首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Characterization of cloned ribosomal DNA from Drosophila hydei.   总被引:8,自引:5,他引:3       下载免费PDF全文
The structure of ribosomal genes from the fly Drosophila hydei has been analyzed. EcoRI fragments, cloned in a plasmid vector, were mapped by restriction enzyme analysis. The lengths of the regions coding for 18S and 28S rRNA were defined by R-loop formation. From these data a physical map of the rRNA genes was constructed. There are two major types of rDNA units in D. hydei, one having a size of 11 kb and the other a size of 17 kb. The 17 kb unit results from an intervening sequence (ivs) of 6.0 kb, interrupting the beta-28S rRNA coding region. Some homology between th D. hydei ivs and D. melanogaster type 1 ivs has been described previously (1). However, the restriction sites within these ivs show considerable divergence. Whereas D. hydei rDNA D. melanogaster rDNA, the nontranscribed spacer has little, if any, sequence homology. Despite difference in sequence, D. hydei and D. melanogaster spacers show structural similarities in that both contain repeated sequence elements of similar size and location.  相似文献   

2.
T Barnett  P M Rae 《Cell》1979,16(4):763-775
A large proportion of the 28S ribosomal RNA genes in Drosophila virilis are interrupted by a DNA sequence 9.6 kilobase pairs long. As regards both its presence and its position in the 28S gene (about two thirds of the way in), the D. virilis rDNA intervening sequence is similar to that found in D. melanogaster rDNA, but lengths differ markedly between the two species. Degrees of nucleotide sequence homology have been detected bewteen rDNA interruptions of the two species. This homology extends to putative rDNA intervening sequences in diverse higher diptera (other Drosophila species, the house fly and the flesh fly), but hybridization of cloned D. melanogaster and D. virilis rDNA interruption segments to DNA of several lower diptera has been negative. As is the case with melanogaster rDNA interruptions, segments of the virilis rDNA intervening sequence hybridize with non-rDNA components of the virilis genome, and interspecific homology may involve these non-rDNA sequences as well as rDNA interruptions. There is, however, evidence from buoyant density fractionation of DNA that the distributions of interruption-related sequences are distinct in D. melanogaster and D. virilis genomes. Moreover, thermal denaturation studies have indicated differing extents of homology between hybridizable sequences in D. virilis DNA and different segments of the D. melanogaster rDNA intervening sequence. We infer from our studies that rDNA intervening sequences are prevalent among higher diptera; that in the course of the evolution of these organisms, elements of the intervening sequences have been moderately to highly conserved; and that this conservation extends in at least two distantly related species of Drosophila to similar sequences found elsewhere in the genomes.  相似文献   

3.
4.
We have prepared a partial gene library of sheared DNA from the fungus fly, Sciara coprophila, by dA-T tailing and insertion into pBR322. Two ribosomal DNA clones which differ from the usual ribosomal DNA organization in this organism were studied in detail. Clone pBc 1L-1 has an intervening sequence of 1.4 kb, and clone pBc 6D-6 has an intervening sequence of 0.9 kb. These intervening sequences occur in about the same position in 28S rDNA, but do not appear to share sequence homology with one another. Previously we found that 90% of Sciara ribosomal DNA is homogenous and lacks an intervening sequence, and our present data explains the size heterogeneity found in most of the remaining 10%. We have found no evidence of size heterogeneity in the nontranscribed spacer.  相似文献   

5.
6.
7.
8.
Ribosomal genes have been localized on mitotic and lampbrush chromosomes of 20 specimens of Triturus vulgaris meridionalis by in situ hybridization with 3H 18S+28S rRNA. The results may be summarized as follows: 1) each individual shows positive in situ hybridization at the nucleolus organizing region (NOR) on chromosome XI; 2) in addition, many specimens exhibit a positive reaction in chromosomal sites other than the NOR (additional ribosomal sites); 3) the chromosomal distribution of the additional sites appears to be identical in different tissues from the same specimen and to follow a specific individual pattern; 4) the additional ribosomal sites are preferentially found at the telomeric, centromeric or C-band regions of the chromosomes involved.Abbreviations rRNA ribosomal RNA - NOR nucleolus organizer region - rDNA the DNA sequences coding for 18S+28S rRNA plus the intervening spacer sequences - SSC 0.15 M sodium chloride, 0.015 sodium citrate, pH 7  相似文献   

