphate pathway which helps maintain cellular NADPH levels. NADPH plays an intracellular role in regenerating glutathione (GSH) from oxidized GSH (GSSG), thereby increasing the antioxidant defenses of the cell. In this study we have focused on the prevention of glyoxal toxicity by supplementation with thiamin (3mM). Thiamin was cytoprotective and restored NADPH levels, glyoxal detoxification and mitochondrial membrane potential. Hepatocyte reactive oxygen species (ROS) formation, lipid peroxidation and GSH oxidation were decreased. Furthermore, hepatocytes were made thiamin deficient with oxythiamin (3mM) as measured by the decreased hepatocyte TK activity. Under thiamin deficient conditions a non-toxic dose of glyoxal (2mM) became cytotoxic and glyoxal metabolism decreased; while ROS formation, lipid peroxidation and GSH oxidation was increased.  相似文献   

19.
Polychlorinated biphenyl (PCB) and PCB metabolites are highly lipophilic and accumulate easily in the lipid bilayer and fat deposits of the body. The molecular cytotoxic mechanisms of these metabolites are still not understood. The aim of the present study was to compare the cytotoxicity and toxicological properties of six dihydroxylated metabolites using isolated rat hepatocytes. All of the metabolites were more cytotoxic than 4-chlorobiphenyl (4-ClBP) and less cytotoxic than phenyl hydroquinone (PHQ). The order of cytotoxic effectiveness of catecholic metabolites expressed as LC(50) (2h) was 3',4'-diCl-2,3-diOH-biphenyl>PHQ>4'-Cl-2,5-diOH-biphenyl, 4'-Cl-2,3-diOH-biphenyl>2',5'-diCl-3,4-diOH-biphenyl>2',3'-diCl-3,4-diOH-biphenyl>3',4'-diCl-3,4-diOH-biphenyl>4'Cl-3,4-diOH-biphenyl>4'-Cl-biphenyl; showing that the positions of hydroxyl and chlorine groups were important for their hepatotoxicity and that the two 2,3-diOH congeners were the most cytotoxic. Cytotoxicity for 3,4-diOH metabolites correlated with the number and position of chlorine atoms with the more chlorine atoms being more cytotoxic. The cytotoxic order of metabolites with two chlorine atoms being 2',5'>2',3'>3',4'. Borneol, an uridine diphosphate glucuronosyltransferases (UGT) inhibitor, increased the cytotoxicity of all tested metabolites; suggesting that glucuronidation was a major mechanism of elimination of these compounds. On the other hand entacapone, a catechol-O-methyl transferase (COMT) inhibitor, only increased the cytotoxicity of 3',4'-diCl-3,4-diOH-biphenyl, 3',4'-diCl-2,3-diOH-biphenyl and 4'-Cl-2,3-diOH-biphenyl. Hepatocyte GSH was depleted (oxidized and conjugated) by these metabolites before cytotoxicity ensued in a similar order of effectiveness to their cytotoxicity with PHQ being the most effective. Hepatocyte mitochondrial membrane potential also decreased before cytotoxicity ensued with a similar order of effectiveness as their cytotoxicity. These results suggest that catecholic cytotoxicity can be attributed to mitochondrial toxicity and oxidative stress. Semiquinone or benzoquinone species were also important in the cytotoxicity of catecholic metabolites.  相似文献   

20.
Rat brain mitochondria were successively submitted to anoxia and reoxygenation. The main mitochondrial functions were assessed at different reoxygenation times. Although the respiratory control ratio decreased, the activity for each one of the enzymes participating in the respiratory chain was not affected. However, during reoxygenation, mitochondrial membrane lipoperoxidation quickly increased and was proportional to the decrease seen in membrane fluidity. Under the same conditions, cytochrome c and cardiolipin were released from mitochondria and their rate of release increased with reoxygenation time. The release of cytochrome c and cardiolipin was followed by the collapse of the membrane potential and it was not inhibited by cyclosporin A. Addition of the antioxidant alpha-tocopherol abolished all these reoxygenation-induced changes. These data indicate that, in this model, reoxygenation promotes the uncoupling of respiratory chain, and cytochrome c and cardiolipin releases. These events are not related to the membrane potential collapse but to an oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号