首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The undesirable reaction of aspartimide formation has been proved to occur under both acid and base conditions in solid-phase peptide synthesis and is dependent on the beta-carboxyl protecting group, the acid or base used during the synthesis, as well as the peptide sequence. The hydrolysis of aspartimide-containing peptides, especially during HPLC purification, yields a mixture of alpha- and beta-aspartyl peptides that can not be purified easily. A previous study demonstrated that treatment of aspartimide-containing peptides with methanol in the presence of 2% diisopropylethylamine in solution leads to alpha- and beta-aspartyl peptide methyl esters. Taking advantage of these results and aiming at elucidating the optimal conditions for aspartimide ring opening, the effect of different types and concentrations of alcohols (primary and secondary) and bases (diisopropylethylamine, collidine, 4-pyrrolidinopyridine, 1-methyl-2-pyrrolidone, piperidine and KCN) was tested at various temperatures and reaction times. The best results were obtained with a combination of a primary alcohol and diisopropylethylamine, while aspartimide ring opening by secondary alcohols occurred only at high temperatures. The optimal conditions were also applied to solid-phase peptide synthesis.  相似文献   

2.
Peptides containing N(alpha)-methylamino acids exhibit interesting therapeutic profiles and are increasingly recognized as potentially useful therapeutics. Unfortunately, their synthesis is hampered by the high price and nonavailability of many N(alpha)-methylamino acids. An efficient and practical three-step procedure for selective N-methylation of peptides on solid support is described. The procedure was based on the well known solid-phase N-methylation of N(alpha)-arylsulfonyl peptides, which was improved by using dimethylsulfate and the less expensive DBU as base. Every step of the procedure, amine activation by an o-nitrobenzenesulfonyl group, selective N-methylation and removal of the sulfonamide group, was optimized in respect of time and economy. The described optimized three-step procedure is performed in 35 min without solvent changes, instead of 3 h. Tripeptides (Fmoc-Phe-MeXaa-Leu-OH) containing N-methylated common amino acids were also prepared using the optimized procedure to demonstrate its compatibility with these amino acids. The described procedure allows an efficient synthesis of N(alpha)-methylamino acid containing peptides in a very short time using Fmoc solid-phase peptide synthesis.  相似文献   

3.
A new type of glycoconjugate mimetic is introduced that combines a glycocluster head group with a peptide part. These 'glycocluster peptides' are designed to serve as mimetics of glycocalyx constituents. A convergent synthetic scheme was followed, consisting of (i) the synthesis of a clustered carbohydrate head group carrying an amino acid at the focal point, and (ii) the solid phase synthesis of the peptide moiety. Finally, peptide coupling on resin furnished two prototype glycocluster peptides, which each exposes three alpha-mannosyl residues in the form of a dendritic wedge, with different conformational features. Extensive purification and NMR studies were necessary to characterize the target compounds and the results of these investigations are reported here together with the synthesis.  相似文献   

4.
We have developed an expeditious method for the incorporation of the biotinylaminocaproyl moiety on the epsilon-amino group of a lysine residue within a peptide chain in a site-specific manner. Using t-Boc chemistry for the solid phase synthesis approach and a base labile, acid stable protecting group (Fmoc-) for the epsilon-amino group of the target lysine, we prepared fully protected resin bound peptides which are site-specifically biotinylated. Following HF cleavage, the uniquely biotinylated peptides were obtained in a high degree of purity. Using this approach, a number of biotinylaminocaproyllysyl derivatives of a monocyclic Endothelin-1 analog were prepared. Synthesis of selected bicyclic analogs of high affinity monocycles led to the preparation of the bicyclic [Nle7]ET-1 analog containing epsilon-biotinylaminocaproyllysine at position-9. This peptide, with Kd = 0.08 nM, has 1000-fold higher affinity for the ETA receptor than the commercially available N alpha-biotinylated Endothelin-1. The general utility of this biotinylation methodology was demonstrated by the synthesis of a site-specifically biotinylated PTH analog which contained several side chain functionalized amino acid residues in its sequence. The synthetic method reported here is convergent in that it allows the facile variation of the length of the spacer and also offers the potential to introduce in a site specific manner other groups such as affinity labels and fluorescent tags.  相似文献   

