首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The movement of copper and zinc from the fertilized egg into the developing embryo and the subsequent association of the two metals with metallothionein-like proteins (MT) of chick liver was investigated. Hepatic levels of MT in 1-d-old chicks, estimated from specifically bound115mCd, were increased eightfold over endogenous levels of these copper- and zinc-binding proteins in adult liver. Copper was assimilated from the oocyte into the embryo more rapidly than zinc in the early stages of embryogenesis. Between 15 and 16 d of development, during the time that (MT) was detected, there was a significant increase in copper concentration, whereas hepatic zinc concentration remained relatively constant.  相似文献   

2.
Previous studies have shown that cardiac-specific overexpression of metallothionein (MT) inhibits progression of dietary copper restriction-induced cardiac hypertrophy. Because copper and zinc are critically involved in myocardial response to dietary copper restriction, the present study was undertaken to understand the effect of MT on the status of copper and zinc in the heart and the subsequent response to dietary copper restriction. Dams of cardiac-specific MT-transgenic (MT-TG) mouse pups and wild-type (WT) littermates were fed copper-adequate (CuA) or copper-deficient (CuD) diet starting on the fourth day post delivery, and the weanling mice were continued on the same diet until they were sacrificed. Zinc and copper concentrations were significantly elevated in MT-TG mouse heart, but the extent of zinc elevation was much more than that of copper. Dietary copper restriction significantly decreased copper concentrations to the same extent in both MT-TG and WT mouse hearts, and decreased zinc concentrations along with a decrease in MT concentrations in the MT-TG mouse heart. Copper deficiency-induced heart hypertrophy was significantly inhibited, but copper deficiency-induced suppression of serum ceruloplasmin or hepatic Cu,Zn-SOD activities was not inhibited in the MT-TG mice. These results suggest that elevation in zinc but not in copper in the heart may be involved in the MT inhibition of copper deficiency-induced cardiac hypertrophy.  相似文献   

3.
The relationship between metallothionein mRNA levels and the amounts of copper and zinc in liver, kidney and small intestine by feeding dietary cyclodextrin was examined in growing Wistar rats. alpha-, beta- or gamma-cyclodextrin was fed at 50 g/kg of diet for a 7-days period (ad libitum). After feeding, the liver zinc of rats fed beta-cyclodextrin was greater than those of rats fed the other three diets. Copper accumulated in kidney of rats fed alpha- or beta-cyclodextrin. Copper content in the small intestine did not show any alterations among rats fed all kinds of diets. The cyclodextrin-supplemented diets were ineffective in zinc content in every organ. There was the greatest level of copper in serum of rats fed beta-cyclodextrin, whereas the highest level of serum zinc was observed in rats fed gamma-cyclodextrin diet. Northern blot analysis demonstrated that dietary beta- and gamma-cyclodextrins, but not alpha-cyclodextrin markedly increased the metallothionein mRNA in the liver, whereas small intestinal metallothionein mRNA levels were markedly decreased. Kidney metallothionien mRNA levels were raised appreciably by all dietary cyclodextrin intakes. Metallothionein gene expressions in liver, kidney and small intestine were not proportional to liver and serum copper or zinc levels in those tissues. These results suggest that regulation of the metallothionein mRNA levels may at least partly involved with the accumulation of metals as copper in liver and kidney of rats fed cyclodextrins.  相似文献   

4.
The presence of metallothionein (MT) and the subcellular distribution of copper, zinc and cadmium were investigated in livers of two neotenic salamanders, Proteus anguinus and Necturus maculosus. In P. anguinus, caught in the wild, hepatic MTs were present as a single isoform of (Zn, Cu, Cd)-thioneins, whose molecular weight was estimated to be approximately 12000 by size exclusion chromatography. The percentage of zinc and cadmium was higher in the cytosol and of copper in the pellet. Cytosolic cadmium was almost exclusively associated with MTs (80%), while zinc and copper were also present in the regions of higher-molecular weight proteins. In laboratory bred N. maculosus, MTs were isolated from the liver cytosol and extract of the pellet as (Cu, Zn)- and (Zn, Cu)-thioneins, respectively. According to the low amount of copper extracting from liver pellets of N. maculosus, the presence of water insoluble aggregated forms of Cu-thioneins should be checked in further investigations.  相似文献   

