首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The uptake of D-glucose, L-aspartate, L-lysine and L-proline was studied in renal brush border membrane vesicles prepared from control, infected and actively immunized-infected rats. The uptake of D-glucose, L-lysine and L-proline was decreased significantly (p less than 0.05) during the course of infection in the infected animals. However, the uptake of L-aspartate was increased significantly (p less than 0.05) in early stages and decreased significantly (p less than 0.05) in later stages of infection in the infected animals. When the animals were actively immunized with pili, still there were changes in the uptake of D-glucose and L-aspartate, but the changes appeared later and less pronounced. No change in the uptake of L-lysine and L-proline was observed in the immunized-infected animals. The findings demonstrated that active immunization with pili prevents alterations in the uptake of nutrients in pyelonephritic rats.  相似文献   

2.
Affinity constant (Km) of D-glucose, L-alanine, L-aspartate, L-lysine, L-proline and nutrients coupled Na+ were determined in renal brush border membrane vesicles prepared from control and pyelonephritic rats. The Km of D-glucose, amino acids and nutrients coupled Na+ was noted to be significantly increased (p less than 0.001) in experimental animals. The Vmax of D-glucose and amino acids was determined at different concentrations of nutrients keeping extravesicular Na+ constant or at different concentrations of extravesicular Na+ keeping nutrient concentration constant. In the experimental rats the Vmax decreased significantly (p less than 0.01) when compared to control. The increased Km and decreased Vmax may be one of the underlying mechanism leading to decrease in the uptake of D-glucose and amino acids.  相似文献   

3.
The uptake of D-glucose, L-aspartate, L-lysine and L-proline was investigated in renal brush border membrane (BBM) vesicles prepared from control, infected or passively-immunized-infected rats. Except L-aspartate, a progressive decrease in the uptake of these nutrients in both infected and immunized-infected groups during the course of infection was observed, but the changes were less apparent in immunized-infected rats than in non-immunized ones. The uptake of L-aspartate was increased in vesicles from early stages of infection but decreased in those from later stages. Also in L-aspartate uptake, the changes were smaller in immunized animals. The uptake of nutrients was detectable earlier than were histopathological alterations of both kidneys. The observations demonstrated that uptake of D-glucose and amino acids in the kidneys is disturbed prior to appearance of histopathological lesions and thus can be used for early detection of the disease. The data also demonstrate that antipili antibodies afford partial protection against ascending pyelonephritis.  相似文献   

4.
The effects of the histidine modifier, diethyl pyrocarbonate (DEPC), on brush-border membrane transport systems were studied in rat kidney. DEPC caused a strong inhibition of sodium-dependent phosphate and D-glucose uptake. Phosphate uptake remained linear up to 10 s in control and DEPC-treated membrane vesicles. The D-glucose carrier was more sensitive than the phosphate carrier with half-times of inhibition being 4 and 7 min, respectively. Sodium-independent phosphate and D-glucose uptake remained unaffected by DEPC. Intravesicular volume and two enzyme activities endogenous to the luminal membrane (alkaline phosphatase and aminopeptidase M) remained unaffected by DEPC. Increasing the preincubation pH from 5 to 9 increased phosphate transport inhibition caused by DEPC from 73 to 88% in the presence of DEPC. Hydroxylamine was able to completely reverse phosphate uptake inhibition by DEPC (100%), but only partially reversed the D-glucose uptake inhibition (16%). Sodium or substrate (D-glucose or phosphate) in the preincubation media were unable to protect their respective carriers from DEPC. Sodium-dependent transport of L-glutamine, L-phenylalanine, L-leucine, L-alanine, L-glycine, beta-alanine and L-proline were inhibited at different levels ranging from 70 to 90%. Three transport processes were found insensitive to DEPC modification: L-glutamate, L-lysine and D-fructose. None of the amino acid transporters was protected against DEPC by sodium and/or their respective substrates. Sodium influx was inhibited by DEPC (47%) in the absence of any substrate. Our results show a differential sensitivity of sodium-dependent transporters to DEPC and suggest an important role for histidine residues in the molecular mechanisms of these transporters. More experiments are in progress to further characterize the residue(s) involved in these transport inhibitions by DEPC.  相似文献   

