首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The localization of proteins in myelin was studied by the use of a non-penetrating penetrating reagent. Tritiated 4,4′-diisothiocyano-2,2′-ditritiostilbene disulfonic acid was used to label the isolated myelin membrane. The membrane was labelled, the basic protein and the hydrophobic protein, lipophilin, were isolated. After 10 min of exposure to the reagent, the specific activity of lipophilin was found to be 10 times greater than that of the basic protein. Water shock did not alter the specific activities. However, sonication increased the specific activity of lipophilin but not that of basic protein. When the isolated proteins were labelled with 3H-labelled, 4,4′-diisothiocyano-2,2′-ditritiostilbene disulfonic acid, the specific activity of the basic protein was 10 times that of lipophilin. We concluded that the low specific activity of basic protein isolated from the labelled membrane was due to the inaccessible position of this protein in the membrane bilayer.  相似文献   

2.
A mixed membrane preparation obtained from turtle bladder epithelial cells contains (Na+ + K+)-ATPase, adenylate cyclase and protein kinase, which interact with ouabain, norepinephrine and cyclic AMP, respectively. When such a preparation is obtained from bladders which had been preexposed to serosal fluids containing the tritiated form of 4,4'-diisothiocyano-2,2'-disulfonic stilbene, the subsequently isolated membrane proteins are enriched in tritium as well as in the afore-mentioned enzymes, none of which is inhibited. Free-flow electrophoresis separates the mixed membrane preparation into two distinguishable groups: one, construed as apical membranes, is enriched in norepinephrine-sensitive adenylate cyclase and cyclic AMP-sensitive protein kinase; the other, construed as basal-lateral membranes, is enriched in ouabain-sensitive ATPase and 4,4'-diisothiocyano-2,2'-disulfonic stilbene-binding proteins. The physiological counterparts of these enzymatically defined membrane markers are the mucosal sidedness of the transport effects of norepinephrine and cyclic AMP derivatives and the serosal sidedness of the transport effects of ouabain and disulfonic stilbenes in the intact turtle bladder. The discreteness and ion selectivity of each membrane-bound, transport-related element are discussed in relation to the corresponding characteristics of each transport process in vivo; the possibility of regulation of anion transport by adenylate cyclase-protein kinase system is also discussed.  相似文献   

3.
Lipophilin, a hydrophobic myelin protein, was incorporated into phosphatidylcholine vesicles by dialysis from 2-chloroethanol which has been shown to produce single-layered lipid-protein vesicles. These vesicles were labeled with a nonpenetrating surface-labeling reagent, 4,4-diisothiocyano-2,2-ditritiostilbene disulfonic acid, ([3H]DIDS), in order to determine if the protein completely spans the bilayer. After labeling the vesicles, lipophilin was isolated. At least 88% of the protein was labeled with [3H]DIDS. Dextran (mol wt 250,000–275,000) was converted to the dialdehyde form and reacted with lipophilin-PC vesicles. In this case greater than 90% of the protein was complexed to the dextran. The high degree of labeling obtained with both compounds was consistent with a model in which lipophilin was considered to span the bilayer completely.  相似文献   

4.
A membrane-permeable photolabel 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine (125I-TID) has been used to label lipophilin in normal human myelin and after incorporation of purified lipophilin into phosphatidylcholine (PC) vesicles. The labelled protein was isolated and the specific activities for lipophilin from myelin and from PC vesicles was found to be 1.2 X 10(11) and 1.5 X 10(11) cpm/mol, respectively. The chromatographic profiles of tryptic peptides were similar in both cases and the specific activities of the C-terminal intramembranous fragments (residues 205-268) the same. We concluded that the organization of lipophilin in PC vesicles was similar to its organization in myelin and that the PC-vesicle system represents a good system in which to study the orientation and interaction of lipophilin with lipids.  相似文献   

