首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The depletion of an inositol 1, 4,5-trisphosphate-sensitive intracellular Ca2+ pool has been proposed to be the signal for Ca2+ entry in agonist-activated cells. Consistent with this idea, thapsigargin, which releases intracellular Ca2+ without inositol phosphate formation, has been reported to activate Ca2+ entry in certain cells. We now report the effects of thapsigargin on Ca2+ entry in parotid acinar cells. In fura-2-loaded parotid acinar cells, thapsigargin caused a sustained elevation of [Ca2+], but did not increase inositol phosphate formation. In the absence of extracellular Ca2+, the increase in [Ca2+], was transient, suggesting that thapsigargin activates both the release of Ca2+ from intracellular stores and the entry of Ca2+ from the extracellular space. In the absence of extracellular Ca2+, pretreatment with methacholine, an agonist believed to mobilize Ca2+ through the production of inositol 1,4,5-trisphosphate, inhibited but did not completely block the response to thapsigargin; likewise, pretreatment with thapsigargin inhibited the response to methacholine. In permeabilized cells, thapsigargin gradually released Ca2+, whereas inositol 1,4,5-trisphosphate caused a rapid and transient discharge of Ca2+. The simultaneous addition of thapsigargin with inositol 1,4,5-trisphosphate evoked a maximum Ca2+ release similar to that for inositol 1,4,5-trisphosphate alone, but the reuptake seen with inositol 1,4,5-trisphosphate alone was abolished. In intact cells, methacholine and thapsigargin together produced a greater initial release of Ca2+ than either alone, but they were not additive in the sustained phase of Ca2+ mobilization. These results demonstrate that the mechanisms for activation of Ca2+ entry by thapsigargin and methacholine are the same and are consistent with the idea that entry is initiated by the depletion of the intracellular inositol 1,4,5-trisphosphate-sensitive Ca2+ pool. The results also indicate that, in contrast to previously proposed models, Ca2+ entry into agonist-activated cells occurs directly across the plasma membrane to the cytoplasm rather than through a cycle of uptake and release by the intracellular Ca2+ pool.  相似文献   

2.
Signal transduction by the T-cell antigen receptor involves the turnover of polyphosphoinositides and an increase in the concentration of cytoplasmic free Ca2+ ([Ca2+]i). This increase in [Ca2+]i is due initially to the release of Ca2+ from intracellular stores, but is sustained by the influx of extracellular Ca2+. To examine the regulation of sustained antigen-receptor-mediated increases in [Ca2+]i, we studied the relationships between extracellular Ca2+ influx, the mobilization of Ca2+ from intracellular stores, and the contents of inositol polyphosphates after stimulation of the antigen receptor on a human T-cell line, Jurkat. We demonstrate that sustained antigen-receptor-mediated increases in [Ca2+]i are associated with ongoing depletion of intracellular Ca2+ stores. When antigen-receptor-ligand interactions are disrupted, [Ca2+]i and inositol 1,4,5-trisphosphate return to basal values over 3 min. Under these conditions, intracellular Ca2+ stores are repleted if extracellular Ca2+ is present. There is a tight temporal relationship between the fall in [Ca2+]i, the return of inositol 1,4,5-trisphosphate to basal values, and the repletion of intracellular Ca2+ stores. Reversal of the increase in [Ca2+]i preceeds any fall in inositol tetrakisphosphate by 2 min. These studies suggest that sustained antigen-receptor-induced increases in [Ca2+]i, although dependent on extracellular Ca2+ influx, are also regulated by ongoing inositol 1,4,5-trisphosphate-mediated intracellular Ca2+ mobilization. In addition, an elevated concentration of inositol tetrakisphosphate in itself is insufficient to sustain an increase in [Ca2+]i within Jurkat cells.  相似文献   