5.
The synthesis of Tyr(P)-containing peptides by the use of Fmoc-Tyr(PO3Me2)-OH in Fmoc/solid phase synthesis is complicated since, firstly, piperidine causes cleavage of the methyl group from the -Tyr(PO3Me2)-residue during peptide synthesis and, secondly, harsh conditions are needed for its final cleavage. A very simple method for the synthesis of Tyr(P)-containing peptides using t-butyl phosphate protection is described. The protected phosphotyrosine derivative, Fmoc-Tyr(PO3tBu2)-OH was prepared in high yield from Fmoc-Tyr-OH by a one-step procedure which employed di-t-butyl N,N-diethyl-phosphoramidite as the phosphorylation reagent. The use of this derivative in Fmoc/solid phase peptide synthesis is demonstrated by the preparation of the Tyr(P)-containing peptides, Ala-Glu-Tyr(P)-Ser-Ala and Ser-Ser-Ser-Tyr(P)-Tyr(P).  相似文献   

6.
A universally conserved adenosine, A2451, within the ribosomal peptidyl transferase center has been proposed to act as a general acid-base catalyst during peptide bond formation. Evidence in support of this proposal came from pH-dependent dimethylsulfate (DMS) modification within Escherichia coli ribosomes. A2451 displayed reactivity consistent with an apparent acidity constant (pKa) near neutrality, though pH-dependent structural flexibility could not be rigorously excluded as an explanation for the enhanced reactivity at high pH. Here we present three independent lines of evidence in support of the alternative interpretation. First, A2451 in ribosomes from the archaebacteria Haloarcula marismortui displays an inverted pH profile that is inconsistent with proton-mediated base protection. Second, in ribosomes from the yeast Saccharomyces cerevisiae, C2452 rather than A2451 is modified in a pH-dependent manner. Third, within E. coli ribosomes, the position of A2451 modification (N1 or N3 imino group) was analyzed by testing for a Dimroth rearrangement of the N1-methylated base. The data are more consistent with DMS modification of the A2451 N1, a functional group that, according to the 50S ribosomal crystal structure, is solvent inaccessible without structural rearrangement. It therefore appears that pH-dependent DMS modification of A2451 does not provide evidence either for or against a general acid-base mechanism of protein synthesis. Instead the data suggest that there is pH-dependent conformational flexibility within the peptidyl transferase center, the exact nature and physiological relevance of which is not known.  相似文献   

7.
A method is described for the solid-phase cyclization of analogues of arginine vasopressin (AVP) in which one of the sulfur atoms of the disulfide bridge is formally replaced by a methylene group and in which the terminal amino group is formally replaced by a hydrogen atom. The linear precursors of these vasopressin analogues were assembled by a standard Merrifield solid-phase procedure and were cyclized by intramolecular peptide bond formation while the peptide was still attached to the resin support; then the final products were simultaneously deprotected and released from the polymeric support by treatment with liquid hydrogen fluoride. The products of this synthetic procedure were isolated by chromatography and exhibited high biological activities. This method for cyclization of resin-bound peptide is being applied in the synthesis of many other cyclopeptides for conformation and biological studies.  相似文献   

8.
The octapeptide Leu-Ser-Arg-Leu-Phe-Asp-Asn-Ala (hGH 6-13) has been reported to show insulin-potentiating properties, and its synthesis by conventional solid-phase synthesis was previously described. It is now shown that peptide synthesized with diisopropylethylamine or N-methylmorpholine as neutralizing base in each cycle does have the above structure. When triethylamine was used as neutralizing base however, the Asp residue was converted to its imide, the presence of which has been demonstrated by means of infrared, 1H-NMR and fast-atom bombardment mass spectra, and by reactivity studies, electrophoresis at several pH values, and enzymic hydrolysis. Only the imide form of the peptide possesses the previously reported biological properties. A study of imide formation from protected and unprotected peptides showed that cyclization occurred during a wide range of acid and base treatments, but 10% triethylamine in CH2Cl2 was most effective, producing over 40% of imide in 90 min. The results of the investigation are compared with others in the literature, including those for the peptide hormone secretin.  相似文献   

