首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 873 毫秒
1.
Theoretical calculations of reaction kinetics were done for one-step reactions catalyzed by cells immobilized in spherical beads. The reactions catalyzed by free cells were assumed to obey Michaelis-Menten kinetics for a one-substrate reaction. Both external (outside the beads) and internal (inside the beads) mass transfer of the substrate were considered for the immobilized preparations. The theoretical calculations were compared with experimental data for the oxidation of glycerol to dihydroxyacetone by Gluconobacter oxydans cells immobilized in calcium alginate gel. Glycerol was present in excess so that the reaction rate was limited by oxygen. The correlation between experimental data and theoretical calculations was quite good. The calculations showed how the overall effectiveness factor was influenced by, for example, the particle size and the cell density in the beads. In most cases the reaction rate was mainly limited by internal mass transfer of the substrate (oxygen). As shown previously, p-benzoquinone can replace oxygen as the electron acceptor in this reaction. The same equations for reaction kinetics and mass transfer were used with p-benzoquinone as the rate-limiting substrate. Parameters such as diffusivity, maximal reaction rate, and K were, of course, different. In this case also, the correlation between the model and the experimental results was quite good. Much higher production rates were obtained with p-benzoquinone as the electron acceptor compared to when oxygen was used. The reasons for this fact were that p-benzoquinone gave a higher maximal reaction rate for free cells and the solubility of p-benzoquinone was higher than for oxygen. Different methods of increasing the rate of microbial oxidation reactions are discussed.  相似文献   

2.
3.
Here we examine the efficiency of different immobilized cell gradients applied to immobilized Saccharomyces cerevisiae fermenting glucose to ethanol. We developed a simulation model to fully study the competing effects of mass transfer hindrance and kinetics. It is based on a diffusion-reaction model and can be used to analyze the different cell concentration profiles inside an immobilized gel bead, in terms of effectiveness factors, productivity, and mass flux. The internal diffusion coefficient, which varies with the local cell concentration, as well as the external mass transfer, is taken into account when describing the efficiency. Although the diffusion hindrance is greater at higher cell concentrations, high cell concentration is still advantageous in the present case because the increase in reaction rate outweighs the diffusion hindrance. Thus, high cell concentrations contribute to increased productivity. The influence of the cell concentration gradient on the efficiency of the beads is negligible. Within the range of cell profiles studied it has been established that the location of the cells within the bead is of lesser importance. However, a steep cell gradient increases the importance of the external mass transfer.  相似文献   

4.
Mixing in biological reactors is used to improve mass transfer and provide proper micro-scale and macro-scale shear rates for effective process results. Reactors may be mixed by impellers on rotating shafts, or may be of the flow contactor type such as packed columns, bubble columns or airlift circulators.

In addition, review of kinetics can tell the process performance based on various kinds of mixing conditions. Several interesting and unique mixing studies are also included where appropriate.  相似文献   


5.
Mass transfer-limited removal of metabolic products led to product-inhibited growth of Escherichia coli that was immobilized in a model system. Comparison of the growth kinetics of immobilized and free-living cells revealed no further physiological differences between cells in these two modes of existence beyond those manifested in the local concentrations of substrate and product. Bacteria were retained on a microporous membrane in a dense, planar aggregate and were grown anaerobically on a glucose-based minimal medium. Radioisotope labeling of the immobilized cell mass with 35S was used to determine growth kinetic parameters. Growth rates in the immobilized cell layer were measured by an autoradiographic technique which allowed comparison of the size of the growing region with the rate of cell convection caused by growth. Immobilized cell growth rates and growth yields ranged from near maximal (0.56 h-1 and 39 g of dry cell weight/mol of glucose, respectively) to substantially reduced (0.15 h-1 and 15 g/mol). The depression of these kinetic parameters was attributed to product inhibition arising from mass transfer-limited removal of acidic waste products from the cell mass. A simple one-dimensional reaction-diffusion model, which incorporated data on the product-inhibited growth kinetics of free-living cells collected in a product-limited chemostat, satisfactorily predicted product inhibition of immobilized cell growth.  相似文献   