3.
To investigate the mechanisms by which inositol phosphates regulate cytosolic free Ca2+ concentration ([Ca2+]c), we injected Xenopus oocytes with inositol phosphates and measured Ca2+-activated Cl- currents as an assay of [Ca2+]c. Inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) injection (0.1-10.0 pmol) induced an initial transient Cl- current (I1) followed by a second more prolonged Cl- current (I2). Both currents were Ca2+-dependent, but the source of Ca2+ was different. Release of intracellular Ca2+ stores produced I1, whereas influx of extracellular Ca2+ produced I2; Ca2+-free bathing media and inorganic calcium channel blockers (Mn2+, Co2+) did not alter I1 but completely and reversibly inhibited I2. Injection of the Ins(1,4,5)P3 metabolite, inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4) (0.2-10.0 pmol) generated a Ca2+-dependent Cl- current with superimposed current oscillations that resulted from release of intracellular Ca2+, not Ca2+ influx. Injection of the Ins(1,3,4,5)P4 metabolite, inositol 1,3,4-trisphosphate (10.0 pmol), or the synthetic inositol trisphosphate isomer, inositol 2,4,5-trisphosphate (1.0-10.0 pmol), mimicked the effect of Ins(1,4,5)P3, stimulating an I1 resulting from release of intracellular Ca2+ and an I2 resulting from influx of extracellular Ca2+. The results indicate that several inositol trisphosphate isomers stimulate both release of intracellular Ca2+ and influx of extracellular Ca2+. Ins(1,3,4,5)P4 also stimulated release of intracellular Ca2+, but it was neither sufficient nor required for Ca2+ influx.  相似文献   

4.
C62B rat glioma cells respond to muscarinic cholinergic stimulation with transient inositol phosphate formation and phospholipase A2-dependent arachidonic acid liberation. Since phospholipase A2 is a Ca2+-sensitive enzyme, we have examined the role of the agonist-stimulated Ca2+ response in production of the arachidonate signal. The fluorescent indicator fura-2 was used to monitor changes in cytoplasmic Ca2+ levels ([Ca2+]i) of C62B cells following acetylcholine treatment. In the presence of extracellular Ca2+, acetylcholine induces a biphasic [Ca2+]i response consisting of an initial transient peak that precedes arachidonate liberation and a sustained elevation that outlasts the phospholipase A2 response. The initial [Ca2+]i peak is not altered by the absence of external Ca2+ and therefore reflects intracellular Ca2+ mobilization. The sustained elevation phase is dependent on the influx of external Ca2+; it is lost in Ca2+-free medium and restored on the addition of Ca2+. Pretreating cells with phorbol dibutyrate substantially inhibits acetylcholine-stimulated inositol phosphate formation and the peak [Ca2+]i response without affecting the sustained elevation in [Ca2+]i. This suggests that the release of internal Ca2+ stores by inositol 1,4,5-trisphosphate can be blocked without interfering with Ca2+ influx. Pretreatment with phorbol also fails to affect acetylcholine-stimulated arachidonate liberation, demonstrating that phospholipase A2 activation does not require normal intracellular Ca2+ release. Stimulated arachidonate accumulation is totally inhibited in Ca2+-free medium and restored by the subsequent addition of Ca2+. Pretreatment with verapamil, a voltage-dependent Ca2+ channel inhibitor, also blocks both the sustained [Ca2+]i elevation and arachidonate liberation without altering peak intracellular Ca2+ release. We conclude that the influx of extracellular Ca2+ is tightly coupled to phospholipase A2 activation, whereas large changes in [Ca2+]i due to mobilization of internal Ca2+ stores are neither sufficient nor necessary for acetylcholine-stimulated phospholipase A2 activation.  相似文献   