5.
cDNA clones of rat brain proteolipid protein (PLP), also named lipophilin, the major integral myelin membrane protein, and of myelin basic protein (MBP), the major extrinsic myelin protein, have been isolated from a rat brain cDNA library cloned into the PstI site of pBR322. Poly(A)+ RNA from actively myelinating 18-day-old rats has been reversely transcribed. Oligonucleotides synthesized according to the established amino-acid sequence of lipophilin and the nucleotide sequence of the small myelin basic protein of the N-terminal, the central and C-terminal region of their sequences were used as hybridization probes for screening. The largest insert in one of several lipophilin clones was 2,585 base pairs (bp) in length (pLp 1). It contained 521 bp of the C-terminal coding sequence and the complete 2,064 bp long non-coding 3' sequence. The myelin basic protein cDNA insert of clones pMBP5 and pMBP6 is 2,530 bp long and that of clones pMBP2 and pMBP3 640 bp. These clones were also characterized. pMBP2 was sequenced and used together with the lipophilin cDNA clones as hybridization probes to estimate the lipophilin and myelin basic protein mRNA levels of rat brain during the myelination period. The expression of the lipophilin and myelin basic protein genes during development of the myelin sheath appears to be strictly coordinated.  相似文献   

6.
Thiamine triphosphatase (TTPase) from membranes isolated from the main electric organ of E. electricus is activated about 8 fold by NO3-, I- and SCN- while SO42- is inhibitory. Activating anions shift the pH optimum of the enzyme from 5.0 to 8.0. The enzyme is irreversibly inactivated by low concentrations of 4,4'-diisothiocyano-2,2' disulfonic acid (DIDS), an inhibitor of anion transport. Anions protect from DIDS inactivation. These and other results suggest that the membrane-bound TTPase activity is tightly controlled, possibly through mechanisms involving anion transport.  相似文献   

7.
We have prepared a lambda gt10 cDNA library with the mRNA isolated from fetal calf brains which were actively myelinating. Using two oligonucleotides made according to the known amino acid sequence of myelin proteolipid protein (PLP or lipophilin), we have isolated several cDNA clones for this major intrinsic membrane protein of myelin. One of these clones, designated as pLP1, is found to contain 444 bp of coding sequence for the C-terminal half of PLP and 486 bp of 3' untranslated sequence. Using pLP1 as a hybridization probe, we have studied the regulation of PLP at the mRNA level during rat brain development. Our results show that the relative amounts of mRNA for PLP and that for the major extrinsic protein of the myelin membrane, myelin basic protein, increase coordinately during the course of myelination in the brain.  相似文献   

8.
Pepsin cleavage of band 3 produces its membrane-crossing domains   总被引:1,自引:0,他引:1  
After prolonged treatment of red-cell ghosts with pepsin followed by SDS-urea-acrylamide gel electrophoresis of the membrane peptide fraction, a heavily stained band representing peptides of about 4 kDa (with traces of higher molecular weights) was found. If the cells were first labelled with the disulfonic stilbene, DIDS (4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid) or with N-ethylmaleimide, probes that react with specific sites in Band 3 the anion transport protein, both agents were largely located in the 4 kDA band. With less intensive pepsin treatment, Stained bands of about 17, 12 and 8 kDa were also visible, and DIDS labelling was associated with these higher molecular weight peptides. The 4 kDa band apparently contains at least five or six different peptides. A single peptide containing the DIDS-binding site was separated from others in the band by ion-exchange chromatography. The location of the DIDS-peptide in the primary structure of Band 3 was determined by matching the known location of DIDS and of a methionine residue cleavable by cyanogen bromide. It is concluded that two additional 4 kDA peptides are labelled with N-ethylmaleimide. Because the location of the N-ethylmaleimide-binding sites are known, these two peptides could also be mapped in the primary structure of Band 3. The findings are consistent with the suggestion that pepsin can digest those portions of Band 3 (and probably of other intrinsic peptides) that are exposed on either side of the membrane, leaving only those domains that cross the bilayer. For Band 3, the data are consistent with a structure containing five crossing strands per monomer, each crossing strand being about 4 kDa.  相似文献   