5.
The cytotoxicity of copper is probably determined by its molecular association and subcellular localisation rather than its concentration within tissues. Metallothionein (MT) is a copper binding protein distributed between the particulate and soluble cellular components. The role of MT in conferring protection to the copper-loaded rat has been investigated by comparing the distribution of the immunoreactive protein between the soluble and particulate fractions of liver and kidney during the development of copper tolerance. Young male Wistar rats were fed a high copper (1 g/kg) diet for 16 weeks and killed sequentially during this period; liver and kidneys were retained. Pellet and supernatant preparations from homogenised, pooled samples of liver and kidney were subjected to chromatographic separation. Copper and zinc were analysed in whole tissue, homogenates and eluant fractions and MT identified likewise using an enzyme-linked immunoassay. Copper accumulated for 5 weeks in the liver falling subsequently accompanied by similar changes in MT content. Kidney copper and MT rose to maximum concentrations at 8 weeks and were maintained thereafter. Substantial differences were apparent in the relative distribution of MT between the two organs. MT was the major, predominantly cytosolic, copper-binding protein in the kidney but in the liver immunoreactive MT was pelleted and present in lower concentration than the high molecular weight cuproproteins. It was concluded that whilst MT plays a role in the detoxification and adaptation of rats to copper-loading the regulatory functions of liver and kidney may differ significantly in this respect.  相似文献   

6.
The accumulation and subcellular distribution of copper in the kidney of streptozotocin-diabetic rats were investigated. Male Sprague-Dawley rats received streptozotocin (50 mg/kg body wt on two consecutive days) intraperitoneally and were fed either commercial or purified diet. The concentrations of copper, zinc, iron, and manganese present in intact kidney, renal cortex, and renal medulla were compared at various times. Chow-fed diabetic rats had a renal copper concentration 2.6 times greater than age-matched controls after 2 weeks. The concentration of zinc was only 30% higher in diabetic kidney than in control tissue, whereas the iron and manganese concentrations were similar for both groups. The additional complement of renal copper was localized entirely in the cortex and was significantly reduced by oral treatment with penicillamine, a copper chelating agent. When diabetic rats were fed purified diet (15-20 ppm Cu), the quantity of copper accumulated in the renal cortex increased from 2.3 to 8.7-fold higher than in control tissue from 1 to 4 weeks, respectively, after injection with streptozotocin. Copper levels in. both the soluble and particulate (165, 000g pellet) fractions of diabetic renal cortex were similarly increased at each time. Gel filtration Chromatographic analysis of the cytosol showed that all of the copper accumulated in the soluble fraction was associated with metallothionein. The distribution of excess copper in the particulate fraction was determined by differential centrifugation. The additional quantity of metal was localized in the crude nuclear fraction of renal cortex in the diabetic rat. Further analysis revealed that the lysosomal fraction from 3-weeek diabetic rats had a copper level 16-fold higher than in the controls. The possibility that accumulation of excessive levels of copper in the streptozotocin-diabetic kidney may contribute to the development of diabetic nephropathy is discussed.  相似文献   

7.
This study investigated whether hepatic metallothionein gene expression is affected by dietary cyclodextrins. Young male Wistar rats were fed a basal diet or cyclodextrin-supplemented (50 g of cyclodextrin per kg diet) diets for 7 d. Copper content in the liver did not show any significant changes among rats fed the basal, beta- and gamma-cyclodextrin diets. There were no differences in liver or serum zinc among groups. Copper content in serum was markedly decreased in rats fed the gamma-cyclodextrin-supplemented diet. Liver metallothionein mRNA levels were significantly elevated in both beta- and gamma-cyclodextrins-fed rats, but not in alpha-cyclodextrin-fed rats. Thus, the increase in hepatic metallothionein mRNA levels might be due to this mechanism except for the contents of copper and zinc in the liver.  相似文献   

8.
Metallothionein (MT) is a low-mol-wt protein. The essential trace elements copper and zinc and the potentially toxic elements, such as cadmium, can induce the synthesis of and bind to MT. The major functions of MT are related to metal metabolism. This paper reported and evaluated a new method for determination of hepatic and renal MT of rat by using high performance liquid chromatography (HPLC) with a Superdex 75 gel filtration column. The tissue was homogenized and centrifuged, then the supernatant was pretreated simply by cadmium saturation and heating before HPLC determination. The MT was completely and clearly separated from other proteins in the rat tissues in a short time, and was quantitated directly as a function of UV absorbance at 250 nm. The recovery both for hepatic and renal MT of rat were exceed 90%. The coefficient of variation was 1.3% for hepatic MT of rat and 1.7% for renal MT of rat. The detection limit was 0.265 μg for hepatic MT and 0.095 μg for renal MT of rat. The present method was compared with the traditional cadmium-saturation method for determination of hepatic and renal MT of rat. A good correlation was found in these two methods.  相似文献   

