首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA damage and/or hyperproliferative signals activate the wild-type p53 tumor suppressor protein, which induces a G(1) cell cycle arrest or apoptosis. Although the mechanism of p53-mediated cell cycle arrest is fairly well defined, the p53-dependent pathway regulating apoptosis is poorly understood. Here we report the functional characterization of murine ei24 (also known as PIG8), a gene directly regulated by p53, whose overexpression negatively controls cell growth and induces apoptotic cell death. Ectopic ei24 expression markedly inhibits cell colony formation, induces the morphological features of apoptosis, and reduces the number of beta-galactosidase-marked cells, which is efficiently blocked by coexpression of Bcl-X(L). The ei24/PIG8 gene is localized on human chromosome 11q23, a region frequently altered in human cancers. These results suggest that ei24 may play an important role in negative cell growth control by functioning as an apoptotic effector of p53 tumor suppressor activities.  相似文献   

2.
Phosphatase and tensin homolog (PTEN) is a tumor suppressor gene located at human chromosome 10q23, might play an important role in cell proliferation, cell cycle and apoptosis of cancer cells. In this study, the eukaryotic expression vectors pBP-wt-PTEN (containing a wild-type PTEN gene) and pBP-G129R-PTEN (containing a mutant PTEN gene) were used to transfect breast cancer ZR-75-1 cells. After transfection, ZR-75-1 cells expressing PTEN were obtained and tested. The blue exclusion assay showed the growth rate of the cells transfected with pBP-wt-PTEN was significantly lower than that of the control cells transfected with pBP-G129R-PTEN. Analysis of the cell cycle by flow cytometry showed that the progression from the G1 to the S phase was arrested in cells expressing wild-type PTEN. Some typical morphological changes of apoptosis were also observed in cells transfected with pBP-wt-PTEN, but not in those transfected with pBP-G 129R-PTEN. This study shows that overexpression of PTEN in ZR-75-1 cells leads to cell growth arrest and apoptosis.  相似文献   

3.
The RA538 cDNA was transferred into human ovarian cancer cell line SK-OV-3 and human melanoma cell line WM-983A by its recombinant adenoviral vector constructed through homologous recombination. It was demonstrated that the recombinant adenovirus could transfer RA538 gene with high efficiency, and could obviously inhibit tumor growth, with the inhibiting rates of 85% and 73% respectively, at the same time greatly repress the colony forming ability of the cells. The therapeutic experiments on transplanted subcutaneous tumor model in nude mice demonstrated that RA538 could significantly inhibit tumor growth. Flow cytometry and DNA fragmentation analysis indicated that RA538 could induce the cell cycle G1 arrest/apoptosis of the tumor cells. The expression of c-myc gene was found pronouncedly reduced by Western blot analysis. These results suggest that the RA538 recombinant adenovirus could be a promising drug in cancer gene therapy.  相似文献   

4.
Ryu DS  Baek GO  Kim EY  Kim KH  Lee DS 《BMB reports》2010,43(11):750-755
Crude Orostachys japonicus polysaccharide extract (OJP) was prepared by hot steam extraction. Polysaccharides (OJPI) were separated from OJP by gel filtration chromatography and phenol-sulfuric acid assay. The average molecular weight of the OJPI was 30-50 kDa. The anti-proliferative effect of OJPI on HT-29 human colon cancer cells was investigated via morphology study, cell viability assay, apoptosis assay, cell cycle analysis, and cDNA microarray. OJPI inhibited proliferation and growth of HT29 cells and also stimulated apoptosis in a dose- and time-dependent manner. In cell cycle analysis, treatment with OJPI resulted in a marked increase of cells in the G0 (sub G1) and G2/M phases. To screen for genes involved in the induction of cell cycle arrest and apoptosis, the gene expression profiles of HT-29 cells treated with OJPI were examined by cDNA microarray, revealing that a number of genes were up- or down-regulated by OJPI. Whereas several genes involved in anti-apoptosis, cell proliferation and growth, and cell cycle regulation were down-regulated, expression levels of several genes involved in apoptosis, tumor suppression, and other signal transduction events were up-regulated. These results suggest that OJPI inhibits the growth of HT-29 human colon cancer cells by various apoptosis-aiding activities as well as apoptosis itself. Therefore, OJPI deserve further development as an effective agent exhibiting anticancer activity.  相似文献   