5.
The functional and molecular properties of system L in human mammary cancer cells (MDA-MB-231 and MCF-7) have been examined. All transport experiments were conducted under Na(+)-free conditions. alpha-Aminoisobutyric acid (AIB) uptake by MDA-MB-231 and MCF-7 cells was almost abolished by BCH (2-amino-2-norbornane-carboxylic acid). AIB uptake by MDA-MB-231 cells was also inhibited by L-alanine (83.6%), L-lysine (75.6%) but not by L-proline. Similarly, L-lysine and L-alanine, respectively, reduced AIB influx into MCF-7 cells by 45.3% and 63.7%. The K(m) of AIB uptake into MDA-MB-231 and MCF-7 cells was, respectively, 1.6 and 8.8 mM, whereas the V(max) was, respectively, 9.7 and 110.0 nmol/mg protein/10 min. AIB efflux from MDA-MB-231 and MCF-7 cells was trans-stimulated by BCH, L-glutamine, L-alanine, L-leucine, L-lysine and AIB (all at 2 mM). In contrast, L-glutamate, L-proline, L-arginine and MeAIB had no effect. The interaction between L-lysine and AIB efflux was one of low affinity. The fractional release of AIB from MDA-MB-231 cells was trans-accelerated by D-leucine and D-tryptophan but not by D-alanine. MDA-MB-231 and MCF-7 cells expressed LAT1 and CD98 mRNA. MCF-7 cells also expressed LAT2 mRNA. The results suggest that AIB transport in mammary cancer cells under Na(+)-free conditions is predominantly via system L which acts as an exchange mechanism. The differences in the kinetics of AIB transport between MDA-MB-231 and MCF-7 cells may be due to the differential expression of LAT2.  相似文献   

6.
Renal brush-border membrane vesicles from rat kidney cortex were irradiated in frozen state with a gamma-radiation source. Initial rates of influx into these vesicles were estimated for substrates such as L-glutamic acid, L-alanine, L-proline and L-leucine to establish the molecular sizes of their carriers. Transport was measured in initial-rate conditions to avoid artifacts arising from a decrease in the driving force caused by a modification of membrane permeability. Initial rates of Na(+)-independent uptakes for those four substrates appeared unaffected in the dose range used (0-6 Mrad), indicating that the passive permeability of the membrane towards these substrates was unaffected. However, at higher doses of irradiation the Na+ influx and the intravesicular volume evaluated by the uptake of glucose at equilibrium were altered by radiation. Thus Na(+)-dependent influx values were corrected for volume changes, and the corrected values were used to compute radiation-inactivation sizes of the transport systems. Their respective values for L-glutamic acid, L-proline, L-leucine and L-alanine carriers were 250, 224, 293 and 274 kDa. The presence of the free-radicals scavenger benzoic acid in the frozen samples during irradiation did not affect the uptake of glucose, phosphate and alkaline phosphatase activity. These results indicate that freezing samples in a cryoprotective medium was enough to prevent secondary inactivation of transporters by free radicals. Uptakes of beta-alanine and L-lysine were much less affected by radiation. The radiation-inactivation size of the Na(+)-dependent beta-alanine carrier was 127 kDa and that of the L-lysine carrier was 90 kDa.  相似文献   

7.
OK cells, derived from an American opossum kidney, were analyzed for proximal tubular transport functions. In monolayers, L-glutamate, L-proline, L-alanine, and alpha-methyl-glucopyranoside (alpha-methyl D-glucoside) were accumulated through Na+-dependent and Na+-independent transport pathways. D-Glucose and inorganic sulfate were accumulated equally well in the presence or absence of Na+. Influx of inorganic phosphate was only observed in the presence of Na+. Na+/alpha-methyl D-glucoside uptake was preferentially inhibited by phlorizin and D-glucose uptake by cytochalasin B. An amiloride-sensitive Na+-transport was also identified. In isolated apical vesicles (enriched 8-fold in gamma-glutamyltransferase), L-glutamate, L-proline, L-alanine, alpha-methyl D-glucoside and inorganic phosphate transport were stimulated by an inwardly directed Na+-gradient as compared to an inwardly directed K+-gradient. L-Glutamate transport required additionally intravesicular K+. D-Glucose transport was similar in the presence of a Na+- and a K+-gradient. Na+/alpha-methyl D-glucoside uptake was inhibited by phlorizin whereas cytochalasin B had no effect on Na+/D-glucose transport. An amiloride-sensitive Na+/H+ exchange mechanism was also found in the apical vesicle preparation. It is concluded that the apical membrane of OK cells contains Na+-coupled transport systems for amino acids, hexoses, protons and inorganic phosphate. D-Glucose appears a poor substrate for the Na+/hexose transport system.  相似文献   

