首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
嗜热微生物及其降解剩余污泥的机理   总被引:2,自引:0,他引:2  
活性污泥法已经被广泛应用于污水处理中.剩余污泥是此过程的副产物,其处理费用约占污水处理系统总成本的25%~60%,处理不当则会带来严重的二次污染,成为目前污泥处理研究的难点之一.利用嗜热微生物降解污泥操作方便、经济性较好且易于管理,具有良好的应用前景.本文对污泥降解中的嗜热微生物、嗜热微生物污泥降解机理以及污泥降解过程中起重要作用的嗜热蛋白酶和脂肪酶的最新研究进展进行综述,归纳总结了影响嗜热微生物降解污泥的主要影响因素,并对嗜热微生物在污泥消化方面的应用研究进行展望.  相似文献   

2.
Malate dehydrogenase from a number of bacteria drawn from several genera and representing the mesophilic, moderately thermophilic and extremely thermophilic classes was isolated by procedures which involve only a small number of steps (in most cases only two), of which the key one is affinity chromatography on 5'-AMP--Sepharose and/or on NAD+--hexane--agarose. Electrophoretic analysis of the native enzymes in polyacrylamide gel and of the denaturated enzymes in sodium dodecyl sulphate/polyacrylamide gel revealed no significant protein impurity in the purified preparations. The yields ranged from about 40% to over 80%. The malate dehydrogenases from the extreme thermophiles and from some of the moderate thermophiles are appreciably less efficient catalytically than their mesophilic homologues.  相似文献   

3.
The application of 50-MPa pressure did not increase the thermostabilities of adenylate kinases purified from four related mesophilic and thermophilic marine methanogens. Thus, while it has been reported that some thermophilic enzymes are stabilized by pressure (D. J. Hei and D. S. Clark, Appl. Environ. Microbiol. 60:932-939, 1994), hyperbaric stabilization is not an intrinsic property of all enzymes from deep-sea thermophiles.  相似文献   

4.
Oxygen defense systems in obligately thermophilic bacteria   总被引:2,自引:0,他引:2  
Ten strains of Gram-negative, aerobic, obligately thermophilic bacteria were examined for their response to oxygen toxicity by comparing static with shaken cultures. All of the organisms tested had measurable levels of superoxide dismutase, catalase, and peroxidase. Aeration generally did not result in an increased level of superoxide dismutase in any of the thermophiles. Aeration of organisms obligate for n-alkane substrate caused an increase in cellular peroxidase levels and a corresponding decrease in catalase. The thermophiles that grew on either n-alkanes or complex media did not grow on the hydrocarbon in aerated culture but on a complex medium, aeration effected an increased level of catalase. With the exception of a pink-pigmented thermophile which, when aerated, did not have an increased level of the three oxygen defense enzymes, most of the thermophiles surveyed had an increased level of catalase or peroxidase when exposed to increased oxygen tension. The activity of the enzymes was determined at temperatures from 25 to 65 degrees C and the former temperature was satisfactory for these experiments.  相似文献   

5.
Biocatalytic peptide synthesis will benefit from enzymes that are active at low water levels in organic solvent compositions that allow good substrate and product solubility. To explore the use of proteases from thermophiles for peptide synthesis under such conditions, putative protease genes of the subtilase class were cloned from Thermus aquaticus and Deinococcus geothermalis and expressed in Escherichia coli. The purified enzymes were highly thermostable and catalyzed efficient peptide bond synthesis at 80 °C and 60 °C in neat acetonitrile with excellent conversion (>90%). The enzymes tolerated high levels of N,N-dimethylformamide (DMF) as a cosolvent (40–50% v/v), which improved substrate solubility and gave good conversion in 5+3 peptide condensation reactions. The results suggest that proteases from thermophiles can be used for peptide synthesis under harsh reaction conditions.  相似文献   