9.
Permeation of the erythrocyte stroma by superoxide radical.   总被引:13,自引:0,他引:13  
Superoxide anion, generated by xanthine oxidase within vesicles formed from washed erythrocyte ghosts, crosses the vesicle membrane to reduce cytochrome c in the medium (Lynch, R. E., and Fridovich, I. (1978) J. Biol. Chem, 253, 1838-1845). To determine whether O2- could travel through the membrane in the "channel" for the exchange of stable anions, the effects of two specific inhibitors of anion exchange, 4-acetamido-4'-isothiocyano-2,2' disulfonic acid stilbene (SITS) and 4,4'-diisothiocyano-2,2' disulfonic acid stilbene (DIDS), on the escape of O2- from vesicles were studied. The reduction of external cytochrome c, caused by O2- produced by the enzymic turnover of internal xanthine oxidase, was 85 to 90% inhibited by SITS and DIDS. If SITS impeded the egress of O2- from vesicles, it should enhance the internal effects of O2- and antagonize the inhibition of these effects by external superoxide dismutase. External superoxide dismutase inhibited the lysis of vesicles containing xanthine oxidase. SITS (60 micron) partially reversed this inhibition. It appears that O2- can cross the membrane of the erythrocyte in the anion channel.  相似文献   

10.
Identification of membrane-embedded domains of lipophilin from human myelin   总被引:1,自引:0,他引:1  
The organization of lipophilin in the intact human myelin membrane has been studied by labeling with the carbene photogenerated from 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine ([125I]TID). This hydrophobic probe labels mostly lipophilin (the main intrinsic protein of myelin) and the lipids within the bilayer. The domains of lipophilin which are embedded within the membrane have been identified by proteolytic fragmentation of the [125I]TID-labeled myelin, extraction with organic solvents, and separation by chromatography. Four labeled peptides were purified in this way. Polyacrylamide gel electrophoresis, amino acid compositions, automated sequencing, and carboxy-terminal analyses identified a 15K molecular weight peptide, T1 (residues 1-143), as representing the amino-terminal fragment, a 10K peptide, T2 (residues 1-97), representing a smaller amino-terminal fragment, a 5K peptide, T4 (residues 53-97), which represented the COOH-terminal half of peptide T2, and a 7K peptide, T3 (residues 205-268), which represented a sequence near the COOH terminus of lipophilin. The specific radioactivities of the peptides were determined; peptides T1 and T2 had similar specific activities, which were twice the specific activities of peptides T3 and T4. The data provide direct chemical evidence that human lipophilin has membrane-embedded domains between residues 1-97, 53-97, and 205-268, in agreement with some of the predictions of other investigators based on the sequence of bovine myelin lipophilin (proteolipid apoprotein) and a hydrophobicity diagram.  相似文献   

11.
A toxin from Bacillus thuringiensis kurstaki was lethal to eggs and first- and second-stage larvae of the ruminant nematode Trichostrongylus colubriformis. Sheathed and exsheathed third-stage larvae were also killed by the toxin. However, susceptibility of the ova to the toxin decreased after several hours of development. Heating at 65 C for 1 hr or freezing at 0 C for 3 mo did not affect stability of the toxin. Ovicidal activity of the toxin was not altered by treatment with 13 microbial or mammalian enzymes, but toxicity was reduced by the antibiotics streptomycin or penicillin G and the enzyme inhibitor L-1-tosylamide 2-phenylethylchloromethyl ketone. Cuprous, ferrous, and zinc chlorides also inhibited the ovicidal activity of the toxin. Increased osmolarity of the assay media or solubilization of the toxin from pH 3 to 11 had no effect on toxicity for eggs. The membrane agents sodium vanadate and 4,4'-diisothiocyano-2,2' disulfonic acid stilbene increased (9-fold) and decreased (333-fold) toxicity, respectively. N-acetylneuraminic acid was the only tested sugar that reduced the toxicity of B. t. kurstaki.  相似文献   

