首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We recently described a new type of assembly of collagen molecules, forming typical liquid crystalline phases in highly concentrated solutions after sonication. The present work shows that intact 300 nm long collagen molecules also form cholesteric liquid crystalline domains, but the time required is much longer, several weeks instead of several days. Differential calorimetry and X-ray diffraction show that sonication does not alter the triple-helical structure of the collagen fragments. In the viscous solutions, observed between crossed polars in optical microscopy, the textures vary as a function of the concentration. Molecules first align near the air interface at the coverslip edge, then as the concentration increases by slow evaporation of the solvent, the birefringence extends inwards and liquid crystalline domains progressively appear. For concentrations estimated to be above 100 mg/ml, typical textures and defects of cholesteric phases are obtained, at lower concentrations zig-zag extinction patterns and banded patterns are observed; all these textures are described and interpreted. The cholesteric packing of collagen fibrils in various extracellular matrices is known, and the relationship that can be made between the ordered phases obtained with collagen molecules in vitro and the related geometrical structures observed between fibrils in vivo is thoroughly discussed.  相似文献   

2.
The precise molecular mechanisms that determine the three-dimensional architectures of tissues remain largely unknown. Within tissues rich in extracellular matrix, collagen fibrils are frequently arranged in a tissue-specific manner, as in certain liquid crystals. For example, the continuous twist between fibrils in compact bone osteons resembles a cholesteric mesophase, while in tendon, the regular, planar undulation, or "crimp", is akin to a precholesteric mesophase. Such analogies suggest that liquid crystalline organisation plays a role in the determination of tissue form, but it is hard to see how insoluble fibrils could spontaneously and specifically rearrange in this way. Collagen molecules, in dilute acid solution, are known to form nematic, precholesteric and cholesteric phases, but the relevance to physiological assembly mechanisms is unclear. In vivo, fibrillar collagens are synthesised in soluble precursor form, procollagens, with terminal propeptide extensions. Here, we show, by polarized light microscopy of highly concentrated (5-30 mg/ml) viscous drops, that procollagen molecules in physiological buffer conditions can also develop long-range nematic and precholesteric liquid crystalline ordering extending over 100 microm(2) domains, while remaining in true solution. These observations suggest the novel concept that supra-fibrillar tissue architecture is determined by the ability of soluble precursor molecules to form liquid crystalline arrays, prior to fibril assembly.  相似文献   

3.
Freeze-fracture-etch replicas of concentrated DNA solutions which appeared, by polarized light microscopy, to be in a cholesteric-like liquid crystalline state were examined by high resolution transmission electron microscopy (TEM). Individual DNA molecules were resolvable, and the microscopic morphologies observed for such replicas confirmed the cholesteric organization of DNA molecules in this liquid crystalline state. Furthermore, replica morphologies were strikingly similar to TEM images of dinoflagellate chromosomes in both thin section and freeze-etch replicas, providing strong support for the cholesteric DNA packing model proposed for the organization of DNA in these chromosomes by Bouligand and Livolant.  相似文献   

4.
Spatial organization of collagen in annelid cuticle: order and defects   总被引:1,自引:0,他引:1  
The epidermis of Paralvinella grasslei (Polychaete, Annelida) is covered by an extracellular matrix, the cuticle, mainly composed as in other annelids of superimposed layers of non-striated collagen fibrils. The collagen fibrils of annelid cuticle are shown to be composed of parallel and sinuous microfibrils (thin sections and freeze-fracture replicas). The 3-dimensional organization of collagen is characterized by 2 different types of geometrical order: (a) Fibrils form a quasiorthogonal network, whose structure is comparable to that of a "plywood"; (b) Fibrils are helical, and goniometric studies show that microfibrils present a definite order within each fibril, which is termed "cylindrical twist". These 2 characteristics are those which have recently been evidenced in "blue phases", i.e., liquid crystals which are closely related to cholesteric liquid crystalline phases. Non-fluid analogues of cholesteric liquids are widespread among invertebrate cuticles and the presence of blue phase analogues suggests that a self-assembly mechanisms is involved in cuticle morpho-genesis, which is derived from that governing blue phase growth. The cuticular network presents local rearrangements of fibrils called "defects", despite the fact that they are elaborate structures which trigonal and pentagonal singularities. Branched fibrils are regularly observed. We discuss the involvement of these pattern disruptions in the cuticle growth process.  相似文献   