9.
A new improved synthesis of two immunostimulating peptides: FK-156 (D-lactyl-alanyl-gamma-D-glutamyl-(L)-meso-2,6-diaminopimelyl-(L)- glycine) and FK-565 (heptanoyl-gamma-D-glutamyl-(L)-meso-2,6-diaminopimelyl-(L)- D-alanine) is described. A proper differentiation between the two chiral amino acid moieties of diaminopimelic acid was accomplished by selective enzymatic hydrolysis of one methyl ester group of the L-centre of Z2-meso-A2pm(OMe)2 (2). Utilization of a commercially available protease and diester 2 as an enzyme substrate made possible the relatively simple synthesis of a key intermediate 4 and considerably simplified the final deprotection steps. Aminolysis of the N-carboxyanhydride (4) with D-AlaONBzl or GlyONBzl was chosen to obtain the appropriate dipeptides with one free amino group as convenient intermediates for further peptide synthesis. The BOP reagent, used for peptide bond formation, secured good yields and high chemical and chiral purity of the peptides. A modification of alanine deamination procedure leading to a significant increase of D-Lac(OAc) yield is presented.  相似文献   

10.
The synthesis of glyoxylyl peptides by coupling the masked glyoxylic acid derivative (FmocNH)(2)CHCO(2)H, 1, to a peptidyl resin assembled using Fmoc/tert-butyl chemistry has been described recently. Deprotection and cleavage of the peptide from the solid support using TFA was followed by unmasking of the glyoxylyl group in solution in the presence of DBU. [] The glyoxylyl peptide was thus generated using non-oxidizing conditions by comparison with the method based on the periodic oxidation of a seryl-precursor. However, base treatment of the (FmocNH)(2)CHCO(2)-peptide led to the formation of a byproduct besides the desired glyoxylyl peptide. This paper describes an optimized procedure for unmasking the Fmoc-protected alpha,alpha'-diaminoacetic acid moiety in solution which suppressed byproduct formation. Also presented is a series of experiments that permitted a structure and a mechanism of formation for the byproduct to be suggested.  相似文献   

11.
A new approach to the development of a vaccine against meningococci of serogroups A and B was proposed. It involves the synthesis of conjugates of high-molecular capsule polysaccharides of the serogroup A meningococcus (PsA) with earlier synthesized protective fragments of membrane proteins from serogroup B meningococci. The conjugates were synthesized using a method that consists of the generation of aldehyde groups by oxidizing free vicinal hydroxyl groups of PsA and subsequent reaction of these groups with amino groups of the peptide. The reaction proceeds with the intermediate formation of the Schiff base, which is reduced to the stable secondary amine. The main parameters of the reaction were optimized in the synthesis of a PsA conjugate with a model peptide and methods of their characterization were developed. The reproducibility and efficiency of the synthetic procedure were demonstrated by the example of synthesis of PsA conjugates with fragments of protein PorA from the outer membrane of the serogroup B meningococcus. It was shown that, when administered without adjuvant, a conjugate of PsA with a protective peptide, which represents an exposed conserved fragment 306–332 of protein PorA, stimulates the formation of antibodies to the peptide and polysaccharide moieties of the molecule and is also capable of decreasing the degree of bacteremia in animals infected with serogroup A and serogroup B meningococci. The approach can be applied to the development of a complex vaccine for serogroup A and serogroup B meningococci.  相似文献   