6.
Mass transfer-limited removal of metabolic products led to product-inhibited growth of Escherichia coli that was immobilized in a model system. Comparison of the growth kinetics of immobilized and free-living cells revealed no further physiological differences between cells in these two modes of existence beyond those manifested in the local concentrations of substrate and product. Bacteria were retained on a microporous membrane in a dense, planar aggregate and were grown anaerobically on a glucose-based minimal medium. Radioisotope labeling of the immobilized cell mass with 35S was used to determine growth kinetic parameters. Growth rates in the immobilized cell layer were measured by an autoradiographic technique which allowed comparison of the size of the growing region with the rate of cell convection caused by growth. Immobilized cell growth rates and growth yields ranged from near maximal (0.56 h-1 and 39 g of dry cell weight/mol of glucose, respectively) to substantially reduced (0.15 h-1 and 15 g/mol). The depression of these kinetic parameters was attributed to product inhibition arising from mass transfer-limited removal of acidic waste products from the cell mass. A simple one-dimensional reaction-diffusion model, which incorporated data on the product-inhibited growth kinetics of free-living cells collected in a product-limited chemostat, satisfactorily predicted product inhibition of immobilized cell growth.  相似文献   

7.
The effectiveness of lipase immobilized on ceramic beads, in the production of biodiesel from simulated waste cooking oil in organic solvent system, was compared to that of free lipase. Experimental determination of the effect of concentrations of methanol on the rate of the enzymatic transesterification was experimentally determined. In addition, the effectiveness of lipases from bacterial and yeast sources for biodiesel production from simulated waste cooking oil was compared. A kinetic model was developed to describe the system, taking into consideration the mass transfer resistances of the reactants. Inhibition effects by both substrates on the interfacial reaction were also considered. The experimental results were used to determine the kinetic parameters of the proposed model and to determine the effect of mass transfer. On the other hand, it was shown that biodieasel can be produced in considerable amounts, with yield reaching 40%, in absence of organic solvent using immobilized lipase from P. cepacia on ceramic beads.  相似文献   

8.
A combination of extended Monod kinetics and the diffusional equation was used for evaluating the effectiveness factor of entrapped immobilized cells. Based on the kinetics of Zymomonas mobilis reported in the literature, the numerical results have revealed that the problem of mass transfer diffusional restrictions can be neglected by using small beads (1 mm in diameter) with a corresponding cell loading up to 276 g/L gel. On the basis of the numerical results obtained, the application of immobilized cells for continuous ethanol production was investigated. The kappa-carrageenan method was utilized to entrap Z. mobilis CP4, a potential ethanol producer. A two stage fermentation process has also been developed for ethanol production by the Z. mobilis carrageenan-bound cells. About 90 g/L ethanol was produced by immobilized cells at a total residence time of 1.56 h. The ethanol yield was estimated to be 93% of theoretical. The results obtained in this study also indicated that the control of optimum pH in an immobilized cell column is necessary to enhance the rate of ethanol production.  相似文献   

9.
Summary Cultured Catharanthus roseus cells were immobilized using geometrically identical needled fibreglass mats prepared with a range of surface coatings. The phenyl (PS), polyglycol (PG), aldehyde (CHO), alkyl (CTMS), and silanol (AW) coatings, along with the untreated glass (HC) surface, produced surfaces with a range of surface tensions. The immobilization efficiency of the substratum, measured as the percentage of cells immobilized, increased with increasing substratum surface tension in the order PS < PG < CHO < CTMS < AW < HC. The dependence of immobilization efficiency on substratum surface tension can be described using a thermodynamic model of adhesion that considers the extent of plant cell adhesion to be a function of the surface tensions of the substratum, the suspending liquid, and the plant cells. In addition, this dependence also demonstrates the fundamental role of adhesion in the immobilization process involving a glass fibre matrix. However, cell entrapment processes are also implicated. The untreated glass fibre substratum (HC), which demonstrated the greatest immobilization efficiency, was used for further characterization of the immobilization strategy. Maximum inoculum biomass was determined to be approximately 1.9 g cells (fresh weight)/g substratum (dry weight) to achieve greater than 90% immobilization efficiency. The growth rate of immobilized cultures was slower than suspension cultures, probably due to mass transfer limitations. Production of the indole alkaloids, tryptamine, catharanthine, and ajmalicine, was also suppressed relative to suspension-cultured cells. These results are considered in relation to other immobilization strategies and their apparent effects on cellular processes. Offprint requests to: F. Dicosmo  相似文献   

10.
Mixing in bioreactors is known to be crucial for achieving efficient mass and heat transfer, both of which thereby impact not only growth of cells but also product quality. In a typical bioreactor, the rate of transport of oxygen from air is the limiting factor. While higher impeller speeds can enhance mixing, they can also cause severe cell damage. Hence, it is crucial to understand the hydrodynamics in a bioreactor to achieve optimal performance. This article presents a novel approach involving use of computational fluid dynamics (CFD) to model the hydrodynamics of an aerated stirred bioreactor for production of a monoclonal antibody therapeutic via mammalian cell culture. This is achieved by estimating the volume averaged mass transfer coefficient (kLa) under varying conditions of the process parameters. The process parameters that have been examined include the impeller rotational speed and the flow rate of the incoming gas through the sparger inlet. To undermine the two‐phase flow and turbulence, an Eulerian‐Eulerian multiphase model and k‐ε turbulence model have been used, respectively. These have further been coupled with population balance model to incorporate the various interphase interactions that lead to coalescence and breakage of bubbles. We have successfully demonstrated the utility of CFD as a tool to predict size distribution of bubbles as a function of process parameters and an efficient approach for obtaining optimized mixing conditions in the reactor. The proposed approach is significantly time and resource efficient when compared to the hit and trial, all experimental approach that is presently used. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:613–628, 2016  相似文献   