5.
Signal generation during the stimulation of insulin secretion by arginine vasopressin (AVP) was investigated in RINm5F cells. AVP (0.1 microM) caused a biphasic cytosolic Ca2+ ([Ca2+]i) rise, namely a rapid transient marked elevation after stimulation followed by a series of oscillations. In the absence of extracellular Ca2+, the sustained oscillations were abolished, while the initial [Ca2+]i transient was only partly decreased, indicating that the former are due to Ca2+ influx and the latter due mainly to mobilization from internal Ca2+ stores. AVP also evoked a transient depolarization of the average membrane potential. AVP-induced Ca2+ influx during the sustained phase, which was strictly dependent on receptor occupancy, was attenuated by membrane hyperpolarization with diazoxide. However, blockade of Ca2+ channels of the L- or T-type was ineffective. AVP stimulated production of diacylglycerol and inositol phosphates; for the latter both [3H] inositol labeling and mass determinations were performed. A transient increase in Ins(1,4,5)P3 was followed by a marked enhancement of Ins(1,3,4,5)P4 (8-fold) peaking at 15 s and gradually returning to basal values. Ins(1,3,4,6)P4 and Ins(3,4,5,6)P4 exhibited the most long-lasting augmentation (4- and 1.7-fold, respectively), and therefore correlated best with the period of sustained [Ca2+]i oscillations. InsP5 and InsP6 were not elevated. The effects of AVP, including the stimulation of insulin secretion from perifused cells, were obliterated by a V1 receptor antagonist. In conclusion, AVP induces protracted [Ca2+]i elevation in RINm5F cells which is associated with long-lasting increases in InsP4 isomers. The accumulation of InsP4 isomers reflects receptor occupancy and accelerated metabolism of the inositol phosphates. Activation of second messenger-operated Ca2+ channels is not necessarily implicated because of the attenuating effect of membrane hyperpolarization.  相似文献   

6.
In previous studies it has been shown that both bradykinin and histamine increase the formation of 3H-labeled inositol phosphates in adrenal chromaffin cells prelabelled with [3H]inositol and that both these agonists stimulate release of catecholamines by a mechanism dependent on extracellular calcium. Here, we have used mass assays of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] to investigate changes in levels of these two candidates as second messengers in response to stimulation with bradykinin and histamine. Bradykinin increased the mass of Ins(1,3,4,5)P4 despite the failure in earlier studies with [3H]inositol-labelled cells to observe a bradykinin-mediated increase in content of [3H]InsP4. Bradykinin elicited a very rapid increase in level of Ins(1,4,5)P3, which was maximal at 5-10 s and then rapidly decreased to a small but sustained elevation at 2 min. The bradykinin-elicited Ins(1,3,4,5)P4 response increased to a maximum at 30-60 s and at 2 min was still elevated severalfold above basal levels. Histamine, which produced a larger overall total inositol phosphate response in [3H]inositol-loaded cells, produced significantly smaller Ins(1,4,5)P3 and Ins(1,3,4,5)P4 responses compared with bradykinin. The bradykinin stimulation of Ins(1,4,5)P3 accumulation was partially dependent on a high (1.8 mM) extracellular Ca2+ concentration, whereas the Ins(1,3,4,5)P4 response was almost completely lost when the extracellular Ca2+ concentration was reduced to 100 nM. Changes in the inositol polyphosphate second messengers are compared with the time course of bradykinin-stimulated increases in free intracellular Ca2+ concentrations and noradrenaline release.  相似文献   