12.
A functional interaction between the signal sequence and the translation apparatus which may serve as a first step in chain targeting to the membrane is described. To this end, we exploited the powerful technique of molecular cloning in a procaryotic system and the well characterized translocation system of mammalian endoplasmic reticulum. The signal peptide of subunit B of the heat labile enterotoxin of Escherichia coli (EltB) was fused to several proteins. Single base substitutions were introduced in the signal peptide and their effect on protein synthesis and translocation was studied. We sought a single amino acid substitution which may define certain steps in the coordinated regulation of chain synthesis and targeting to the membrane. The substitution of proline for leucine at residue -8 in the signal peptide abolished all known functions of the signal peptide. In contrast to wild type signal peptide, the mutant signal peptide did not lead to arrest of nascent chain synthesis by signal recognition particle or translocation of the precursor protein across the membrane of the endoplasmic reticulum. Furthermore, the mutant signal peptide was not cleaved by purified E. coli signal peptidase. Interestingly, the mutation resulted in about a 2-fold increase in the rate of synthesis of the precursor protein, suggesting a role for the signal peptide in regulating the synthesis of the nascent secretory chain as a means of ensuring early and efficient targeting of this chain to the membrane. This role might involve interaction of the signal peptide with components of the translation apparatus and/or endogenous signal recognition particle. These results were obtained with three different fusion proteins carrying the signal peptide of EltB thus leading to the conclusion that the effect of the mutation on the structure and function of the signal peptide is independent of the succeeding sequence to which the signal peptide is attached.  相似文献   

13.
A concise synthesis of long-chain poly(ethylene glycol) (PEG) of defined molecular weight up to 29 ethyleneoxy units is described. These PEG diols were converted in a two-step synthesis into Fmoc-protected PEG amino acids, suitable as long linkers and compatible with solid-phase peptide synthesis. Long PEG chains (MW > 1000) can be readily synthesized with this method, which has the advantage of defined single molecular weight products over the comparable commercial polymers. The application of these PEG linkers to the synthesis of peptide-PEG-folate conjugates on a solid support was investigated. A method for the solid support synthesis of the targeting component of the conjugate, folic acid-cysteine, was developed, resulting in improved yields with respect to literature methods. The assembly of the peptide, PEG linker, and targeting group on solid support resulted in the synthesis of a conjugate of defined molecular weight and structure.  相似文献   

14.
Peptide bond formation on the ribosome is catalyzed by RNA. Kinetic studies using Escherichia coli ribosomes have shown that catalysis (>10(5)-fold overall acceleration) is due to a large part to substrate positioning. However, peptide bond formation is inhibited approximately 100-fold by protonation of a ribosomal group with pKa=7.5, indicating either a contribution of general acid-base catalysis or inhibition by a pH-dependent conformational change within the active site. The function of a general base has been attributed to A2451 of 23S rRNA, and a charge relay system involving G2447 has been postulated to bring about the extensive pKa shift of A2451 implied in the model. Using a rapid kinetic assay, we found that the G2447A mutation, which has essentially no effect on cell growth, lowers the rate of peptide bond formation about 10-fold and does not affect the ionization of the ribosomal group with pKa=7.5 taking part in the reaction. This result does not support the proposed charge relay mechanism involving G2447 and the role of A2451 as general base in the catalysis of peptide bond formation.  相似文献   

15.
A method for the preparation of a biotinylated resin that can be elongated by standard methods of solid-phase peptide synthesis to give peptides biotinylated at the carboxy terminus is described. This methodology is particularly important for the preparation of biotinylated peptides in which a free amino terminus is required. Coupling of N epsilon-9-fluorenylmethoxycarbonyl-(Fmoc)-N alpha-tert-butyloxycarbonyl(Boc)-L- lysine to p-methylbenzhydrylamine resin, followed by removal of the Fmoc protecting group and reaction with (+)-biotin-4-nitrophenyl ester yielded N alpha-Boc-biocytin-p-methyl-benzhydrylamine resin. The utility of this resin was tested by the synthesis of a biotinylated peptide, Gly-Asn-Ala-Ala-Ala-Ala-Arg-Arg-biocytin-NH2, for use as an in vitro substrate for myristoyl-CoA:protein N-myristoyltransferase (NMT), the enzyme that catalyzes protein N-myristoylation. Analysis of the peptide derivative by HPLC and mass spectrometry revealed a single major product of the expected mass, indicating that the biotin group survived cleavage and deprotection with HF. The biotinylated peptide served as a substrate for NMT, and the resulting myristoylated peptide could be quantitatively recovered by adsorption to immobilized avidin.  相似文献   