5.
The human immunodeficiency virus type 1 (HIV-1) vpr gene encodes a protein which induces arrest of cells in the G2 phase of the cell cycle. Here, we demonstrate that following the arrest of cells in G2, Vpr induces apoptosis in human fibroblasts, T cells, and primary peripheral blood lymphocytes. Analysis of various mutations in the vpr gene revealed that the extent of Vpr-induced G2 arrest correlated with the levels of apoptosis. However, the alleviation of Vpr-induced G2 arrest by treatment with the drug pentoxifylline did not abrogate apoptosis. Together these studies indicate that induction of G2 arrest, but not necessarily continued arrest in G2, was required for Vpr-induced apoptosis to occur. Finally, Vpr-induced G2 arrest has previously been correlated with inactivation of the Cdc2 kinase. Some models of apoptosis have demonstrated a requirement for active Cdc2 kinase for apoptosis to occur. Here we show that accumulation of the hypophosphorylated or active form of the Cdc2 kinase is not required for Vpr-induced apoptosis. These studies indicate that Vpr is capable of inducing apoptosis, and we propose that both the initial arrest of cells and subsequent apoptosis may contribute to CD4 cell depletion in HIV-1 disease.  相似文献   

6.
Viral protein R (Vpr) of human immunodeficiency virus type 1 inhibits cell proliferation by arresting the cell cycle at the G(2) phase and inducing to apoptosis after G(2) arrest. We have reported previously that C81, a carboxy-terminally truncated form of Vpr, interferes with cell proliferation via a novel pathway that is distinct from G(2) arrest. However, the mechanism of this effect of C81 is unknown. We demonstrate here that C81 can induce apoptosis via G(1) arrest of the cell cycle. Immunostaining for various markers of stages of the cell cycle and flow cytometry analysis of DNA content showed that most HeLa cells that had been transiently transfected with a C81 expression vector were arrested at the G(1) phase and not at the G(2) or S phase of the cell cycle. Staining for annexin V, which binds phosphatidylserine on the plasma membrane, as an early indicator of apoptosis and measurement of the activity of caspase-3, a signaling molecule in apoptotic pathways, indicated that C81 is a strong inducer of apoptosis. Expression of C81 induced the condensation, fragmentation, and clumping of chromatin that are typical of apoptosis. Furthermore, the kinetics of the C81-induced G(1) arrest were closely correlated with changes in the number of annexin V-positive cells and the activity of caspase-3. Replacement of Ile or Leu residues by Pro at positions 60, 67, 74, and 81 within the leucine zipper-like domain of C81 revealed that Ile60, Leu67, and Ile74 play important roles both in the C81-induced G(1) arrest and in apoptosis. Thus, it appears that C81 induces apoptosis through pathways that are identical to those utilized for G(1) arrest of the cell cycle. It has been reported that Ile60, Leu67, and Ile74 also play an important role in the C81-induced suppression of growth. These results suggest that the suppression of growth induced by C81 result in apoptosis that is independent of G(2) arrest of the cell cycle.  相似文献   

7.
CCAAT/enhancer-binding proteins (C/EBPs) are a highly conserved family of DNA-binding proteins that regulate cell-specific growth, differentiation, and apoptosis. Here, we show that induction of C/EBPdelta gene expression during G0 growth arrest is a general property of mammary-derived cell lines. C/EBPdelta is not induced during G0 growth arrest in 3T3 or IEC18 cells. C/EBPdelta induction is G0-specific in mouse mammary epithelial cells; C/EBPdelta gene expression is not induced by growth arrest in the G1, S, or G2 phase of the cell cycle. C/EBPdelta antisense-expressing cells (AS1 cells) maintain elevated cyclin D1 and phosphorylated retinoblastoma protein levels and exhibit delayed G0 growth arrest and apoptosis in response to serum and growth factor withdrawal. Conversely, C/EBPdelta-overexpressing cells exhibited a rapid decline in cyclin D1 and phosphorylated retinoblastoma protein levels, a rapid increase in the cyclin-dependent kinase inhibitor p27, and accelerated G0 growth arrest and apoptosis in response to serum and growth factor withdrawal. When C/EBPdelta levels were rescued in AS1 cells by transfection with a C/EBPdelta "sense" construct, normal G0 growth arrest and apoptosis were restored. These results demonstrate that C/EBPdelta plays a key role in the regulation of G0 growth arrest and apoptosis in mammary epithelial cells.  相似文献   