6.
Bacterial growth at the extremes of temperature has remained a fascinating aspect in the study of membrane function and structure. The stability of the integral membrane proteins of thermophiles make them particularly amenable to study. Respiratory enzymes of thermophiles appear to be functionally similar to the mesophilic enzymes but differ in their thermostability and unusual high turnover rates. Energy coupling at extreme temperatures seems inefficient as suggested by the high maintenance coefficients and the high permeability of the cell membrane to protons. Nevertheless, membranes maintain their structure at these extremes through changes in fatty acid acyl chain composition. Archaebacteria synthesize novel membrane-spanning lipids with unique physical characteristics. Thermophiles have adapted to life at extreme temperatures by using sodium ions rather than protons as coupling ions in solute transport. Genetic and biochemical studies of these systems now reveal fundamental principles of such adaptations. The recent development of reconstitution techniques using membrane-spanning lipids allows a rigorous biochemical characterization of membrane proteins of extreme thermophiles in their natural environment.  相似文献   

7.
In general, enzyme thermostability is an intrinsic property, determined by the primary structure of the protein. However, external environmental factors including cations, substrates, co-enzymes, modulators, polyols and proteins often increase enzyme thermostability. With some exceptions, enzymes present in thermophiles are more stable than their mesophilic counterparts. Some organisms produce enzymes with different thermal stability properties when grown at lower and higher temperatures. There are commercial advantages in carrying out enzymic reactions at higher temperatures. Some industrial enzymes exhibit high thermostability. More stable forms of other industrial enzymes are eagerly being sought.  相似文献   

8.
Comparison of the Arrhenius plots of three enzymes, formyltetrahydrofolate synthetase, glutathione reductase (GSSGR) and chorismate mutase (CM) from a thermophilic (Penicillium duponti) and a mesophilic (Penicillium chrysogenum) fungus reveals a fairly consistent pattern. In general, those enzymes extracted from mesophiles had lower activation energies than similar enzymes extracted from thermophiles. One enzyme studied, mesophilic glutathione reductase, exhibited a break in its Arrhenius plot. The allosteric enzyme studied showed slightly different sensitivities in the thermophilic versus the mesophilic extracts.  相似文献   

9.
Developments in industrially important thermostable enzymes: a review   总被引:41,自引:0,他引:41  
Cellular components of thermophilic organisms (enzymes, proteins and nucleic acids) are also thermostable. Apart from high temperature they are also known to withstand denaturants of extremely acidic and alkaline conditions. Thermostable enzymes are highly specific and thus have considerable potential for many industrial applications. The use of such enzymes in maximising reactions accomplished in the food and paper industry, detergents, drugs, toxic wastes removal and drilling for oil is being studied extensively. The enzymes can be produced from the thermophiles through either optimised fermentation of the microorganisms or cloning of fast-growing mesophiles by recombinant DNA technology. In this review, the source microorganisms and properties of thermostable starch hydrolysing amylases, xylanases, cellulases, chitinases, proteases, lipases and DNA polymerases are discussed. The industrial needs for such specific thermostable enzyme and improvements required to maximize their application in the future are also suggested.  相似文献   

10.

Background  

Thermostable enzymes from thermophiles have attracted extensive studies. In this investigation, a nuclease-encoding gene (designated as GBSV1-NSN) was obtained from a thermophilic bacteriophage GBSV1 for the first time.  相似文献   

11.
1. Most enzymes from extreme thermophiles do not possess higher specific activities than similar enzymes from mesophiles (measured at their respective growth temperatures). 2. However, using protein substrates, the specific activities of thermophilic proteinases are considerably higher than those of most microbial and eukaryotic proteinases. 3. This property could be attributed to purely kinetic influences on the enzyme, to some specific "design" feature of the proteinase, or to the effects of temperature on the substrate. 4. Comparisons of the rates of hydrolysis of large and small substrates by both mesophilic and thermophilic proteinases suggest that temperature-induced changes in substrate susceptibility are a major factor.  相似文献   

12.
Proteins from thermophilic organisms exhibit high thermal stability, but have structures that are very similar to their mesophilic homologues. In order to gain insight into the basis of thermostability, we have analyzed the medium- and long-range contacts in mesophilic and thermophilic proteins of 16 different families. We found that the thermophiles prefer to have contacts between residues with hydrogen-bond-forming capability. Apart from hydrophobic contacts, more contacts are observed between polar and non-polar residues in thermophiles than mesophiles. Residue-wise analysis showed that Tyr has good contacts with several other residues, and Cys has considerably higher long-range contacts in thermophiles compared with mesophiles. Furthermore, the residues occurring in the range of 31-34 residues apart in the sequence contribute significant long-range contacts to the stability of thermophilic proteins.  相似文献   