5.
Knight DP  Feng D 《Tissue & cell》1994,26(2):155-167
The egg capsule of the dogfish is a composite material containing collagenous fibrils and 2 mum spherical hydrophobic protein granules. The latter appear to owe much of their hydrophobicity to an exceptionally high tyrosine content (approximately 20% of total amino acid residues). The hydrophobic component appears to form as an emulsion in the secretory granules of the D and E zone gland cells of the nidamental gland. Droplets of the hydrophobic material appear to become coated with remarkably regular layers of radially-arranged collagen molecules which form a series of concentric, evenly spaced layers around each hydrophobic granule. Numerous disclinations were seen where the layers around adjacent granules interfered with one another. The layers are thought to represent a lamellar liquid crystalline phase previously described for this collagen (Knight et al., 1993). The fine structural appearance of the concentric layers and evidence for radial arrangement of collagen molecules within them is compatible with the suggestion that the layers are built from a dumbbell-shaped unit approximately 35 nm long with hydrophobic groups concentrated at the ends. This unit may represent a dumbbell-shaped molecule or an oligomer of two or more molecules lying parallel with one another in a head-to-tail arrangement. Such a unit can be readily incorporated into models for the micellar, hexagonal columnar and final fibrillar phases previously described for this collagen (Knight et al., 1993). Evidence from the TEM study of stretched egg capsule wall suggests that there is a mechanical interaction between the hydrophobic granules and the collagen fibrils in the fully formed material. We suggest that the radial, concentric layered arrangement of collagen molecules is established by hydrophobic interactions within the liquid crystalline material and locked into place by oxidative covalent cross-linking to give a 3-dimensional cross-linked meshwork of collagen fibrils and hydrophobic granules. The latter arrangement helps to account for the high tensilestrength and toughness of this material.  相似文献   

6.
A liquid crystal model for the structure of the collagen fibril explains how calcium phosphate crystals are capable of stiffening collagen fibrils in bone. Collagen fibrils consist of an oriented array of parallel rod-shaped collagen molecules. According to the liquid crystal model fibrils respond to tensile stress, applied in the axial direction, by some of the molecules tilting and changing their side-to-side arrangement. In bone the presence of crystals packed between the collagen molecules hinders the side-to-side rearrangement so that the response of the fibrils to stress is inhibited. Therefore the fibrils are stiffer in bone than in uncalcified tissue.  相似文献   

7.
5 alpha-Cholestan-3 beta-ol esters of aliphatic acids undergo both enantiotropic and monotropic changes of state. Ten saturated and three unsaturated esters have been examined by differential scanning calorimetry and polarizing microscopy to determine transition temperatures, enthalpies, and entropies. The results are compared with an analogous series of cholesterol esters. All esters of even-numbered n-alkanoic acids from C2 to C20 melt from a crystalline state to an isotropic liquid. The crystalline state has been studied by X-ray powder diffraction. The C8 to C20 esters have progressively increasing crystalline melting transition temperatures from 76 to 99 degrees C and possess similar X-ray powder diffraction patterns, suggesting that these compounds form an isostructural series. Esters of C2, C4, and C6 acids exhibit polymorphism. Crystalline cholestanol oleate melts to an isotropic liquid, whereas cholestanol linoleate and linolenate fail to crystallize, even after several months at -20 degrees C. Esters of the even-numbered saturated acids from C4 to C14 form monotropic cholesteric liquid crystalline phases. Esters C10, C12, and C14 form smectic liquid crystalline phases. Cholestanol oleate, linoleate, and linolenate form both cholesteric and smectic mesophases. The lower smectic to cholesteric and cholesteric to isotropic transition temperatures of the cholestanol esters compared to the corresponding transition temperatures of the analogous cholesterol esters suggest that the delta 5 double bond in cholesterol increases the thermal stability of the mesophases of cholesterol esters.  相似文献   