8.
9.
Recent evidence suggested an involvement of homeobox genes in tumorigenesis. Here we investigated whether one of homeobox-containing genes, Msx1, might be involved in the regulation of cell proliferation and cell cycle using Msx1 overexpressing human ovarian cancer cell line, OVCAR3. Overexpression of Msx1 in OVCAR3 cells inhibited cell proliferation by markedly increasing the length of the G1 phase of the cell cycle over control cells. Consistent with this result, dramatic suppression of cyclins D1, D3, E, cyclin-dependent kinase 4, c-Jun, and Rb was observed. Elevated expression of genes involved in the growth arrest and apoptosis (GADD153 and apoptotic cystein protease MCH4) and suppression of proliferation associated protein gene (PAG) in Msx1-overexpressing cells by cDNA expression array analysis provide further evidence for a potential repressor function of Msx1 in cell cycle progression.  相似文献   

10.
The p53 gene is a tumor suppressor gene. It encodes a nuclear phosphoprotein p53 involved in the regulation of cell cycle arrest and apoptosis to maintain the genomic integrity of the cell. As mutations of p53 gene are found in most human cancers, p53 protein becomes a hot target in the research of anticancer therapy. In the present study, an 11-amino acid domain of TAT protein which has been demonstrated to be able to transduce across cell membranes was fused with p53. The result revealed that the fusion protein His-TAT-p53 accumulated in the nucleus and inhibited the growth of the Saos-2 cells. Besides apoptosis, an increased percentage of G2 phase suggested that the transduction of His-TAT-p53 into cells might be associated with a G2 arrest of cell cycle.  相似文献   

11.
BackgroundPrevious studies showed that suppression of pyruvate carboxylase (PC) expression in highly invasive breast cancer cell line, MDA-MB-231 inhibits cell growth as a consequence of the impaired cellular biosynthesis. However, the precise cellular mechanism underlying this growth restriction is unknown.MethodsWe generated the PC knockdown (PCKD) MDA-MB-231 cells and assessed their phenotypic changes by fluorescence microscopy, proliferation, apoptotic, cell cycle assays and proteomics.ResultsPC knockdown MDA-MB-231 cells had a low percentage of cell viability in association with accumulation of abnormal cells with large or multi-nuclei. Flow cytometric analysis of annexin V-7-AAD positive cells showed that depletion of PC expression triggers apoptosis with the highest rate at day 4. The increased rate of apoptosis is consistent with increased cleavage of procaspase 3 and poly (ADP-Ribose) polymerase. Cell cycle analysis showed that the apoptotic cell death was associated with G2/M arrest, in parallel with marked reduction of cyclin B levels. Proteomic analysis of PCKD cells identified 9 proteins whose expression changes were correlated with the degree of apoptosis and G2/M cell cycle arrest in the PCKD cells. STITCH analysis indicated 3 of 9 candidate proteins, CCT3, CABIN1 and HECTD3, that form interactions with apoptotic and cell cycle signaling networks linking to PC via MgATP.ConclusionsSuppression of PC in MDA-MB-231 cells induces G2/M arrest, leading to apoptosis. Proteomic analysis supports the potential involvement of PC expression in the aberrant cell cycle and apoptosis, and identifies candidate proteins responsible for the PC-mediated cell cycle arrest and apoptosis in breast cancer cells.General significanceOur results highlight the possibility of the use of PC as an anti-cancer drug target.  相似文献   

12.
Vpr of human immunodeficiency virus type 1 causes cell cycle arrest at the G(2)/M phase and induces apoptosis after G(2)/M arrest in primate cells. We have reported previously that Vpr also induces apoptosis independently of G(2)/M arrest in human HeLa cells. By contrast, Vpr does not induce G(2)/M arrest in rodent cells, but it retards cell growth. To clarify the relationship between cell cycle arrest and apoptosis, we expressed Vpr endogenously in rodent cells and investigated cell cycle profiles and apoptosis. We show here that Vpr induces cell cycle arrest at the G(1) phase and apoptosis in rodent cells. Vpr increased the activity of caspase-3 and caspase-9, but not of caspase-8. Moreover, Vpr-induced apoptosis could be inhibited by inhibitors of caspase-3 and caspase-9, but not by inhibitor of caspase-8. We also showed that Vpr induces the release of cytochrome c from mitochondria into the cytosol and disrupts the mitochondrial transmembrane potential. Finally, we showed that apoptosis occurred in HeLa cells through an identical pathway. These results suggest that disruption of mitochondrial functions by Vpr induces apoptosis via cell cycle arrest at G(1), but that apoptosis is independent of G(2)/M arrest. Furthermore, it appears that Vpr acts species-specifically with respect to induction of cell cycle arrest but not of apoptosis.  相似文献   