13.
Understanding the molecular basis for the enhanced stability of proteins from thermophiles has been hindered by a lack of structural data for homologous pairs of proteins from thermophiles and mesophiles. To overcome this difficulty, complete genome sequences from 9 thermophilic and 21 mesophilic bacterial genomes were aligned with protein sequences with known structures from the protein data bank. Sequences with high homology to proteins with known structures were chosen for further analysis. High quality models of these chosen sequences were obtained using homology modeling. The current study is based on a data set of models of 900 mesophilic and 300 thermophilic protein single chains and also includes 178 templates of known structure. Structural comparisons of models of homologous proteins allowed several factors responsible for enhanced thermostability to be identified. Several statistically significant, specific amino acid substitutions that occur going from mesophiles to thermophiles are identified. Most of these are at solvent-exposed sites. Salt bridges occur significantly more often in thermophiles. The additional salt bridges in thermophiles are almost exclusively in solvent-exposed regions, and 35% are in the same element of secondary structure. Helices in thermophiles are stabilized by intrahelical salt bridges and by an increase in negative charge at the N-terminus. There is an approximate decrease of 1% in the overall loop content and a corresponding increase in helical content in thermophiles. Previously overlooked cation-pi interactions, estimated to be twice as strong as ion-pairs, are significantly enriched in thermophiles. At buried sites, statistically significant hydrophobic amino acid substitutions are typically consistent with decreased side chain conformational entropy.  相似文献   

14.
Pressure Stabilization of Proteins from Extreme Thermophiles   总被引:5,自引:1,他引:4       下载免费PDF全文
We describe the stabilization by pressure of enzymes, including a hydrogenase from Methanococcus jannaschii, an extremely thermophilic deep-sea methanogen. This is the first published report of proteins from thermophiles being stabilized by pressure. Inactivation studies of partially purified hydrogenases from an extreme thermophile (Methanococcus igneus), a moderate thermophile (Methanococcus thermolithotrophicus), and a mesophile (Methanococcus maripaludis), all from shallow marine sites, show that pressure stabilization is not unique to enzymes isolated from high-pressure environments. These studies suggest that pressure stabilization of an enzyme may be related to its thermophilicity. Further experiments comparing the effects of increased pressure on the stability of α-glucosidases from the hyperthermophile Pyrococcus furiosus and Saccharomyces cerevisiae support this possibility. We have also examined pressure effects on several highly homologous glyceraldehyde-3-phosphate dehydrogenases from mesophilic and thermophilic sources and a rubredoxin from P. furiosus. The results suggest that hydrophobic interactions, which have been implicated in the stabilization of many thermophilic proteins, contribute to the pressure stabilization of enzymes from thermophiles.  相似文献   

15.
In today's world, there is an increasing trend towards the use of renewable, cheap and readily available biomass in the production of a wide variety of fine and bulk chemicals in different biorefineries. Biorefineries utilize the activities of microbial cells and their enzymes to convert biomass into target products. Many of these processes require enzymes which are operationally stable at high temperature thus allowing e.g. easy mixing, better substrate solubility, high mass transfer rate, and lowered risk of contamination. Thermophiles have often been proposed as sources of industrially relevant thermostable enzymes. Here we discuss existing and potential applications of thermophiles and thermostable enzymes with focus on conversion of carbohydrate containing raw materials. Their importance in biorefineries is explained using examples of lignocellulose and starch conversions to desired products. Strategies that enhance thermostablity of enzymes both in vivo and in vitro are also assessed. Moreover, this review deals with efforts made on developing vectors for expressing recombinant enzymes in thermophilic hosts.  相似文献   