8.
The present article describes the three-dimensional arrangement of collagen fibrils in dermal plates of different species of Ostraciidae. These dermal plates or 'scutes' are transformed scales, which have a polygonal shape and form a rigid tiling. They are natural composites, associating a fibrous network with a mineral deposit lying at two different levels of the scute, the 'ceiling' and the 'floor', plus a set of similarly mineralized walls joining the two levels. The three-dimensional structure of the collagen network can be compared to that of 'plywood': fibrils align parallel within superposed layers of uniform thickness, and their direction changes from layer to layer. In the dermal plate, two types of plywood have been evidenced: (1) one lying between the two mineralized plates, where the orientation of fibrils rotates continuously, and (2) one under the lower plate, with thick layers of fibrils, each showing a constant orientation, but abrupt angular changes are observed at the transition from one layer to the following one. In oblique sections, both types of plywood reveal large series of arced patterns, testifying to a twisted arrangement of collagen fibrils, analogous to the arrangement of molecules or polymers in cholesteric liquid crystals. The network is reinforced by some collagen fibrils running unidirectionally and almost normally to the lamellate structure. Moreover in the overall organization of the scute, these plywood systems form a set of nested boxes. This original architecture is compared to the arrangement of the collagenous network previously described in most fish scales and in other extracellular matrices.  相似文献   

9.
Studies are described which strongly support a cholesteric liquid crystal-like quaternary structure for the DNA molecules of a biologically native chromosomal preparation from equine sperm cells. Discrete chromosomal fibers released from the head pieces of equine spermatozoon cells were prepared intact and probed for liquid crystalline ordering using reflectance and linear dichroism spectroscopy. Assuming cholesteric liquid crystalline order for the DNA molecules within the chromatin fibers, parameters measured experimentally were used to calculate the circular dichroism (CD) of the fibers. The calculated results compare remarkably well with the experimentally measured CD of the sperm chromosomal fibers and suggest a specific cholesteric liquid crystal-like quanternary structural ordering of DNA molecules in equine sperm chromatin fibers. The potential of CD spectroscopy as a tool for the study of long-range ordering of macromolecules is discussed.  相似文献   

10.
Conditions of formation of DNA aggregates by the addition of spermidine were determined with 146 base pair DNA fragments as a function of spermidine and NaCl concentration. Two different phases of spermidine-DNA complexes are obtained: a cholesteric liquid crystalline phase with a large helical pitch, with interhelix distances ranging from 31.6 to 32.6 A, and a columnar hexagonal phase with a restricted fluidity in which DNA molecules are more closely packed (29.85 +/- 0.05 A). In both phases, the DNA molecule retains its B form. These phases are always observed in equilibrium with the dilute isotropic solution, and their phase diagram is defined for a DNA concentration of 1 mg/ml. DNA liquid crystalline phases induced by spermidine are compared with the DNA mesophases already described in concentrated solutions in the absence of spermidine. We propose that the liquid crystalline character of the spermidine DNA complexes is involved in the stimulation of the functional properties of the DNA reported in numerous experimental articles, and we discuss how the nature of the phase could regulate the degree of activity of the molecule.  相似文献   

11.
The alterations of hierarchical structures of bone by gene mutation in the zebrafish, which is associated with abnormal bone mineralization and bone disease, were reported for the first time in this paper. Bone samples from the liliput(dtc232) (lil) mutants as well as normal controls were studied by polarized light microscope, scanning electron microscope (SEM), transmission electron microscope (TEM), and atomic force microscope (AFM). Light microscopy examinations reveal that the lil bone has asymmetric mineralization and much thinner bone wall. The SEM studies show a lot of microcracks in lil bone wall. And the plywood-like structure of the normal bone does not exist in the lil bone, which is confirmed by the measurements of polarized light microscope. Furthermore, the TEM investigations display the collagen fibrils with two typical diameters. For the thinner collagen fibrils, the diameter of lil bone is about twice larger than that of the wild-type bone. And for the thicker one, there is a small increase in diameter after mutation and the band periodicity of the lil bone is similar with that of wild-type bone, which is consistent with the result of AFM. The morphologies of the minerals revealed that the mutated mineral was in bigger size and the shape was irregular but not plate-shaped.  相似文献   