9.
Nontranscribed spacers in Drosophila ribosomal DNA   总被引:3,自引:0,他引:3  
Ribosomal DNA nontranscribed spacers in Drosophila virilis DNA have been examined in some detail by restriction site analysis of cloned segments of rDNA, nucleic acid hybridizations involving unfractionated rDNA, and base composition estimates. The overall G+C content of the spacer is 27–28%; this compares with 39% for rDNA as a whole, 40% for main band DNA, and 26% for the D. virilis satellites. Much of the spacer is comprised of 0.25 kb repeats revealed by digestion with Msp I, Fnu DII or Rsd I, which terminate very near the beginning of the template for the ribosomal RNA precursor. The spacers are heterogeneous in length among rDNA repeats, and this is largely accounted for by variation among rDNA units in the number of 0.25 kb elements per spacer. Despite its high A+T content and the repetitive nature of much of the spacer, and the proximity of rDNA and heterochromatin in Drosophila, pyrimidine tract analysis gave no indication of relatedness between the spacer and satellite DNA sequences. Species of Drosophila closely related to D. virilis have rDNA spacers that are homologous with those in D. virilis to the extent that hybridization of a cloned spacer segment of D. virilis rDNA to various DNA is comparable with hybridization to homologous DNA, and distributions of restriction enzyme cleavage sites are very similar (but not identical) among spacers of the various species. There is spacer length heterogeneity in the rDNA of all species, and each species has a unique major rDNA spacer length. Judging from Southern blot hybridization, D. hydei rDNA spacers have 20–30% sequence homology with D. virilis rDNA spacers, and a repetitive component is similarly sensitive to Msp I and Fnu DII digestion, D. melanogaster rDNA spacers have little or no homology with counterparts in D. virilis rDNA, despite a similar content of 0.25 kb repetitive elements. In contrast, sequences in rDNA that encode 18S and 28S ribosomal RNA have been highly conserved during the divergence of Drosophila species; this is inferred from interspecific hybridizations involving ribosomal RNA and a comparison of distributions of restriction enzyme cleavage sites in rDNA.Dedicated to Professor Wolfgang Beermann on the occasion of his sixtieth birthday  相似文献   

10.
We analyzed sequences of the D1D2 domain of the 26S ribosomal RNA gene (26S rDNA sequence), and the region of internal transcribed spacer 1, 5.8S ribosomal RNA gene and internal transcribed spacer 2 (ITS sequence) of the miso and soy sauce fermentation yeasts, Candida etchellsii and Candida versatilis, in order to evaluate the usefulness of this sequence analysis for identification and typing of these two species. In the 26S rDNA sequence method, the numbers of base substitutions among C. etchellsii strains were up to 2 in 482 bp (99.6% similarity), and they were divided into three types (types A, B, and C). Those of C. versatilis strains were also up to 2 in 521 bp (99.6% similarity) and they were divided into three types (types 1, 2, and 3). In the ITS sequence method, those of C. etchellsii strains were zero in 433 bp (type a, 100% similarity). Those of C. versatilis were 5 in 409 bp (98.8% similarity), divided into 4 types (types I, II, III and IV). It was found that molecular methods based on the sequences of the 26S rDNA D1D2 domain and the ITS region were rapid and precise compared with the physiological method for the identification and typing of these two species.  相似文献   

11.
12.
Extrachromosomal ribosomal RNA genes in Tetrahymena: structure and evolution   总被引:21,自引:0,他引:21  
The macronuclear ribosomal RNA genes from a number of strains within several species of Tetrahymena have been characterized. Restriction enzyme analysis revealed that individual strains all contained entirely homogeneous populations of extrachromosomal palindromic ribosomal DNA, varying in molecular size from 12 × 106 to 14 × 106 in different strains. Considering that the evolutionary distance among some of the species is estimated to be of the order of 106 years, the rDNA from all the species exhibited a strikingly high similarity in the localization of their restriction sites. Nevertheless, differences both inside and outside the gene region were clearly detectable, showing that the rDNA sequences have diverged in all species.Genetic polymorphism with respect to rDNA structure exists in Tetrahymena, but seems to be rare. In only two out of five species examined (T. borealis and T. pigmentosa) interbreeding strains differing in rDNA structure were found. While the differences detected in the T. borealis rDNA were confined to a small size difference located at the non-coding ends of the molecule, several differences were detected in the rDNA from the T. pigmentosa strains. One of the differences was shown to be due to the presence of an intervening sequence within the structural gene for 26 S rRNA in some of the strains. An intervening sequence of similar size located at the same position within the 26 S gene region was found by R-loop mapping in all strains of the species T. thermophila. Restriction enzyme analysis indicates that the rDNA from two other species contains a similar intervening sequence, and we therefore suggest that the size and localization of the intervening sequence is evolutionarily stable. The two intervening sequences examined so far, however, are not identical, as revealed by restriction enzyme mapping.  相似文献   