7.
Both substance P and carbachol produced increases in inositol tris- and tetrakisphosphate and increased cytosolic free [Ca2+] in dispersed parotid acinar cells loaded with fura-2. The increase in [Ca2+]i in response to each agonist was due to a combination of mobilization of internal Ca2+ and entry of extracellular Ca2+. Kinetic studies of the initial response to substance P, and measurement of peak [Ca2+]i, demonstrated that the initial rapid rise in [Ca2+]i was due to both internal release and entry of Ca2+. Substance P could evoke a greater initial increase in [Ca2+]i and inositol trisphosphate than could carbachol. However, after 1 min in the presence of external Ca2+, the maintained [Ca2+]i level in response to substance P was considerably smaller than that seen with carbachol, an effect apparently due to homologous desensitization of the substance P receptor. The two agonists each produced a similar 4-5-fold increase in inositol tetrakisphosphate levels within 30 s; this level was maintained in the presence of carbachol, but decreased with substance P. Similarly, the level of inositol (1,4,5)-trisphosphate decreased after prolonged incubation with substance P. Thus, the maintained level of [Ca2+]i, and by deduction Ca2+ entry, correlated with the levels of inositol (1,4,5)-trisphosphate and inositol tetrakisphosphate; a result consistent with a possible role for these inositol phosphates in the control of receptor-mediated Ca2+ channels.  相似文献   

8.
In NG108-15 cells, bradykinin (BK) and thapsigargin (TG) caused transient increases in a cytosolic free Ca2+ concentration ([Ca2+]i), after which [Ca2+]i elevated by TG only declined to a higher, sustained level than an unstimulated level. In PC12 cells, carbachol (CCh) evoked a transient increase in [Ca2+]i followed by a sustained rise of [Ca2+]i, whereas [Ca2+]i elevated by TG almost maintained its higher level. In the absence of extracellular Ca2+, the sustained elevation of [Ca2+]i induced by each drug we used was abolished. In addition, the rise in [Ca2+]i stimulated by TG was less affected after CCh or BK, whereas CCh or BK caused no increase in [Ca2+]i after TG. TG neither increased cellular inositol phosphates nor modified the inositol phosphates format on stimulated by CCh or BK. We conclude that TG may release Ca2+ from both IP3-sensitive and -insensitive intracellular pools and that some kinds of signalling to link the intracellular Ca2+ pools and Ca2+ entry seem to exist in neuronal cells.  相似文献   

9.
Lysed mouse thymocytes release [3H]inositol 1,4,5 trisphosphate from [3H]inositol-labelled phosphatidyl inositol 4,5-bisphosphate in response to GTP gamma S, and rapidly phosphorylate [3H]inositol 1,4,5-trisphosphate to [3H]inositol 1,3,4,5-tetrakisphosphate. The rate of phosphorylation is increased approximately 7-fold when the free [Ca2+] in the lysate is increased from 0.1 to 1 microM, the range in which the cytosolic free [Ca2+] increases in intact thymocytes in response to the mitogen concanavalin A. Stimulation of the intact cells with concanavalin A also results in a rapid and sustained increase in the amount of inositol 1,3,4,5-tetrakisphosphate, and a much smaller transient increase in 1,4,5-trisphosphate. Lowering [Ca2+] in the medium from 0.4 mM to 0.1 microM before addition of concanavalin A reduces accumulation of inositol 1,3,4,5-tetrakisphosphate by at least 3-fold whereas the increase in inositol 1,4,5-trisphosphate is sustained rather than transient. The data imply that in normal medium the activity of the inositol 1,4,5-trisphosphate kinase increases substantially in response to the rise in cytosolic free [Ca2+] generated by concanavalin A, accounting for both the transient accumulation of inositol 1,4,5-trisphosphate and the sustained high levels of inositol 1,3,4,5-tetrakisphosphate. Inositol 1,3,4,5-tetrakisphosphate is a strong candidate for the second messenger for Ca2+ entry across the plasma membrane. This would imply that the inositol polyphosphates regulate both Ca2+ entry and intracellular Ca2+ release, with feedback control of the inositol polyphosphate levels by Ca2+.  相似文献   