9.
Copper and zinc levels in the tissue of thyroid gland (TG) and their metal-binding proteins metallothioneins (MT) as well as state of the antioxidant system in persons that had no thyroid disease and patients with endemic iodine deficiency nodular colloidal goiter has been investigated. In the patients with thyroid disease, oxidative damage was indicated despite elevated levels of MT-SH and glutathione, and elevated copper and decreased zinc concentration in TG tissue. MTs partly bound the excess of copper but its concentration in the unbound to MT form was two-fold compared to the control value.  相似文献   

10.
Recently, copper (Cu) was found to be unusually accumulated, suggesting the induction of metallothionein (MT) in the liver of LEC rats (Long-Evans rats with a cinnamon-like coat color), which develop spontaneous jaundice with hereditary hepatitis. Thus, the direct relationship between the unusual Cu accumulation and the induction of Cu-MT was investigated by giving LEC rats Cu-overloaded or Cu-deficient diets. Results based on the determinations of Cu and MT levels in several organs, as well as the gel-filtration profiles of the cytosols of liver homogenates, showed that dietary Cu induced Cu-MT and development of hepatic injury associated with jaundice.  相似文献   

11.
Summary Manure from finishing pigs fed diets with and without a growth stimulating level of added copper (250 ppm in 1972, 370 ppm in 1973 and 300 ppm in 1974) was incorporated into a Groseclose silt loam at the rate of 15.5, 12.9 and 15.7 metric tons of dry matter per hectare, respectively, for 1972, 1973 and 1974. A third treatment was no manure. The manure was applied between rows when corn was about 10 cm tall and worked into the surface 10 cm of the soil with a rotary tiller. The average composition of the manure for the three years on a dry basis was 3.6 per cent nitrogen, 2.87 per cent calcium, 0.93 per cent magnesium, 2.22 per cent phosphorus, 1.30 per cent potassium, 648 ppm zinc, 2191 ppm iron. The copper content was 73 ppm for control manure and 1719 ppm for high copper manure. The copper content in the upper 10 cm of the soil was significantly increased each year when high copper manure was applied. During one growing season, copper did not appear to move down, however, plowing after the first year increased the copper level in the 10–20 cm depth with a small increase in the 20–30 cm depth. Potassium, zinc, phosphorus, calcium and magnesium levels of the soil were increased when manure was applied. There was a small increase in the copper content of the maize ear leaf (average of one ppm per year) when manure from pigs fed diets containing high copper was applied. Copper in the washed roots of the mature maize plants was doubled (5.6 vs 11.2 ppm) when the high copper manure was added. The copper content of grain from plants grown on soil receiving high copper manure was not different from that of grain from soil receiving no manure. The zinc, potassium and phosphorus contents of the maize ear leaf were increased a small amount when both control and high copper manure were applied with the effect of potassium and phosphorus carrying over to the grain. The iron and calcium contents of the ear leaf were not affected by application of manure, but there was a decrease in calcium content of the grain from the application of control and high copper manure. re]19750305Department of Animal ScienceDepartment of AgronomyDepartment of Statistics  相似文献   

12.
Regulation of the ontogeny of rat liver metallothionein mRNA by zinc   总被引:1,自引:0,他引:1  
To investigate the role of metals in the regulation of the ontogenic expression of rat liver metallothionein (MT) mRNA, the concentrations of zinc, MT and MT mRNA were determined in livers of fetal and newborn rats from dams which were fed with a control or zinc-deficient or copper-deficient or iron-deficient diet from day 12 of gestation. The liver samples were analyzed for MT-mRNA levels using a mouse MT-I cRNA probe. Although the newborn hepatic levels of each metal (zinc or copper or iron) was specifically reduced corresponding to the respective mineral deficiencies, the hepatic concentrations of total MT and MT-I mRNA were significantly decreased only in pups born from zinc-deficient dams. Injection of the zinc-deficient newborn pups with 20 mg Zn as ZnSO4/kg restored with MT-I mRNA levels to slightly above control values within 5 h of injection. The hepatic zinc, MT and MT-I mRNA levels were observed to increase significantly in control fetal rat liver on days 17-21 of gestation but there were little changes in either zinc or MT in fetal livers from zinc-deficient dams during the late gestational period. The MT-I mRNA level also did not show an increase on days 18 and 20 of gestation in zinc-deficient fetal liver as compared to controls. These results demonstrate a direct role of zinc in hepatic MT gene expression in rat liver during late gestation. Immunohistochemical localization of MT using a specific antibody to rat liver MT showed that the staining for MT in zinc-deficient pup liver was mainly in the cytosol in contrast to the significant nuclear MT staining observed in control newborn rat liver. The results suggest that maternal zinc deficiency has a marked effect not only in decreasing the levels of hepatic MT and MT-I mRNA but also in the localization of MT in newborn rat liver.  相似文献   