13.
郝一 《生物技术通讯》2011,22(2):264-268
哺乳动物细胞在遭受应激损伤因素刺激时会启动一系列信号传导通路,从而引发细胞周期阻滞、DNA修复或细胞凋亡等效应,这些机制的异常与肿瘤的发生发展密切相关。GADD45α作为生长阻滞及DNA损伤诱导基因编码家族的一员,参与维持基因组稳定性、调控细胞周期行进、DNA损伤修复、细胞衰老及细胞凋亡等多种生物学过程,在肿瘤发生发展和肿瘤抑制反应中具有重要作用。我们简要综述了GADD45α参与维持基因组稳定性并发挥肿瘤抑制效应的分子机制。  相似文献   

14.
Neighbour suppression of growth of tumour cells by stationary normal cells might be important in early stages of cancer. We have studied this using suppressor and non-suppressor lines of 3T3 fibroblasts and SV40 transformed derivatives. Growth suppression of transformed cells depended on direct contact with stationary confluent cultures of 3T3 cells but not on gap junction communication. It was not caused by apoptosis nor through the normal G0/G1 block present in the confluent normal cells. Instead, there was a progressive elongation of the cell cycle leading to arrest in G2/M in the transformed cells. This indicates an unusual type of growth arrest not previously involved in social control of cell growth.  相似文献   

15.
Introduction of a human or Syrian hamster X chromosome (derived from BHK-191-5C cell hybrids) into tumorigenic mouse A9 cells via microcell fusion induced changes in cellular morphology and a retardation of cellular growth. The suppression of growth of the hybrids could be abolished, however, by daily changes of medium containing 20% serum. G-banding analysis showed the absence of a single, cytogenetically identifiable, indigenous X chromosome (marker Z) in two of four hybrid clones after an X chromosome was transferred from either hamster or human cells. All hybrids were tumorigenic when tested in nude mice. Together, these data suggest that the loss of the mouse X chromosome took place probably because of growth inhibitory effects imposed on hybrid cells due to the increase in X chromosome dosage. In addition, our results show a lack of association between the phenotype of cellular growth suppression in vitro and the phenotype of suppression of tumorigenicity in vivo.  相似文献   

16.
Suppression of tumorigenicity was first shown in hybrids produced by the fusion of a range of different highly malignant tumor cells with diploid fibroblasts. Cytogenetic analysis of these hybrids revealed that suppression involved a genetic region located in one specific chromosome donated to the hybrid cell by the fibroblast parent. The identity of the gene responsible for this dramatic effect has remained obscure. We now present strong evidence that the primary determinant is the gene specifying collagen XV, a proteoglycan closely associated with the basement membrane. We transfected a line of highly tumorigenic human cervical carcinoma cells with an expression vector carrying the full-length cDNA of the human collagen XV gene. We selected clones making various amounts of collagen XV, examined their growth in vitro, and tested their tumorigenicity in nude mice. High levels of collagen XV altered the growth properties of the cells in three-dimensional cultures. Moreover, we found that, in a dose-dependent manner, the production of collagen XV completely suppressed tumorigenicity in clones that synthesized this molecule at high levels. Immunohistologic studies suggest that suppression is associated with extracellular deposition of the proteoglycan at the cell periphery.  相似文献   

17.
Adenovirus-mediated transfer of RA538 gene and its antitumor effect   总被引:1,自引:0,他引:1  
The RA538 cDNA was transferred into human ovarian cancer cell line SK-OV-3 and human melanoma cell line WM-983A by its recombinant adenoviral vector constructed through homologous recombination. It was demonstrated that the recombinant adenovirus could transfer RA538 gene with high efficiency, and could obviously inhibit tumor growth, with the inhibiting rates of 85% and 73% respectively, at the same time greatly repress the colony forming ability of the cells. The therapeutic experiments on transplanted subcutaneous tumor model in nude mice demonstrated that RA538 could significantly inhibit tumor growth. Flow cytometry and DNA fragmentation analysis indicated that RA538 could induce the cell cycle G1 arrest/apoptosis of the tumor cells. The expression of cmyc gene was found pronouncedly reduced by Western blot analysis. These results suggest that the RA538 recombinant adenovirus could be a promising drug in cancer gene therapy.  相似文献   