8.
9.
The transport of L-leucine by two human breast cancer cell lines has been examined. L-leucine uptake by MDA-MB-231 and MCF-7 cells was via a BCH-sensitive, Na+ -independent pathway. L-leucine uptake by both cell lines was inhibited by L-alanine, D-leucine and to a lesser extent by L-lysine but not by L-proline. Estrogen (17beta-estradiol) stimulated L-leucine uptake by MCF-7 but not by MDA-MB-231 cells. L-leucine efflux from MDA-MB-231 and MCF-7 cells was trans-stimulated by BCH in a dose-dependent fashion. The effect of external BCH on L-leucine efflux from both cell types was almost abolished by reducing the temperature from 37 to 4 degrees C. There was, however, a significant efflux of L-leucine under zero-trans conditions which was also temperature-sensitive. L-glutamine, L-leucine, D-leucine, L-alanine, AIB and L-lysine all trans-stimulated L-leucine release from MDA-MB-231 and MCF-7 cells. In contrast, D-alanine and L-proline had little or no effect. The anti-cancer agent melphalan inhibited L-leucine uptake by MDA-MB-231 cells but had no effect on L-leucine efflux. Quantitative real-time PCR revealed that LAT1 mRNA was approximately 200 times more abundant than LAT2 mRNA in MCF-7 cells and confirmed that MDA-MB-231 cells express LAT1 but not LAT2 mRNA. LAT1 mRNA levels were higher in MCF-7 cells than in MDA-MB-231 cells. Furthermore, LAT1 mRNA was more abundant than CD98hc mRNA in both MDA-MB-231 and MCF-7 cells. The results suggest that system L is the major transporter for L-leucine in both MDA-MB-231 and MCF-7 cells. It is possible that LAT1 may be the major molecular correlate of system L in both cell types. However, not all of the properties of system L reflected those of LAT1/LAT2/CD98hc.  相似文献   

10.
Choline uptake by the hamster heart has been shown to be enhanced by exogenous glycine. In this study, the effect of neutral, basic, and acidic amino acids on choline uptake was assessed. Hamster hearts were perfused with labelled choline, and in the presence of L-alanine, L-serine, or L-phenylalanine (greater than or equal to 0.1 mM), choline uptake was enhanced 20-38%. L-Arginine, L-lysine, L-aspartate, and L-glutamate did not influence choline uptake. The rate of phosphatidylcholine biosynthesis was unaffected by all amino acids tested. Enhancement of choline uptake by neutral amino acids was not additive or dose dependent but required a concentration threshold. The enhancement of choline uptake by neutral amino acids was not influenced by preperfusion with the same amino acid. Exogenous choline had no effect on the uptake of amino acids. We postulate that choline and the neutral amino acids are not cotransported and modulation of choline uptake is facilitated by direct interaction of the neutral amino acids with the choline transport system.  相似文献   

11.
SUMMARYThe lectin-inhibitory sugars D-glucosamine (GlcN) and N-acetyl D-glucosamine (GlcNAc) are known to enhance susceptibility of the tsetse fly vector to infection with Trypanosoma brucei. GlcNAc also stimulates trypanosome growth in vitro in the absence of any factor derived from the fly. Here, we show that GlcNAc cannot be used as a direct energy source, nor is it internalized by trypanosomes. It does, however, inhibit glucose uptake by binding to the hexose transporter. Deprivation of D-glucose leads to a switch from a metabolism based predominantly on substrate level phosphorylation of D-glucose to a more efficient one based mainly on oxidative phosphorylation using L-proline. Procyclic form trypanosomes grow faster and to higher density in D-glucose-depleted medium than in D-glucose-rich medium. The ability of trypanosomes to use L-proline as an energy source can be regulated depending upon the availability of D-glucose and here we show that this regulation is a graded response to D-glucose availability and determined by the overall metabolic state of the cell. It appears, therefore, that the growth stimulatory effect of GlcNAc in vitro relates to the switch from D-glucose to L-proline metabolism. In tsetse flies, however, it seems probable that the effect of GlcNAc is independent of this switch as pre-adaptation to growth in proline had no effect on tsetse infection rate.  相似文献   

12.
1. Receptor sites for different amino acids in the facial taste system of the channel catfish, Ictalurus punctatus, were determined from in vivo electrophysiological cross-adaptation experiments. 2. Relatively independent receptor sites were indicated for L-proline, D-proline, D-arginine, L-histidine and L-lysine, as well as those previously reported for L-alanine, L-arginine and D-alanine. 3. The functional isolation of two nerve twigs that were more responsive to D-alanine than to L-alanine or to other test stimuli provided further evidence for the existence of D-alanine sites that are independent from those to L-alanine. 4. Under all cross-adaptation regimes, the taste responses to the majority of test stimuli were reduced. Various possible mechanisms accounting for this generalized reduction in action potential activity during adaptation are discussed.  相似文献   