10.
Transient transfection of Chinese hamster ovary or baby hamster kidney cells expressing the Group I metabotropic glutamate receptor mGlu1alpha with green fluorescent protein-tagged pleckstrin homology domain of phospholipase Cdelta1 allows real-time detection of inositol 1,4,5-trisphosphate. Loading with Fura-2 enables simultaneous measurement of intracellular Ca(2+) within the same cell. Using this technique we have studied the extracellular calcium sensing property of the mGlu1alpha receptor. Quisqualate, in extracellular medium containing 1.3 mm Ca(2+), increased inositol 1,4,5-trisphosphate in all cells. This followed a typical peak and plateau pattern and was paralleled by concurrent increases in intracellular Ca(2+) concentration. Under nominally Ca(2+)-free conditions similar initial peaks in inositol 1,4,5-trisphosphate and Ca(2+) concentration occurred with little change in either agonist potency or efficacy. However, sustained inositol 1,4,5-trisphosphate production was substantially reduced and the plateau in Ca(2+) concentration absent. Depletion of intracellular Ca(2+) stores using thapsigargin abolished quisqualate-induced increases in intracellular Ca(2+) and markedly reduced inositol 1,4,5-trisphosphate production. These data suggest that the mGlu1alpha receptor is not a calcium-sensing receptor because the initial response to agonist is not sensitive to extracellular Ca(2+) concentration. However, prolonged activation of phospholipase C requires extracellular Ca(2+), while the initial burst of activity is highly dependent on Ca(2+) mobilization from intracellular stores.  相似文献   

11.
The ability of cholinergic agonists to activate phospholipase C in bovine adrenal chromaffin cells was examined by assaying the production of inositol phosphates in cells prelabeled with [3H]inositol. We found that both nicotinic and muscarinic agonists increased the accumulation of [3H]inositol phosphates (mainly inositol monophosphate) and that the effects mediated by the two types of receptors were independent of each other. The production of inositol phosphates by nicotinic stimulation required extracellular Ca2+ and was maximal at 0.2 mM Ca2+. Increasing extracellular Ca2+ from 0.22 to 2.2 mM increased the sensitivity of inositol phosphates formation to stimulation by submaximal concentrations of 1,1-dimethyl-4-phenyl-piperazinium iodide (DMPP) but did not enhance the response to muscarine. Elevated K+ also stimulated Ca2+-dependent [3H]inositol phosphate production, presumably by a non-receptor-mediated mechanism. The Ca2+ channel antagonists D600 and nifedipine inhibited the effects of DMPP and elevated K+ to a greater extent than that of muscarine. Ca2+ (0.3-10 microM) directly stimulated the release of inositol phosphates from digitonin-permeabilized cells that had been prelabeled with [3H]inositol. Thus, cholinergic stimulation of bovine adrenal chromaffin cells results in the activation of phospholipase C by distinct muscarinic and nicotinic mechanisms. Nicotinic receptor stimulation and elevated K+ probably increased the accumulation of inositol phosphates through Ca2+ influx and a rise in cytosolic Ca2+. Because Ba2+ caused catecholamine secretion but did not enhance the formation of inositol phosphates, phospholipase C activation is not required for exocytosis. However, diglyceride and myo-inositol 1,4,5-trisphosphate produced during cholinergic stimulation of chromaffin cells may modulate secretion and other cellular processes by activating protein kinase C and/or releasing Ca2+ from intracellular stores.  相似文献   

12.
The role of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]-sensitive Ca2+ pools in secretion, induced by muscarinic agonists in porcine adrenal chromaffin cells, was studied. Activation of muscarinic receptors, as in other species, was found to increase inositol phosphate production including that of Ins(1,4,5)P3. Treatment of cells with thapsigargin, which is known to deplete Ins(1,4,5)P3-sensitive Ca2+ pools, eliminated the initial transient component of increases in the cytosolic free Ca2+ concentration ([Ca2+]in) induced by the muscarinic agonist, methacholine, in both the presence and the absence of extracellular Ca2+. Thapsigargin treatment also decreased methacholine-induced secretion by about 30% in the presence of extracellular Ca2+ and essentially eliminated secretion that occurred independently of extracellular Ca2+ (which was about 30% of the secretory response that occurred in the presence of extracellular Ca2+). Thapsigargin itself had no effect on inositol phosphate production. These results indicate that about 30% of muscarinic agonist-induced secretion is mediated by the release of Ca2+ from Ins(1,4,5)P3- and thapsigargin-sensitive intracellular Ca2+ pools. These results also suggest that Ca2+ influx activated by muscarinic agonists is not due to depletion of intracellular Ca2+ pools, as prior depletion of these pools had no effect on the portion of the methacholine-induced secretory response and [Ca2+]in signal that was dependent on extracellular Ca2+.  相似文献   