12.
Rabbits were injected into the sciatic nerves with either 35S-methionine, or 3H-fucose. After times ranging from 45 min to 15 days the nerves were removed and the total particulate material from the nerves fractionated to give seven subfractions with densities between 0.2 and 1.2 M sucrose. The patterns of radio-labelled proteins were examined by SDS-PAGE and quantitative fluorography. The results showed that the P2 basic protein was metabolically far more active than either the major P0 glycoprotein, or the basic protein BP. The P2 protein also entered the myelin fractions more rapidly than either P0, or BP components. The net synthesis of P0 was slower than P2 and BP and this intrinsic membrane protein remained associated with the denser membrane fractions (>0.7 M sucrose) for longer than the basic proteins prior to entering myelin. Newly synthesized high molecular weight proteins remained concentrated in the denser membrane fractions and turned over faster than the myelin proteins.

A low density myelin fraction (B) was detected in which both the P2 protein and certain high molecular weight proteins became more rapidly labelled than in compact myelin. In this fraction the specific activity remained higher than that of compact myelin for up to five days after the injection of 35S-methionine into the nerve.

The results indicate that the major PNS myelin proteins are incorporated into and turn over in the various compartments of the Schwann cell plasma membrane—myelin continuum at very different rates.  相似文献   


13.
The intraerythrocytic malarial parasite Plasmodium falciparum induces permeation pathways in the plasma membrane of its host, the red blood cell. The pathways display porelike properties with selectivity toward anions and neutral molecules. They are shown here to be susceptible to chemical modification by 4,4'-diisothiocyano-2,2'-dihydrostilbene disulfonic acid (H2DIDS), an amino-reactive reagent which is impermeant to uninfected cells. At pH 7.4 the reagent affected transport only marginally while freely entering into infected cells and reacting with intracellular hemoglobin. On the other hand, at pH above 8.5, the compound blocked the pathways efficiently (IC 50 approximately equal to 50 microM, at 37 degrees C for 10 min) as judged by four criteria: (1) selective lysis of infected erythrocytes in the presence of isotonic polyols; (2) uptake of [14C] sorbitol into infected cells; (3) uptake of the fluorescent anion Nbd-taurine into infected cells under conditions in which the native anion transport systems was inhibited; and (4) labeling of intracellular hemoglobin by the permeating reagent [3H]H2DIDS. The inhibitory effect was observed only with mature forms of parasitized cells, i.e., from the trophozoite stage and onward, while the pathways of immature ring forms were refractive. However, when the probe was incorporated into the interior of hemoglobin-depleted resealed ghosts prepared from ring forms, it was found to inhibit the pore-mediated transport. On the basis of these and other studies we postulate that the H2DIDS-sensitive sites on the pathways are endofacial, thus requiring penetration of the probe (probably through the same pathway) for their inactivation. Labeling studies with the radiolabeled modifier implicate 120-Kd, 63-Kd, and/or 51-Kd polypeptides as candidates for the pore components.  相似文献   

14.
alpha-Aminoisobutyric acid accumulation of the toad's (Bufo marinus) cornea and lens is inhibited by 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid. This effect is seen at pH 8.4; at pH 7.4 a small increase in aminoisobutyric acid uptake was observed. Efflux of aminoisobutyric acid is unchanged by diisothiocyanostilbenedisulphonic acid at either pH. The inhibitory effect of diisothiocyanostilbenedisulphonic acid on aminoisobutyric acid accumulation appears to reflect a direct action on membrane mechanisms that mediate its influx.  相似文献   