13.
Neutral-sugar transport by rat liver lysosomes.   总被引:2,自引:0,他引:2       下载免费PDF全文
Transport of D-glucose was studied in Percoll-gradient-purified rat liver lysosomes. D-Glucose uptake had a Km of 22 mM and a t1/2 of approx. 30 s. D-Fucose, 2-deoxyglucose and methyl alpha-glucoside were the most effective competitors for uptake of D-glucose, although D-galactose, D-mannose, D-xylose and L-fucose also appeared to compete for uptake. L-Glucose was a poor competitor for uptake. No competition was observed with N-acetyl-D-glucosamine, N-acetyl-D-galactosamine, D-glucuronic acid, N-acetylneuraminic acid, D-glucosamine or the amino acids L-glycine, L-lysine and L-proline. Uptake was unaffected by N-ethylmaleimide, dithiothreitol, KCl, NaCl, ATP/Mg or alteration of buffer pH. D-Glucose efflux from lysosomes was temperature-dependent, with a Q10 of 2.3, and was inhibited by cytochalasin B. Counter-transport could not be demonstrated. In contrast, L-fucose uptake had a Km of 65 mM and was largely unaffected by 5 M excess of neutral D-sugars. Both uptake and efflux of L-fucose were inhibited by cytochalasin B. It appears that lysosomes possess a facilitated transport system for D-glucose and perhaps other neutral D-sugars that is discrete from transport systems for acetylated and acidic sugars.  相似文献   

14.
H Lücke  W Haase    H Murer 《The Biochemical journal》1977,168(3):529-532
Uptake of L-alanine and L-phenylalanine by purified bursh-border-membrane vesicles isolated from human small intestine was investigated by using a rapid-filtration technique. L-Alanine entered the same osmotically reactive space as D-glucose, indicating that transport into the vesicle rather than binding to the membranes was being observed. The uptake rate for L-alanine was higher in the presence of a Na+ gradient than in the presence of a K+ gradient. In the presence of a Na+ gradient, the lipophilic anion SCN- caused an increase in L-alanine transport, whereas the nearly impermeant SO42- anion decreased the uptake of L-alanine compared with its uptake in the presence of Cl-. The uptake of L-phenylalanine into the brush-border-membrane vesicle was also stimulated by Na+. The results indicate co-transport of Na+ and neutral amino acids inthe human intestinal brush-border membrane.  相似文献   

15.
Summary Chloroquine is an antimalarial and antirheumatic lysosomotropic drug which inhibits taurine uptake into and increases efflux from cultured human lymphoblastoid cells. It inhibits taurine uptake by rat lung slices and affects the uptake and release of cystine from cystinotic fibroblasts. Speculations on its mode of action include a proton gradient effect, a non-specific alteration in membrane integrity, and membrane stabilization. In this study, the effect of chloroquine on the uptake of several amino acids by rat renal brush border membrane vesicles (BBMV) was examined. Chloroquine significantly inhibited the secondary active, NaCl-dependent component of 10µM taurine uptake at all concentrations tested, but did not change equilibrium values. Analysis of these data indicated that the inhibition was non-competitive. Taurine uptake was reduced at all osmolarities tested, but inhibition was greatest at the lowest osmolarity. Taurine efflux was not affected by chloroquine, nor was the NaCl-independent diffusional component of taurine transport. Chloroquine (1 mM) inhibited uptake of the imino acids L-proline and glycine, and the dibasic amino acid L-lysine. It inhibited the uptake of D-glucose, but not the neutral-amino acids L-alanine or L-methionine. Uptake of the dicarboxylic amino acids, L-glutamic acid and L-aspartic acid, was slightly enhanced. With regard to amino acid uptake by BBMV, these findings may support some of the currently proposed mechanisms of the action of chloroquine but further studies are indicated to determine why it affects the initial rate of active amino acid transport.  相似文献   

16.
The transport of glycine, L-alanine, L-proline, L-leucine, L-lysine, L-phenylalanine and L-glutamic acid did not enhance in various strains of Candida cells, when they were grown in proline containing medium or preincubated with proline. However, under similar conditions, a significant enhancement in the level of accumulation of amino acids (derepression) was observed in Saccharomyces cerevisiae X-2180-A2 (GAP+) cells, which was sensitive to ammonium ions (NH4+). As expected, the derepression was absent in GAP- cells of S. cerevisiae X-2180 (GAP- mutant). In contrast to S. cerevisiae (GAP+) cells, the increase in few amino acids uptake in different Candida strains, grown in proline or preincubated in proline, could not be inhibited by cycloheximide, NH4+ or their D-stereoisomers. It appears that derepression of amino acids transport, a well known phenomenon in S. cerevisiae, may not exist in Candida species.  相似文献   