13.
Acute hydrolysis of phosphoinositides has been demonstrated in bovine aortic endothelial cells (BAEC) treated with bradykinin (BK) (10(-7)M). The first phosphoinositide to decrease was phosphatidylinositol-4,5-bisphosphate (PIP2) indicating this to be the initial substrate of phospholipase action. Other lipid changes associated with the stimulation of BAEC were an increase in diacylglycerol (DAG) and arachidonic acid (AA) with a sustained production of phosphatidic acid (PA). The changes in cell phospholipids were accompanied by the release of inositol phosphates. Inositol-1,4,5-trisphosphate (Ins-1,4,5-P3) was produced within 10 s of stimulation with BK. There was no evidence for the production of inositol-1,3,4-trisphosphate. The release of ionic calcium (Ca2+) intracellularly was demonstrated. The timecourse of the rise in intracellular Ca2+ was consistent with the timecourse of production of IP3. Intracellular Ca2+ rose from 127 +/- 21 nM to 462 +/- 27 nM. The Ca2+ peak was at 7.0 +/- 0.4 s and took 3 min to reach a steady state which remained above the basal level. When extracellular Ca2+ was depleted in the extracellular medium a spike of intracellular Ca2+ release was measured with an immediate return to basal. Entry of extracellular Ca2+ into the cell after ionophore A23187 treatment does not induce inositol phosphate release, indicating that phosphoinositide hydrolysis is likely to be the cause rather than consequence of the elevation in cytosolic Ca2+. These data indicate action of phospholipase C (PLC) on PIP2 after BK stimulation of BAEC with the subsequent production of InsP3 causing the resulting intracellular Ca2+ release.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Isomers of inositol trisphosphate in exocrine pancreas.   总被引:1,自引:0,他引:1       下载免费PDF全文
In rat pancreatic acinar cells, the Ca2+-mobilizing receptor-agonist, caerulein, at both maximal and submaximal concentrations, stimulated a rapid, transient, increase in [3H]inositol 1,4,5-trisphosphate [(1,4,5)IP3], followed by a slower, sustained, increase in [3H]inositol 1,3,4-trisphosphate [(1,3,4)IP3]. Neither activation of protein kinase C by phorbol dibutyrate nor prevention of the caerulein-stimulated elevation of cytosolic [Ca2+] significantly affected the pattern of formation of the two isomers of IP3. Although carbachol evoked an increase in cytosolic [Ca2+], it did not significantly stimulate [3H](1,4,5)IP3 accumulation, but did promote [3H](1,3,4)IP3 accumulation. Moreover, both carbachol and caerulein maintained hormone-sensitive intracellular Ca2+ pools in a Ca2+-depleted state after [3H](1,4,5)IP3 had returned to basal concentrations. One interpretation of these findings is that total cellular concentrations of [3H](1,4,5)IP3 may not accurately reflect the concentration of this putative mediator in biologically relevant compartments.  相似文献   