13.
The rDNA in Dictyostelium discoideum is organized in linear, extrachromosomal, palindromic dimers of approximately 88 X 10(3) bases in length. The dimers are repeated about 90 times per haploid genome. Using indirect end-labeling, we have mapped micrococcal nuclease and DNAase I-sensitive sites in the chromatin near the rDNA telomeres. This region is 3' to the 36 S rRNA coding region and contains a single 5 S rRNA cistron but is primarily non-coding. We have observed somewhat irregularly spaced but specific phasing of nuclease-sensitive sites relative to the underlying DNA sequence. Comparison of the sites in chromatin with those in naked DNA reveals an unusual and striking pattern: the sites in naked DNA that are attacked most readily by both nucleases, presumably because of the specificity of the nucleases for certain sequences or physical characteristics of the DNA, appear to be the same sites that are most protected in chromatin. This pattern extends over most of a 10(4) base region, from the sequence immediately distal to the 36 S rRNA coding region and extending to the terminus. Although much of the sequence-specific phasing is irregularly spaced, salt extraction data are consistent with the presence of nucleosomes. In addition, phasing in the terminal region may be directed partially by proteins that do not bind DNA as tightly as do core histones. We present a model for phasing in spacer regions in which the sequence preferences of nucleases such as micrococcal nuclease and DNAase I may be useful tools in predicting nucleosome placement.  相似文献   

14.
We analyzed sequences of the D1D2 domain of the 26S ribosomal RNA gene (26S rDNA sequence), the internal transcribed spacer 1, the 5.8S ribosomal RNA gene, and the internal transcribed spacer 2 (the ITS sequence) from 46 strains of miso and soy sauce fermentation yeast, Zygosaccharomyces rouxii and a closely related species, Z. mellis, for typing. Based on the 26S rDNA sequence analysis, the Z. rouxii strains were of two types, and the extent of sequence divergence between them was 2.6%. Based on the ITS sequence analysis, they were divided into seven types (I-VII). Between the type strain (type I) and type VI, in particular, a 12% difference was detected. The occurrence of these nine genotypes with a divergence of more than 1% in these two sequences suggests that Z. rouxii is a species complex including novel species and hybrids. Z. mellis strains were of two types (type alpha and type beta) based on the ITS sequence. Z. rouxii could clearly be distinguished from Z. mellis by 26S rDNA and ITS sequence analyses, but not by the 16% NaCl tolerance, when used as the sole key characteristic for differentiation between the two species.  相似文献   

15.
In Triturus vulgaris meridionalis, the 18S + 28S rDNA sequences have been shown to be located in a number of additional chromosomal sites besides the nucleolus organizing region. The additional ribosomal sites have been found to vary as to their number and chromosomal location in different individuals of the species.—The data presented in this study concern the chromosomal distribution of the ribosomal sequences as analyzed by in situ hybridization technique in two individuals as well as in their offspring. The evidence obtained by this analysis indicates quite clearly that all 18S + 28S rRNA sites present in each individual genome are inherited according to simple mendelian principles.Abbreviations rRNA ribosomal RNA - NOR nucleolus organizer region - rDNA DNA coding for 18S+28S rRNA plus the intervening spacers - SSC 0.15M Sodium chloride, 0.015 M Sodium citrate, pH 7 - RNase ribonuclease  相似文献   

16.
A complete single unit of a ribosomal RNA gene (rDNA) of M. croslandi was sequenced. The ends of the 18S, 5.8S and 28S rRNA genes were determined by using the sequences of D. melanogaster rDNAs as references. Each of the tandemly repeated rDNA units consists of coding and non-coding regions whose arrangement is the same as that of D. melanogaster rDNA. The intergenic spacer (IGS) contains, as in other species, a region with subrepeats, of which the sequences are different from those previously reported in other insect species. The length of IGSs was estimated to be 7-12 kb by genomic Southern hybridization, showing that an rDNA repeating unit of M. croslandi is 14-19 kb-long. The sequences of the coding regions are highly conserved, whereas IGS and ITS (internal transcribed spacer) sequences are not. We obtained clones with insertions of various sizes of R2 elements, the target sequence of which was found in the 28S rRNA coding region. A short segment in the IGS that follows the 3' end of the 28S rRNA gene was predicted to form a secondary structure with long stems.  相似文献   

17.
We compared the DNA sequences of the genus Metagonimus: M. yokogawai, M. takahashii, and M. miyatai. We obtained 28S D1 ribosomal DNA (rDNA) and mitochondrial cytochrome c oxidase subunit I (mtCOI) fragments from the adult worms by PCR, that were cloned and sequenced. Phylogenetic relationships inferred from the nucleotide sequences of the 28S D1 rDNA and mtCOI gene. M. takahashii and M. yokogawai are placed in the same clade supported by DNA sequence and phylogenic tree analysis in 28S D1 rDNA and mtCOI gene region. The above findings tell us that M. takahashii is closer to M. yokogawai than to M. miyatai genetically. This phylogenetic data also support the nomination of M. miyatai as a separate species.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号