17.
The transport of L-proline, L-lysine and L-glutamate in rat red blood cells has been studied. L-proline and L-lysine uptake were Na+-independent. When the concentration dependence was studied both showed a non-saturable uptake assimilable to a difussion-like process, with high Kd values (0.718 and 0.191 min–1 for L-proline and L-lysine respectively). Rat red blood cells showed high impermeability to L-glutamate. No sodium dependence was observed and the Kd value was low (0.067 min–1). Our results show firstly, that rat red blood cells do not have amino acid transport systems for anionic and cationic amino acids and secondly that erythrocytes show no sodium-dependent L-proline transport, and that these cells are very permeable to this amino acid.Abbreviations MeAIB methyl aminoisobutyric acid  相似文献   

18.
The fatty acid composition of yeast lipid was manipulated by using auxotrophic strain of S.cerevisiae, KD115, which requires unsaturated fatty acid (UFA) for its growth. It was possible to specifically enrich the yeast with different fatty acyl residues. As compared to wild type strain (S288C), the uptake of amino acids viz., L-alanine, glycine, L-glutamic acid, L-valine in KD115 was drastically reduced, however, the uptake of L-leucine and L-lysine was not affected by the change in lipid unsaturation. Kinetic studies revealed that KT and Jmax values for L-alanine were altered whereas for L-lysine they remained unaffected by UFA modification. Furthermore, unsaturation index for wild type cells was found to be fairly constant while it was variable in KD115 supplemented with different UFAs. It is observed that the variation in amino acid permeases activity which was affected by fluctuations in fatty acyl composition corresponds more to degree of unsaturation rather than growth stage of KD115.  相似文献   

19.
The effects of bile salts on Na+-coupled accumulation of D-glucose and L-alanine by brush-border-membrane vesicles isolated from hamster jejunum were investigated. The approximate percentage inhibition of Na+-coupled D-glucose accumulation produced by various bile salts at a concentration of 1 mM were: deoxycholate and chenodeoxycholate, 60%; glycine and taurine conjugates of deoxycholate and chenodeoxycholate, 40--50%; lithocholate, 45%; cholate and its glycine and taurine conjugates, less than 10%. Inhibition of Na+-coupled accumulation of D-glucose was rapid, reversible and not due to dissolution of the vesicles. Na+-coupled accumulation of L-alanine was also inhibited by deoxycholate. Deoxycholate but not cholate enhanced (1) the rate of Na+ influx, (2) the rate of influx of D-glucose and L-alanine in the absence of a Na+ gradient and (3) the rate of efflux of D-glucose and L-alanine from vesicles preloaded with this sugar or amino acid. Deoxycholate-stimulated efflux of D-glucose was not blocked by phlorizin, which completely prevented efflux in the absence of this bile salt. These results suggest that selected bile salts inhibit Na+-coupled accumulation of D-glucose and L-alanine by enhancing the rate of dissipation of the Na+ gradient required for substrate accumulation. In addition, bile salts may also decrease D-glucose and L-alanine accumulation by increasing the rate of efflux of these substrates across the brush-border plasma membrane.  相似文献   

20.
To elucidate the mechanisms underlying the dysfunctions of intestinal absorption induced by antitumor drugs, the effect of pretreatment with mitomycin C on sodium gradient-dependent D-glucose and L-alanine transports was studied in rat brush-border membrane vesicles. 24, 48, 96, or 120 h following a single intravenous injection of mitomycin C, brush-border membrane vesicles were prepared from rat small-intestines. The uptake of D-glucose and L-alanine was shown to be Na+ gradient-dependent even in the case of vesicles obtained from mitomycin C-treated rats, but uptake rates measured at 15 s and magnitude of overshooting effect in uptake of both solutes were decreased in vesicles maximally from 48 h mitomycin C-treated rats. The rate of D-glucose uptake calculated at 15 s recovered to the control level in vesicles prepared at 96 h and 120 h after mitomycin C-treatment, indicating that the effect of mitomycin C on Na+ gradient-dependent D-glucose transport would be fully reversible. Tracer exchange experiments under Na+ and D-glucose equilibrated conditions indicated that the Na+/D-glucose transporters were similarly operative in the vesicles from control and 48 h mitomycin C-treated rats. Rates of 22Na+ uptake measured at 15 s in vesicles from 48 h mitomycin C-treated rats, however, were increased. The increased permeability to Na+ might bring about a more rapid dissipation of the Na+ gradient in these vesicles and this would secondarily cause the decrease in Na+-dependent D-glucose uptake in vesicles from mitomycin C-treated rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号