15.
The effect of neuropeptide Y (NPY) on cytosolic free Ca2+ concentration ([Ca2+]i) was studied in cultured smooth muscle cells from porcine aorta (PASMC) and compared with the effect of bradykinin (BK) and angiotensin II (ATII) on [Ca2+]i. All peptides induced dose-dependent and transient rises in [Ca2+]i which were not blocked by extracellular EGTA, but the NPY response was different from the others' as follows. First, the [Ca2+]i rise induced by NPY was not as rapid as that induced by BK or ATII. Second, pertussis toxin abolished the [Ca2+]i rise induced by NPY, but not by BK or ATII. Third, following initial treatment with BK, PASMC were able to respond to NPY, but not to ATII. Finally, BK and ATII, but not NPY, significantly increased inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) generation. Although NPY attenuated forskolin-induced accumulation of cyclic AMP, forskolin- and 3-isobutyl-1-methyl-xanthine-induced alterations in intracellular cyclic AMP did not affect the NPY-induced [Ca2+]i rise. These results suggest that NPY increases [Ca2+]i by a pertussis toxin-sensitive GTP binding protein-involved mechanism which is not mediated by the intracellular messengers such as Ins(1,4,5)P3 and cyclic AMP.  相似文献   

16.
Thapsigargin, a sesquiterpene lactone with potent irritant and tumour-promoting activities, stimulates a rapid (within 15 s) transient increase in intracellular [Ca2+] in the NG115-401L neural cell line, as measured by the fluorescent indicator dye fura-2. This increase in cytoplasmic free [Ca2+] is concentration-dependent (ED50 around 20 nM) and occurs in the absence of extracellular Ca2+. Activation of NG115-401L cells by the inflammatory peptide bradykinin generates inositol phosphates, which parallel increases in intracellular [Ca2+]. However, the rise in cytoplasmic [Ca2+] stimulated by thapsigargin occurs in the absence of detectable production of inositol phosphates. Thapsigargin is unlike phorboid tumour promoters in that it has no action on two non-invasive indicators of phorbol stimulation of these cells, i.e. [3H]choline metabolite production and rise in intracellular pH. These data suggest that thapsigargin releases Ca2+ from an intracellular store by a novel mechanism, independent of the hydrolysis of phosphoinositides and concomitant activation of protein kinase C. Thus thapsigargin may provide a valuable tool for the analysis of intracellular signalling mechanisms.  相似文献   

17.
Polyunsaturated free fatty acids (PUFAs) of both w-3 and w-6 series, induce a rapid increase of cytosolic free Ca2+ concentration ([Ca2+]i) in a leukemic T-cell line (JURKAT), measured by the fluorescent indicator fura-2. The early increase in [Ca2+]i was transient, falling to a sustained level which returned to base line after 10-15 min. In Ca2+-free medium, PUFAs still caused an early increase in [Ca2+]i but rapidly returned to basal. Depletion of endoplasmic reticular Ca2+ pool by addition of OKT3 (antibodies to CD3 of the T3-antigen receptor complex) to JURKAT cells (in Ca2+-free medium) abolished the PUFAs-mediated [Ca2+]i increase and vice versa. By using saponin-permeabilized JURKAT cells, the intracellular free Ca2+ released by PUFAs was found to be the non-mitochondrial, ATP-dependent sequestered Ca2+ pool which is sensitive to inositol 1,4,5-trisphosphate. However, PUFAs do not induce any apparent increase in inositol phosphates in JURKAT cells. No Ca2+ influx was detected in JURKAT cells when stimulated with PUFAs. A correlation was observed between both the carbon chain length and the number of double bonds with the ability to mobilize cytosolic free [Ca2+]i in the w-3 PUFAs. These results demonstrate that PUFAs stimulate the release of Ca2+ from the inositol 1,4,5-trisphosphate-sensitive Ca2+ pool in the endoplasmic reticulum of JURKAT cells via a mechanism independent of inositol lipid hydrolysis.  相似文献   