13.
The effects of maternal Zn, Cu, or Fe deficiencies during late gestation on hepatic levels of metals and metallothionein (MT) and the binding of Zn and Cu to protein fractions were investigated in newborn rats. Timed pregnant rats were fed one of the following diets: Zn deficient (Zn-D), Cu-D, Fe-D, or control from day 12 of gestation until birth. The specific nutritional deficiency status of the dams was confirmed by low plasma levels of the deficient metal. Livers from pups were analyzed for MT, metal content, and metal-protein binding. Maternal Zn-D resulted in a greater than 50% reduction of hepatic MT levels in pups, whereas Cu-D and Fe-D had no significant effects. Pups in each deficient group showed a significant decrease in the hepatic levels of the respective metals. Fractionation of hepatic cytosols from the pups by Sephadex G-75 gel filtration showed that in both Fe-D and Cu-D pups the respective metals were depleted from the high molecular weight protein fraction, whereas in Zn-D pups the Zn was depleted mainly from the MT fraction (Ve/V0 approximately 2). Incorporation of [35S] cysteine into MT fractions was significantly lower in Zn-D pups as compared with control pups. These results indicate that there is a specific effect of the maternal Zn-D on the hepatic storage of Zn as MT in newborn rats.  相似文献   

14.
The purpose of this study was to determine what levels of starch or glucose replacement for fructose in the copper-deficient diet (copper) can minimize the fructose-copper interaction. Experimental diets contained either 100% fructose as the carbohydrate source, or the fructose was partially replaced with 50% starch, 50% glucose, 75% starch, or 75% glucose. Diets were either copper adequate (7-8 ppm) or inadequate (less than 1 ppm). Male weanling rats were fed their respective diet for 5 weeks and then fasted overnight. After decapitation, blood was collected and liver and heart were removed. Plasma copper was significantly reduced and ceruloplasmin was not detected in all copper-deficient groups. Copper deficiency increased plasma cholesterol, as well as heart and liver weight in the glucose groups, but not in the starch groups. Those organ weights were heavier in glucose-copper than starch-copper rats. Erythrocyte copper-zinc-superoxide dismutase activity was greater in starch-copper rats. Erythrocyte copper-zinc-superoxide dismutase activity was greater in starch-copper than glucose-copper rats regardless of carbohydrate amount. Hepatic copper concentration of the group fed starch-copper was twice levels observed in glucose-copper. The 50% glucose rats had lower hepatic copper than the 75% glucose rats. Hepatic copper-zinc-superoxide dismutase activity showed patterns similar to hepatic copper. Cardiac copper was greater in starch-copper than glucose-copper rats. Cardiac copper-zinc-superoxide dismutase activity was equally reduced in all copper-deficient groups. The 50% starch-replaced diet was more effective in minimizing copper deficiency than the 75% glucose-replaced diet. This poorer improvement of copper deficiency by glucose than starch may partially be due to a more severe reduction of food intake in glucose than in starch diets.  相似文献   

15.
The mammalian testes are generally quite susceptible to cadmium. A deficiency of metallothionein (MT), a metal-binding protein linked to Cd tolerance, has been observed in rat testes and may explain the sensitivity in rats. Little is known about the metal-binding proteins in primate testes. Thus this study examined the nature of these proteins in a non-human primate species, the patas monkey (Erythrocebus patas). In all cases proteins isolated from testes were compared with authentic MT isolated from the liver of a zinc-treated monkey. A low-molecular-mass Zn/Cd-binding protein was seen in testicular and hepatic cytosol after gel filtration. Neither protein had substantial amounts of associated copper. These proteins could be partially purified from both sources by heat treatment and acetone precipitation. When such extracts were further separated by reverse-phase h.p.l.c., four hepatic forms were isolated, all of which proved to be authentic MT by amino acid analysis. However, only two testicular forms were separated by h.p.l.c., both of which had amino acid compositions quite unlike that of MT, having a much lower cysteine content and amino acids which are absent from MT (leucine and phenylalanine). The testicular protein appeared to be uninducible by Zn treatment. These results suggest that the low-molecular-mass Cd/Zn-binding proteins in the patas testes are not MTs and further support the hypothesis that a MT deficiency may be an important determinate of the marked testicular sensitivity to Cd toxicity.  相似文献   