15.
A new variant of the anion transport protein in human erythrocytes   总被引:2,自引:0,他引:2  
L Hsu  M Morrison 《Biochemistry》1985,24(13):3086-3090
The major plasma membrane protein of human erythrocytes is the anion transport protein, termed protein 3. We previously reported a variant form of protein 3 that is elongated on the amino-terminal end of the molecule, which is exposed on the cytoplasmic side of the membrane, but otherwise its features are identical with those of the normal molecule. We have termed this molecule protein 3 variant 1. We now report a new variant form, protein 3 variant 2. The erythrocyte donor was a double heterozygote whose red cells possess a normal protein 3 and a protein 3 variant which is elongated and possesses a second variation at the 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) reactive site. Variant 2 reacts with 4,4'-diisothiocyano-1,2-diphenylethane-2,2'-disulfonic acid (H2DIDS) more readily than does the normal molecule. At high pH values, H2DIDS acts as a bifunctional cross-linking agent; it cross-links the proteolytic products generated by Pronase (or chymotrypsin) treatment of variant 2 less efficiently than noted for normal protein 3 or the first variant. Thus, the newly identified molecule has an alteration at the DIDS reactive site, which is near the outer surface of the membrane. The results can be interpreted as indicating that the DIDS binding site of variant 2 is more exposed than the normal molecule, but further removed from the site on the carboxyl-terminal fragment involved in cross-linking. Although there is a difference in the reactivity of the two protein 3 chains in variant 2, the reaction of variants 1 and 2 and normal cells with varying concentrations of [3H]H2DIDS results in the same amount of incorporation in all cells. Since protein 3 exists as a dimer or higher aggregate in the membrane, these results may indicate an interaction between monomers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The expression of the basolateral Na+/bile acid (taurocholate) cotransport system of rat hepatocytes has been studied in Xenopus laevis oocytes. Injection of rat liver poly(A)+ RNA into the oocytes resulted in the functional expression of Na+ gradient stimulated taurocholate uptake within 3-5 days. This Na(+)-dependent portion of taurocholate uptake exhibited saturation kinetics (apparent Km approximately 91 microM) and could be inhibited by 4,4'-diisothiocyano-2,2'-disulfonic acid stilbene. Furthermore, the expressed taurocholate transport activity demonstrated similar substrate inhibition and stimulation by low concentrations of bovine serum albumin as the basolateral Na+/bile acid cotransport system previously characterized in intact liver, isolated hepatocytes, and isolated plasma membrane vesicles. Finally, a 1.5- to 3.0-kilobase size-class of mRNA could be identified that was sufficient to express the basolateral Na+/taurocholate uptake system in oocytes. These results demonstrate that "expression cloning" represents a promising approach to ultimately clone the gene and to further characterize the molecular properties of this important hepatocellular membrane transport system.  相似文献   

17.
Folate reabsorption by the mammalian kidney occurs following a tight binding reaction with the renal brush border membrane. Previous studies have shown that transport of folic acid (PteGlu) by rat kidney brush border membrane vesicles occurs maximally at pH 5.6 via a saturable system that is associated with a binding component. The present studies have shown that the pH dependency of transport was due to the development of the transmembrane pH gradient (7.3 in/5.6 out), not to the acidic pH per se. The pH gradient-mediated transport was stimulated by an inwardly directed ionic gradient, either of NaCl or choline chloride. These gradients also stimulated the membrane binding of PteGlu suggesting that NaCl and choline chloride may have increased PteGlu transport by altering binding to the brush border membrane. Renal brush border membrane vesicular transport of PteGlu was not affected by induction of a relatively positive intravesicular space. Transport was inhibited by 4,4'-diisothiocyano-2,2'-disulfonic acid stilbene, an anion exchange inhibitor. The results suggest that rat kidney brush border membrane transport of PteGlu is initiated by association with a specific membrane protein, followed by transfer of folate across the membrane. The overall activity is influenced by a transmembrane pH gradient.  相似文献   

18.
The amino-acid sequence of bovine myelin lipophilin (proteolipid apoprotein, Folch-protein) has been completed. Lipophilin is a 276 amino acid residues containing, extremely hydrophobic membrane protein with molecular mass 30,000 Da. The sequence determination was based on automated Edman degradation of four tryptophan and four cyanogen bromide fragments and of proteolytic peptides of complete lipophilin as well as the fragments obtained by chemical cleavage. Four additional sequences were determined which led to the completion of the primary structure. Lipophilin is esterified at threonine-198 by long chain fatty acids (palmitic, stearic and oleic acid). The attachment site has been established at the same threonine residue in three different peptides isolated from thermolysinolytic, papainolytic and chymotrypsinolytic hydrolysates. This threonine residue is part of a hydrophilic segment of lipophilin. The covalent fatty acyl bond is being discussed together with important structural and functional properties of this membrane protein which can be derived from sequence information. New separation and purification methods of hydrophobic and hydrophilic polypeptides for this sequence determination (fractional solubilization, silica gel exclusion, high-performance liquid chromatography) had to be elaborated as indispensable tools. They are generally applicable to the structural analysis of hydrophobic membrane proteins. Four long (26, 29, 40 and 36 residues) and one medium long (12 residues) hydrophobic segments are separated by four predominantly positively and one negatively charged hydrophilic segments. On the basis of structural data a model for the membrane integration of lipophilin is proposed.  相似文献   