18.
Inositol trisphosphate (InsP3) production and cytosolic free Ca2+ ([Ca2+]i) elevations induced by leukotriene B4 (LTB4)-receptor activation were studied in the human promyelocytic-leukaemia cell line HL60, induced to differentiate by retinoic acid. The myeloid-differentiated HL60 cells respond to LTB4 by raising their [Ca2+]i with a dose-response relationship similar to that shown by normal human neutrophils. The observations of the LTB4 transduction mechanism were compared with those of the transduction mechanism of the chemotactic peptide fMet-Leu-Phe in HL60 cells differentiated with dimethyl sulphoxide. Both LTB4 and fMet-Leu-Phe triggered a rapid (less than 5 s) elevation of [Ca2+]i, which occurred in parallel with the InsP3 production from myo-[3H]inositol-labelled cells. The threshold concentrations of the agonists, for InsP3 production, were found at 10(-9) M, a slightly higher concentration than that required to detect [Ca2+]i elevations. No significant changes were noted in the phosphoinositide levels upon stimulation with LTB4. Exposure to Bordetella pertussis toxin before LTB4 stimulation abolished both the increased formation of InsP3 and the rise of [Ca2+]i. LTB4 and fMet-Leu-Phe elicited elevations of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] with no detectable lag time, followed by slower and more sustained inositol 1,3,4-trisphosphate elevations. Stimulation with various leukotriene analogues revealed a good correlation between both total InsP3 as well as Ins(1,4,5)P3 formation and elevations of [Ca2+]1. Thus LTB4 receptor activation results in an increased production of Ins(1,4,5)P3 via a transduction mechanism also involving a nucleotide regulatory protein, as previously described for the fMet-Leu-Phe transduction mechanism.  相似文献   

19.
In adherent SH-SY5Y human neuroblastoma cells, activation of G-protein-coupled muscarinic M3 receptors evoked a biphasic elevation of both intracellular [Ca(2+)] ([Ca(2+)]i) and inositol-1,4,5-trisphosphate (D-Ins(1,4,5)P3) mass. In both cases, temporal profiles consisted of rapid transient elevations followed by a decline to a lower, yet sustained level. In contrast, platelet-derived growth factor (PDGF), a receptor tyrosine kinase agonist acting via PDGF receptor b chains in these cells, elicited a slow and transient elevation of [Ca(2+)]i that returned to basal levels within 5 to 10 min with no evidence of inositol phosphate generation. Full responses for either receptor type required intracellular and extracellular Ca(2+) and mobilization of a shared thapsigargin-sensitive intracellular Ca(2+) store. Strategies that affected the ability of D-Ins(1,4,5)P3 to interact with the Ins(1,4,5)P3-receptor demonstrated an Ins(1,4,5)P3-dependency of the muscarinic receptor-mediated elevation of [Ca(2+)]i but showed that PDGF-mediated elevations of [Ca(2+)]i are Ins(1,4,5)P3-independent in these cells.  相似文献   

20.
We determined the temporal relationship between the formation of inositol phosphates and increase in cytosolic [Ca2+] elicited by bombesin, vasopressin and platelet-derived growth factor (PDGF) in quiescent Swiss 3T3 cells. These responses were measured under identical conditions. Bombesin caused a rapid increase in inositol 1,4,5-trisphosphate which coincided with the increase in cytosolic [Ca2+]. This was followed by a slower but marked increase in inositol 1,3,4-trisphosphate and inositol-bisphosphate. Vasopressin elicited a similar sequence of events. In sharp contrast, highly purified porcine PDGF induced increases in cytosolic [Ca2+] and inositol 1,4,5-trisphosphate that were temporally uncoupled: detectable inositol polyphosphate formation occurred after Ca2+ mobilization from intracellular stores. The same temporal dissociation was observed when a recombinant v-sis product was used instead of porcine PDGF. However, PDGF was as effective as bombesin in stimulating the formation of inositol phosphates after 5-10 min of incubation. The data suggest that PDGF increases cytosolic [Ca2+] via a different signal transduction pathway from that utilized by bombesin and vasopressin. These findings have important implications for understanding the signal transduction pathway activated by PDGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号