16.
The metallothionein (MT) gene expression profile was followed in rainbow trout during early embryo development and in liver and gonads during the period of sexual maturation. The hepatic MT mRNA levels increase at the end of sexual maturation in both male and female rainbow trout. Although both isoforms of MT mRNA accumulate in the liver, there is a preferential increase in MT-A in the female liver. Concomitantly with this increase in MT there is a redistribution of zinc and copper to MT. In the juvenile female there is an abundance of MT mRNA in the ovaries. This is correlated to high levels of zinc in the MT fraction upon Sephadex G-75 chromatography. During ovary development the MT mRNA levels and the MT-bound zinc levels drop, with an increase in zinc being bound to high-molecular-mass proteins. At ovulation most of the zinc is found in the membrane portion upon centrifugation. In contrast to the ovaries, there are no apparent changes in either trace metal distribution or MT mRNA levels during testis development. In the developing embryo there is an increase in MT-bound copper at gastrulation. This is accompanied by an increase in both isoforms of MT mRNA. At hatch both the copper and zinc levels increase in the MT fraction, with a concomitant increase in mainly MT-A mRNA. These findings indicate that the variations in MT mRNA levels during development are closely associated with metal regulation.  相似文献   

17.
Three groups (14 rats each) were fed one of the following diets for 8 wks: a control purified basal diet containing 12 ppm zinc, 5 ppm copper, and 35 ppm iron; the basal diet with less than 2 ppm zinc; or the basal diet supplemented with 1000 ppm zinc. Rats fed the zinc-deficient diet had decreased weight gain, moderate polydipsia, and intermittent mild diarrhea. The zinc-supplemented rats had a cyclical pattern of food intake and weight loss from weeks 5 to 8. Tissue concentrations suggest that zinc and copper were not mutually antagonistic with chronic dietary imbalances. If tissue element concentrations reflected intestinal uptake, then competition and/or inhibition of intestinal uptake occurred between zinc and iron. The fluctuations in tissue element concentrations that occurred with increased duration of the study were at variance with previous studies of shorter time periods. The dietary proportions of zinc, copper, and iron appear to influence zinc, copper, and iron metabolism at the intestinal and cellular transport levels over a given period of time.  相似文献   

18.
Copper absorption was measured at two levels of dietary zinc in six healthy young men who were confined to a metabolic unit for a 75 d study of zinc utilization. A diet of conventional foods was fed, providing either 16.5 or 5.5 mg zinc and 1.3 mg copper daily. Copper absorption was determined by feeding65Cu, a stable isotope of copper, once during the 16.5 mg Zn diet and near the beginning and end of the 5.5 mg Zn diet. Apparent copper absorption averaged 48.1% when the 16.5 mg Zn diet was fed. This was significantly higher than the averages of 37.2 and 38.5% when the 5.5 mg Zn diet was fed. Absorption also differed significantly among subjects. Fecal copper did not differ between diets or among subjects. All subjects were in positive copper balance at both levels of dietary zinc. These results suggest that a dietary zinc intake slightly above the Recommended Dietary Allowance of 15 mg/d does not increase fecal copper loss and does not interfere with copper absorption.  相似文献   

19.
Rats were fed a purified egg white-based diet containing 5 ppm Cu and 2, 14, or 57 ppm Zn. Zinc and copper balances were determined for eight consecutive weekly trial periods. The zinc-deficient group almost ceased to gain weight and was in slightly negative zinc balance. Groups of rats fed 14 and 57 ppm Zn gained weight at equal rates. These groups were in strongly positive zinc balance for four weeks; thereafter, they fed 57 ppm Zn retained about two times as much zinc as did the group fed the diet containing 14 ppm Zn. All groups were in null or slightly negative copper balance throughout the trial. These results suggest that zinc accumulation may be homeostatically controlled to a level in excess of that needed for maximum growth.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号