18.
Tetraploid (4N) cells are considered important in cancer because they can display increased tumorigenicity, resistance to conventional therapies, and are believed to be precursors to whole chromosome aneuploidy. It is therefore important to determine how tetraploid cancer cells arise, and how to target them. P53 is a tumor suppressor protein and key regulator of tetraploidy. As part of the “tetraploidy checkpoint”, p53 inhibits tetraploid cell proliferation by promoting a G1-arrest in incipient tetraploid cells (referred to as a tetraploid G1 arrest). Nutlin-3a is a preclinical drug that stabilizes p53 by blocking the interaction between p53 and MDM2. In the current study, Nutlin-3a promoted a p53-dependent tetraploid G1 arrest in two diploid clones of the HCT116 colon cancer cell line. Both clones underwent endoreduplication after Nutlin removal, giving rise to stable tetraploid clones that showed increased resistance to ionizing radiation (IR) and cisplatin (CP)-induced apoptosis compared to their diploid precursors. These findings demonstrate that transient p53 activation by Nutlin can promote tetraploid cell formation from diploid precursors, and the resulting tetraploid cells are therapy (IR/CP) resistant. Importantly, the tetraploid clones selected after Nutlin treatment expressed approximately twice as much P53 and MDM2 mRNA as diploid precursors, expressed approximately twice as many p53-MDM2 protein complexes (by co-immunoprecipitation), and were more susceptible to p53-dependent apoptosis and growth arrest induced by Nutlin. Based on these findings, we propose that p53 plays novel roles in both the formation and targeting of tetraploid cells. Specifically, we propose that 1) transient p53 activation can promote a tetraploid-G1 arrest and, as a result, may inadvertently promote formation of therapy-resistant tetraploid cells, and 2) therapy-resistant tetraploid cells, by virtue of having higher P53 gene copy number and expressing twice as many p53-MDM2 complexes, are more sensitive to apoptosis and/or growth arrest by anti-cancer MDM2 antagonists (e.g. Nutlin).  相似文献   

19.
Paclitaxel (PTX), a microtubule-active drug, causes mitotic arrest leading to apoptosis in certain tumor cell lines. Here we investigated the effects of PTX on human arterial smooth muscle cell (SMC) cells. In SMC, PTX caused both (a) primary arrest in G1 and (b) post-mitotic arrest in G1. Post-mitotic cells were multinucleated (MN) with either 2C (near-diploid) or 4C (tetraploid) DNA content. At PTX concentrations above12 ng/ml, MN cells had 4C DNA content consistent with the lack of cytokinesis during abortive mitosis. Treatment with 6-12 ng/ml PTX yielded MN cells with 2C DNA content. Finally, 1-6 ng/ml of PTX, the lowest concentrations that affected cell proliferation, caused G1 arrest without multinucleation. It is important that PTX did not cause apoptosis in SMC. The absence of apoptosis could be explained by mitotic exit and G1 arrest as well as by low constitutive levels of caspase expression and by p53 and p21 induction. Thus, following transient mitotic arrest, SMC exit mitosis to form MN cells. These post-mitotic cells were subsequently arrested in G1 but maintained normal elongated morphology and were viable for at least 21 days. We conclude that in SMC PTX causes post-mitotic cell cycle arrest rather than cell death.  相似文献   

20.
The purpose of this study was to use DNA transfection and microcell chromosome transfer techniques to engineer a human chromosome containing multiple biochemical markers for which selectable growth conditions exist. The starting chromosome was a t(X;3)(3pter----3p12::Xq26----Xpter) chromosome from a reciprocal translocation in the normal human fibroblast cell line GM0439. This chromosome was transferred to a HPRT (hypoxanthine phosphoribosyltransferase)-deficient mouse A9 cell line by microcell fusion and selected under growth conditions (HAT medium) for the HPRT gene on the human t(X;3) chromosome. A resultant HAT-resistant cell line (A9(GM0439)-1) contained a single human t(X;3) chromosome. In order to introduce a second selectable genetic marker to the t(X;3) chromosome, A9(GM0439)-1 cells were transfected with pcDneo plasmid DNA. Colonies resistant to both G418 and HAT medium (G418r/HATr) were selected. To obtain A9 cells that contained a t(X;3) chromosome with an integrated neo gene, the microcell transfer step was repeated and doubly resistant cells were selected. G418r/HATr colonies arose at a frequently of 0.09 to 0.23 x 10(-6) per recipient cell. Of seven primary microcell hybrid clones, four yielded G418r/HATr clones at a detectable frequency (0.09 to 3.4 x 10(-6)) after a second round of microcell transfer. Doubly resistant cells were not observed after microcell chromosome transfers from three clones, presumably because the markers were on different chromosomes. The secondary G418r/HATr microcell hybrids contained at least one copy of the human t(X;3) chromosome and in situ hybridization with one of these clones confirmed the presence of a neo-tagged t(X;3) human chromosome. These results demonstrate that microcell chromosome transfer can be used to select chromosomes containing multiple markers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号