12.
Radial packing, order, and disorder in collagen fibrils.   总被引:9,自引:2,他引:7       下载免费PDF全文
Collagen fibrils resemble smectic, liquid crystals in being highly ordered axially but relatively disordered laterally. In some connective tissues, x-ray diffraction reveals three-dimensional crystallinity in the molecular packing within fibrils, although the continued presence of diffuse scatter indicates significant underlying disorder. In addition, several observations from electron microscopy suggest that the molecular packing is organized concentrically about the fibril core. In the present work, theoretical equatorial x-ray diffraction patterns for a number of models for collagen molecular packing are calculated and compared with the experimental data from tendon fibrils. None of the models suggested previously can account for both the crystalline Bragg peaks and the underlying diffuse scatter. In addition, models in which any of the nearest-neighbor, intermolecular vectors are perpendicular to the radial direction are inconsistent with the observed radial orientation of the principal approximately 4 nm Bragg spacing. Both multiple-start spiral and concentric ring models are devised in which one of the nearest-neighbor vectors is along the radial direction. These models are consistent with the radial orientation of the approximately 4 nm spacing, and energy minimization results in radially oriented crystalline domains separated by disordered grain boundaries. Theoretical x-ray diffraction patterns show a combination of sharp Bragg peaks and underlying diffuse scatter. Close agreement with the observed equatorial diffraction pattern is obtained. The concentric ring model is consistent with the observation that the diameters of collagen fibrils are restricted to discrete values.  相似文献   

13.
Atherosclerotic plaques (six cases) with well-documented clinical history were analysed using histology, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX) spectroscopy, infrared spectroscopy (IR), thermogravimetry (TG), and high-resolution synchrotron X-ray diffraction. All samples contained about 60-70 wt% biological carbonated apatite (in dry state) in a nanocrystalline form with particle sizes of about 20 nm. Structurally, there are strong similarities to bone mineral. Ultrastructural investigations documented typical calcospherites, mineralisation processes starting at collagen fibrils and ring-shaped crystalline mineralised structures. There were no significant ultrastructural or chemical differences between the calcifications of individual patients.  相似文献   

14.
The ultrastructure of isolated fibrils of Chondrosia reniformis sponge collagen was investigated by collecting characteristic data, such as fibril thickness, width, D-band periodicity, and height modulation, using atomic force microscopy (AFM) and transmission electron microscopy (TEM). Therefore an adapted pre-processing of the insoluble collagen into homogeneous suspensions using neutral buffer solutions was essential, and several purification steps have been developed. Fourier transform infrared reflection-absorption spectroscopy (FT-IRAS) of the purified sponge collagen showed remarkable analogy of peak positions and intensities with the spectra of fibrillar calf skin type I collagen, despite the diverse phylogenetic and evolutionary origin. The sponge collagen's morphology is compared with that of other fibrillar collagens, and the typical banding of the separated single fibrils is discussed by comparison of topographical data obtained using AFM and corresponding TEM investigations using common staining methods. As the TEM images of the negatively stained fibrils showed alternating dark and light bands, AFM revealed a characteristic periodicity of protrusions (overlap zones) followed by two equal interband regions (gap zones). AFM and TEM results were correlated and multiperiodicity in Chondrosia collagen's banding is demonstrated. The periodic dark bands observed in TEM images correspond directly to the periodic protrusions seen by AFM. As a result, we provide an improved, updated model of the collagen's structure and organization.  相似文献   