16.
Many studies have been undertaken to characterise alcohol dehydrogenases (ADHs) from thermophiles and hyperthermophiles, mainly to better understand their activities and thermostability. To date, there are 20 thermophilic archaeal and 17 thermophilic bacterial strains known to have ADHs or similar enzymes, including the hypothetical proteins. Some of these thermophiles are found to have multiple ADHs, sometimes of different types. A rigid delineation of amino acid sequences amongst currently elucidated thermophilic ADHs and similar proteins is phylogenetically apparent. All are NAD(P)-dependent, with one exception that utilises the cofactor F(420) instead. Within the NAD(P)-dependent group, the thermophilic ADHs are orderly clustered as zinc-dependent ADHs, short-chain ADHs, and iron-containing/activated ADHs. Distance matrix calculations reveal that thermophilic ADHs within one type are homologous, with those derived from a single genus often showing high similarities. Elucidation of the enzyme activity and stability, coupled with structure analysis, provides excellent information to explain the relationship between them, and thermophilic ADHs diversity.  相似文献   

17.
Many microorganisms that grow at elevated temperatures are able to utilize a variety of carbohydrates pertinent to the conversion of lignocellulosic biomass to bioenergy. The range of substrates utilized depends on growth temperature optimum and biotope. Hyperthermophilic marine archaea (T(opt)>or=80 degrees C) utilize alpha- and beta-linked glucans, such as starch, barley glucan, laminarin, and chitin, while hyperthermophilic marine bacteria (T(opt)>or=80 degrees C) utilize the same glucans as well as hemicellulose, such as xylans and mannans. However, none of these organisms are able to efficiently utilize crystalline cellulose. Among the thermophiles, this ability is limited to a few terrestrial bacteria with upper temperature limits for growth near 75 degrees C. Deconstruction of crystalline cellulose by these extreme thermophiles is achieved by 'free' primary cellulases, which are distinct from those typically associated with large multi-enzyme complexes known as cellulosomes. These primary cellulases also differ from the endoglucanases (referred to here as 'secondary cellulases') reported from marine hyperthermophiles that show only weak activity toward cellulose. Many extremely thermophilic enzymes implicated in the deconstruction of lignocellulose can be identified in genome sequences, and many more promising biocatalysts probably remain annotated as 'hypothetical proteins'. Characterization of these enzymes will require intensive effort but is likely to generate new opportunities for the use of renewable resources as biofuels.  相似文献   

18.
Coenzyme A (CoA) holds a central position in cellular metabolism and therefore can be assumed to be an ancient molecule. Starting from the known E. coli and human enzymes required for the biosynthesis of CoA, phylogenetic profiles and chromosomal proximity methods enabled an almost complete reconstruction of archaeal CoA biosynthesis. This includes the identification of strong candidates for archaeal pantothenate synthetase and pantothenate kinase, which are unrelated to the corresponding bacterial or eukaryotic enzymes. According to this reconstruction, the topology of CoA synthesis from common precursors is essentially conserved across the three domains of life. The CoA pathway is conserved to varying degrees in eukaryotic pathogens like Giardia lamblia or Plasmodium falciparum, indicating that these pathogens have individual uptake-mechanisms for different CoA precursors. Phylogenetic analysis and phyletic distribution of the CoA biosynthetic enzymes suggest that the enzymes required for the synthesis of phosphopantothenate were recruited independently in the bacterial and archaeal lineages by convergent evolution, and that eukaryotes inherited the genes for the synthesis of pantothenate (vitamin B5) from bacteria. Homologues to bacterial enzymes involved in pantothenate biosynthesis are present in a subset of archaeal genomes. The phylogenies of these enzymes indicate that they were acquired from bacterial thermophiles through horizontal gene transfer. Monophyly can be inferred for each of the enzymes catalyzing the four ultimate steps of CoA synthesis, the conversion of phosphopantothenate into CoA. The results support the notion that CoA was initially synthesized from a prebiotic precursor, most likely pantothenate or a related compound.  相似文献   

19.
The Archaea, designated since 1979 as a separate Super-Kingdom (the highest taxonomic order), are a highly novel group of microorganisms which look much like bacteria but have many molecular and genetic characteristics that are more typical of eukaryotes. These unusual organisms can be conveniently divided according to their 'extreme' environmental niche, into three broad phenotypes: the thermophiles, methanogens and extreme halophiles. Each group has unique biochemical features which can be exploited for use in the biotechnological industries. The extreme molecular stability of thermophile enzymes, the novel C1 pathways of the methanogens and the synthesis of organic polymers by some halophiles are all currently or potentially valuable examples of the biotechnology of the Archaea.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号