11.
Escherichia coli cells were immobilized and grown in hollow-fiber reactors allowing simultaneous NMR spectroscopy and perfusion with nutrient medium. The extent to which the cells were starved due to inadequate mass transfer was predicted using a mathematical model of reaction and diffusion. Reactors were experimentally characterized using (35)S autoradiography to visualize spatial variations in protein synthesis rates and transmission electron microscopy to indicate spatial variations in cell morphology. Mass transfer limitations in reactors operated at 37 degrees C were shown to be severe, with regions of starved cells occupying up to 80% of the cell-containing region. Phosphorus-31 nuclear magnetic resonance (NMR) spectra of the immobilized, perfused cells revealed abnormally low volume-averaged concentrations of sugar phosphates, NTP, and ratios of NTP/NDP in these reactors. Intracellular pH was also depressed in the cells. In order to overcome mass transfer limitations in the cell layer, the reactor growth temperature was decreased. Sulfur-35 autoradiographs of a reactor operated at 16 degrees C did not indicate the presence of starved cells. The NMR spectra obtained from this reactor showed near-normal intracellular pH, metabolite concentrations, and NTP/NDP ratios. The presence of significant mass transfer limitations in a perfused cell sample during NMR spectroscopy is generally undesirable since the resulting spectra can be ambiguous and difficult to interpret. The strategy adopted in this work, namely estimation of the relative rates of reaction and diffusion in the cell mass and appropriate changes in reactor design and operating parameters, should prove generally applicable for the design of perfused cell samples for NMR spectroscopic experiments.  相似文献   

12.
ABSTRACT:?

There is great commercial interest in using immobilized cells for fermented beverage processes. The process advantages offered by immobilized cells are numerous, but an understanding of the mass transfer characteristics of a given system is needed in order to achieve efficient processes and high quality products. This is especially important in the food and beverage industry where fermentation products contribute to the flavor and aroma of the final product. The fundamental principles of mass transfer in immobilized cell systems are covered in this review. An overview of the current research efforts focused on external and internal mass transfer characteristics of immobilized cells used in fermentation processes is presented. Methods for measuring substrate diffusivities within immobilization matrices and areas requiring further research are discussed.  相似文献   

13.
Enzymes are often immobilized on the internal surfaces of porous solid by immersing enzyme-free particles in a well mixed solution of enzyme. The ensuing impregnation process involves coupled transient mass transfer and surface attachment of enzyme. A mathematical model is employed to explore the influences of process parameters on the amount of enzyme loaded and the distribution of immobilized enzyme within the support particles. Nonuniform loading of the support occurs under some conditions. This is significant since the distribution of enzyme within the support particle influences the overall activity and stability of the immobilized enzyme catalyst. The model developed here may also be used to describe removal of reversibly immobilized enzyme during washing or utilization of the immobilized enzyme catalyst.  相似文献   

14.
Summary Cephalosporium acremonium cells were immobilized in calcium alginate beads. Immobilized cells were used to produce -lactam antibiotics in rest medium under various oxygen concentrations, and the results were compared with free cell performance. Cell growth rate of immobilized cells was 35% of the growth rate of free cells. -Lactam antibiotic production rate of immobilized cells was also limited by mass transfer of oxygen. -Lactam antibiotic production rate of immobilized cells was 70% of that of free cells at oxygen saturation condition (i.e., 0.27 mM O2). Specific antibiotic production of immobilized cells was about 200% of that of free cells at 0.27 mM O2.  相似文献   

15.
A mathematical model is proposed to analyze the mass transfer limitations in phenol biodegradation using Pseudomonas putida immobilized in calcium alginate. The model takes into account internal and external mass transfer limitations, substrate inhibition kinetics and the dependence of the effective diffusivity of phenol in alginate gel on cell concentration. The model is validated with the experimental data from batch fermentation. The effect of various operating conditions such as initial phenol concentration, initial cell loading, alginate gel loading on the biodegradation of phenol is experimentally demonstrated. Phenol degradation time is found to decrease initially and reach stationary value with increase in cell loading as well as gel loading. The model predicts these trends reasonably well and shows the presence of external mass transfer limitations. A new concept of effectiveness factor is introduced to analyze the overall performance of batch fermentation.  相似文献   