15.
The effect of dipalmitoyl phosphatidyl choline (DPPC), the major phospholipid component of pulmonary surfactant, on the precipitation of collagen in the form of native fibrils and segment-long-spacing (SLS) aggregates was studied in vitro. The effects of DPPC on both phases of collagen fibrillogenesis were analyzed spectrophotometrically, and alterations in the morphology of precipitated fibrils and SLS aggregates were ascertained by transmission electron microscopy (TEM). Low concentrations of DPPC inhibited the growth phase of fibrillogenesis, while higher concentrations were required to inhibit nucleation. Both the meshwork density and mean width of precipitated fibrils were altered by DPPC, as was the size of SLS aggregates. Segment-long-spacing aggregates prepared from pepsin-treated collagen were inhibited to a greater degree than SLS aggregates prepared from untreated collagen, indicating that the pepsin-susceptible residues of the telopeptide extensions of tropocollagen molecules stabilize SLS aggregates against the effects of DPPC. Based on these results and the inhibition of the growth phase at lower concentrations than those which inhibited the nucleation phase of fibrillogenesis, it was concluded that the primary mechanism of DPPC inhibition is electrostatic interference between the positively charged phospholipid molecules and the net positive charge of collagen. It is proposed that pathological conditions involving the pulmonary epithelium may allow interaction between surfactant and collagen, which could further weaken the interstitial connective tissue.  相似文献   

16.
Fibril formation by collagen from piglet skin was studied at temperatures of 28–39°C. Collagen fibrils obtained in this temperature range differ in the degree of ordering. Electron microscopy shows that fibrils of minimal diameter are formed at physiological pH, ionic strength (PBS), and temperature. The greater diameter of fibrils formed at 34.5°C is due to enhanced collagen hydration. Fibril diameter at 38.5°C is increased because of cooperative unfolding of the triple helix and weaker binding between collagen molecules. The optimal temperature for fibrillogenesis appears to be 36.5°C, and such fibrils are most similar to those observed in vivo.  相似文献   

17.
Feng D  Knight DP 《Tissue & cell》1994,26(5):649-659
The collagen of the egg capsule of the dogfish, Scyliorhinus canicula is stored and secreted by the secretory cells of the D-zone of the nidamental gland (Rusaou?n-Innocent, 1990b). The collagen appears to pass through several morphologically distinct textures during storage, secretion and fibril formation which may represent different lyotropic liquid crystalline phases (Knight et al., 1993). In the present communication we report evidence that a fall in hydrogen ion concentration induces fibrillogenesis during the secretion of the dogfish egg capsule. In an attempt to understand the factors involved in collagen assembly, we investigated the effects of subjecting isolated collagen storage granules in vitro to solutions ranging in pH from 2-11 and Na(+), K(+), Ca(++), Mg(++), Zn(++) and Cu(++) ions at concentrations varying from 0.01-0.5 M. From pH 2 to pH 4 most granules appeared completely amorphous; from pH 5 to pH 7 granules showed the following previously reported liquid crystalline textures: isotropic, lamellar, micellar, hexagonal columnar, transversely banded twisted nematic, and unbanded twisted nematic. At pH 8 granules showed both the hexagonal columnar phase (phase IV) and small quantities of the final fibrillar phase together with a previously undescribed texture. The latter texture, which we refer to as phase VII, had a D period (17.5 nm) half that of the lamellar texture (phase II) and the final egg capsule fibrils (phase VI). From pH 9 to pH 11, only the final fibrillar texture (phase VI) together with small quantities of the new texture (phase VII) were present. Na(+), K(+), Ca(++), Mg(++), Zn(++) and Cu(++) ions did not appear to have an observable effect on the phases found in isolated granules at pH 7.0. The role of pH in collagen storage and fibrillogenesis was confirmed by direct estimation of the pH in vivo using vital staining with neutral red, a range of pH indicators applied to unfixed cryostat sections and direct measurements of the pH of the jelly within the egg capsule. The implications of these findings for the mechanism of collagen storage and fibrillogenesis in the dogfish egg capsule and other collagenous systems are discussed.  相似文献   