19.
K Izuhara  K Okubo  N Hamasaki 《Biochemistry》1989,28(11):4725-4728
Diethyl pyrocarbonate inhibited the phosphate exchange across the human erythrocyte membrane. The exchange rate was inhibited only when the membranes were modified with the reagent from the cytosolic surface of resealed ghosts. The intracellular modification by diethyl pyrocarbonate inhibited the extracellular binding of [3H]dihydro-4,4'-diisothiocyanostilbene-2,2'-disulfonic acid to band 3 protein. Furthermore, the extracellular 4,4'-dinitrostilbene-2,2'-disulfonic acid protected the membranes from the intracellular modification by diethyl pyrocarbonate. These results suggest that the extracellular binding of 4,4'-dinitrostilbene-2,2'-disulfonic acid to band 3 protein induces the conformational change of the intracellular counterpart of band 3 protein and the diethyl pyrocarbonate susceptible residue(s) is (are) hidden from the cytosolic surface of the cell membrane in connection with the conformational change. Conversely, under the conditions where the diethyl pyrocarbonate modification is confined to the intracellular side of the membrane, the extracellular binding site of [3H]dihydro-4,4'-diisothiocyanostilbene-2,2'-disulfonic acid is hidden from the cell surface.  相似文献   

20.
The localization and activity of the enzyme UDP-galactose-hydroxy fatty acid-containing ceramide galactosyltransferase is described in rat brain myelin subfractions during development. Other lipid-synthesizing enzymes, such as cerebroside sulphotransferase, UDP-glucose-ceramide glucosyltransferase and CDP-choline-1,2-diacylglycerol cholinephosphotransferase, were also studied for comparison in myelin subfractions and microsomal membranes. The purified myelin was subfractionated by isopycnic sucrose-density-gradient centrifugation. Four myelin subfractions, three floating respectively on 0.55 M- (light-myelin fraction), 0.75 M- (heavy-myelin fraction) and 0.85 M-sucrose (membrane fraction), and a pellet, were isolated and purified. At all ages, 70--75% of the total myelin proteins was found in the heavy-myelin fraction, whereas 2--5% of the protein was recovered in the light-myelin fraction, and about 7--12% in the membrane fraction. Most of the galactosyltransferase was associated with the heavy-myelin and membrane fractions. Other lipid-synthesizing enzymes studied appeared not to associate with purified myelin or myelin subfractions, but were enriched in the microsomal-membrane fraction. During development, the specific activity of the microsomal galactosyltransferase reached a maximum when the animals were about 20 days old and then declined. By contrast the specific activity of the galactosyltransferase in the heavy-myelin and membrane fractions was 3--4 times higher than that of the microsomal membranes in 16-day-old animals. The specific activity of the enzyme in the heavy-myelin fraction sharply declined with age. Chemical and enzymic analyses of the heavy-myelin and membrane myelin subfractions at various ages showed that the membrane fraction contained more proteins in relation to lipids than the heavy-myelin fraction. The membrane fraction was also enriched in phospholipids compared with cholesterol and contrined equivalent amounts of 2':3'-cyclic nucleotide 3'-phosphohydrolase compared with heavy- and light-myelin fractions. The membrane fraction was deficient in myelin basic protein and proteolipid protein and enriched in high-molecular-weight proteins. The specific localization of galactosyltransferase in heavy-myelin and membrane fractions at an early age when myelination is just beginning suggests that it may have some role in the myelination process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号