16.
The immobilization of whole cells for fermentation processes has many potential advantages over fermentation with free cells, including higher cell concentrations, higher productivites and a higher level of operational stability. Most of the research reported in the literature has been directed towards demonstrating the feasibility of using these systems for various fermentations. The ultimate goal of research in this area is to bring the understanding of immobilized whole cells to the level of heterogeneous catalysis. Immobilized whole cell systems are examined from a mass transfer perspective. Evidence for external and internal mass transfer limitations is presented. Procedures for quantifying these effects in terms of effectiveness factors and determining the reaction kinetics in their presence are reviewed. Development of the reactor design equations and the reactor performance results for fermentations with immobilized cells are also discussed.  相似文献   

17.
An integrated model for the composting process was developed. The structure of the model is such that it can be implemented in any mixture of different substrates, even in the case of co-composting of a solid waste with industrial wastewater. This paper presents a mathematical formulation of the physicochemical and biological principles that govern the composting process. The model of the co-composting ecosystem included mass transfer, heat transfer and biological processes. The biological processes included in the model were hydrolysis of particulate substrates, microbial growth and death. Two microbial populations (bacteria and fungi) were selected using Monod kinetics. Growth limiting functions of inhibitory factors, moisture and dissolved oxygen were added in the Monod kinetics. The bacteria were considered to utilise the easy biodegradable carbon hydrolysis product, fungi the difficult one, while both could degrade the carbon of wastewater. The mass balances of the most important nutrients, nitrogen and phosphorous, were also included in this approach. Model computer simulations provided results that fitted satisfactory the experimental data. Conclusively, the model could be a useful tool for the prediction of the co-composting process performance in the future and could be used to assist in the operation of co-composting plants.  相似文献   

18.
Abstract

This review explores recent advances in the use of immobilized cells for the production of metabolites used in the food industry, such as enzymes, amino acids, organic acids, alcohols, aroma compounds, polysaccharides, and pigments. Some food bioconversions such as fermentation of soy sauce and various hydrolysis are also considered. Special emphasis was placed on existing or potential industrial processes. This article also reports the effects of the reactor (configuration and working conditions), the immobilized cell physiological status (growing, nongrowing, or permeabilized), and of the carrier type, configuration, and size on the performance of immobilized cell systems. Compared with free cell fermentation, the main advantage of using immobilized cells is an increase in productivity, particularly in the case of continuous fermentation. For monoenzymatic reactions, nongrowing immobilized cells are often reported to exhibit a higher stability than free or immobilized enzymes.  相似文献   

19.
Removal of nitrogen compound from waste, water is essential and often accomplished by biological process. To prevent washout and to develop an efficient bioreactor, immobilization of suitable microorganisms could be sensible approach. Strains and permeabilized cells encapsulated in cellulose nitrate microcapsules and immobilized on polystyrene, films were prepared by the method described in the previous study. In the wastewater, treatment system, nitrification of ammonia component is generally known as rate controlling step. To enhance the rate of nitrification, firstly nitrifying strainsNitrosomonas europaea (IFO 14298), are permeabilized chemically, and immobilized on polystyrene, films and secondly oxidation rates of strain system and permeabilized strain system are compared in the same condition. With 30 minute permeabilized cells, it took about 25 hours to oxidize 70% of ammonia in the solution, while it took about 40 hours to treat same amount of ammonia with untreated cells. All the immobilization procedures did not harm to the enzyme activity and no mass transfer resistance through the capsule wall was shown. In the durability test of immobilized system, the system showed considerable activity for the repeated operation for 90 days. With these results, the system developed in this study showed the possibility to be used in the actual waste water treatment system.  相似文献   

20.
A mathematical model was developed that describes production of propionic acid by fermentation of sweet whey with Propionibacterium acidipropionici immobilized in calcium polygalacturonate beads in a fermentor-type stirred tank. This mathematical model is constituted by a partial differential equations system, which fits consumption, production, growth and internal diffusion rates in the support. Fermentation was experimentally studied with free cells and immobilized cells, effective diffusivities of lactose and propionic acid were estimated in the support, and typical parameters of the model were obtained by nonlinear regression of the experimental data. The variance analysis shows that the combination of micro(max) and K(d) parameters is the source of variation most significative, also they were found to be the most sensitive parameters of the model. Finally, an effectiveness factor was calculated in order to assess the effect of mass transfer on the overall reaction rate observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号