18.
The geometrical characteristics of fibrillar organizations are studied by electron microscopy in structures obtained in vitro in cell-free assembled collagen gels, and in vivo in dermal tracts of anuran skin. We analyze several characteristics of the fibrils including the diameter, the outline, the curvature and the extrafibrillar space. We analyze also the variation of fibrillar orientation (twist) in longitudinal and transverse thin sections of these structures. The results are compared in the Discussion to determine to what extent these fibrillar patterns are similar to liquid crystalline organizations and to what extent they result from a self-assembly or a cell-assembly process.  相似文献   

19.
Variation of collagen fibril structure in tendon was investigated by x-ray diffraction. Anatomically distinct tendons from single species, as well as tendons from different species, were examined to determine the variations that exist in both the axial and lateral structure of the collagen fibrils. The meridional diffraction is derived from the axial collagen fibril structure. Anatomically distinct tendons of a particular species give meridional patterns that are indistinguishable within experimental error. The meridional diffraction patterns from tendons of different mammals are similar but show small species-specific variations, most noticeably in the 14th–18th orders. Tendons of birds also give meridional patterns that are similar to each other, but the avian patterns differ considerably from the mammalian ones. Avian tendons give stronger odd and weaker even low orders, a feature consistent with a reduced gap:overlap ratio, and have a distinctive intensity pattern for the higher meridional orders. Interpretation of these differences has been approached using biochemical data, diffraction by reconsituted fibers of purified collagen, and Fourier transform analysis. From these methods, it appears that the variations observed in the lower orders (2nd–8th) and in the higher orders (29th–52nd) are probably related to differences in the primary structure of the Type I collagen found in the different species. The variations observed in the 14th–18th orders appear not to be related to features within the triple-helical domain of the molecule. Equatorial diffraction yields information on the lateral packing of collagen molecules in the fibrils, and considerable variation was seen in different tendons. Rat tail tendon gives sharp Bragg reflections, demonstrating the presence of a crystalline lateral arrangement of molecules in the fibril. For the first time, sharp lattice reflections similar to those in rat tail tendon have been observed in nontail tendons, including rat achilles tendon, rabbit leg tendon, and wing and leg tendons of quail. In the rabbit and quail tendons, one of the strong equatorial reflections characteristic of the rat tendon pattern, at 1.26 nm, was absent. The positions of the equatorial maxima, which are a measure of intermolecular spacing, varied considerably, being smallest in the specimens displaying crystalline packing. The intermolecular distance in chiken and turkey leg tendons is longer than that found in mammalian tendons, or in avian wing tendons, which supports the hypothesis that a larger intermolecular spacing is characteristic of tendons that calcify. Thus, x-ray diffraction indicates there are reproducible differences in both the axial and lateral structure of collagen fibrils among different tendons. This work on tendon, a tissue containing almost exclusively Type I collagen as its major component, should serve as a basis for analyzing the structure of other connective tissues, which contain different genetic types of collagen and larger amounts of noncollagenous components.  相似文献   

20.
Microstructures of non-unions of human humeral shaft fractures were investigated by using scanning electron microscopy, transmission electron microscopy, and X-ray microdiffraction. The non-union has a trabeculae structural framework similar to woven bone. Among the trabeculae are cavities that are subdivided into small chambers by thin plates of collagen fibrils. Some chambers are filled with variously shaped mineralized particles several micrometers in size. The collagen fibrils in both the trabeculae and the thin plates were only slightly mineralized by hydroxyapatite. Vesicles loaded with noncrystalline calcium phosphate (NCP) were observed in most mineralized particles, and brushite crystals with special morphology were seen to be embedded in some particles in irregular shapes. X-ray microdiffraction results indicated that the mineral phases in the non-unions were mainly NCP in addition to small amounts of hydroxyapatite and brushite. NCP deposition and insufficient mineralization of the collagen fibrils may be two important microstructural features of the non-unions of human humeral shaft fractures different from normally repaired bone callus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号