16.
The utility of a new mass spectrometric technique for detecting and identifying peptide by-products produced in the synthesis of peptides is demonstrated. The technique involves three sequential steps: (1) practically nondestructive 252Cf plasma desorption mass spectrometric analysis of monolayer amounts of the peptide(s) of interest bound to a thin layer of nitrocellulose; (2) enzyme-catalyzed microscale chemical reaction of the surface-bound peptide(s) to produce structurally informative hydrolysis products; (3) plasma desorption mass spectrometric analysis of these hydrolysis products. The first step determines the presence and the molecular weights of unwanted by-products resulting from errors or incomplete reactions during synthesis. The subsequent two steps provide information on the precise location in the peptides where errors have occurred. In the present paper, the technique is applied to an investigation of unwanted peptide by-products associated with the use of tryptophan during stepwise solid-phase peptide synthesis. Synthetic preparations of melittin and [Bpa-8]dynorphin A (1-17) were each found to contain a major impurity with molecular weight 28 Da higher than that of the desired product. The impurity in the melittin preparation, in which the final deprotection step involved the high-low HF procedure, was shown to result from incomplete removal of the formyl group from Trp-19. On the other hand, the impurity in the [Bpa-8]dynorphin A (1-17) preparation, where the removal of the formyl group from Trp-14 was carried out using piperidine, was shown to result from migration of the formyl group to Lys-11 or Lys-13.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The preparation and use of new anchor groups for the synthesis of peptide amides by solid-phase peptide synthesis employing the Fmoc-method is described. Based on the structure of the 4,4'-dimethoxybenzhydryl group (Mbh) handles were developed, which could be cleaved by mild acid treatment to give carboxamides. The syntheses and application of Fmoc-amino-acid-(4-carboxylatomethyloxyphenyl-4'-methoxyphenyl) methyl amide and Fmoc-(4-carboxylatopropyloxyphenyl-4'-methoxyphenyl) methyl amide are described in detail. These handles were coupled to resins and a stepwise elongation of peptide chains proceeded smoothly with N alpha-9-fluorenylmethoxycarbonyl (Fmoc) amino acid derivatives using a carbodiimide/HOBt mediated reaction. The final cleavage of side-chain protecting groups and the release of the C-terminal amide moiety was achieved by the treatment with trifluoroacetic acid, dichloromethane in the presence of scavengers. Various peptides, such as the Leu-enkephalin amide and Leu-Gly-Gly-Gly-Gln-Gly-Lys-Val-Leu-Gly-NH2, which is a good substrate for F XIII, were prepared in high yields and purities.  相似文献   

18.
The 2-(4-nitrophenylsulfonyl)ethoxycarbonyl (Nsc) group is a new base-labile protecting group for solid-phase peptide synthesis, completely interchangeable with the fluorenylmethoxycarbonyl (Fmoc) protecting group, but with certain advantages. In this paper, we report a methodology with Nalpha-Nsc-protected amino acids for the synthesis of some melanotropins important to our research, namely, gamma-melanocyte-stimulating hormone (gamma-MSH), its [Nle3]-analogue, and a cyclic alpha-MSH/beta-MSH hybrid. We developed an efficient protocol for the synthesis of the cyclic MSH analogue that yielded this peptide in >98% purity. The gamma-MSH synthesis, which gave problems with both the Boc and Fmoc strategies, yielded the desired peptide by Nsc-chemistry but was accompanied by side products. Finally, the Nle3-gamma-MSH analogue was synthesized more efficiently using the Fmoc strategy, suggesting that Nsc-chemistry might not be the best methodology for certain sequences.  相似文献   

19.
The chemical synthesis of various acylaminoacylated mononucleotides is described and their activities as donor substrates for the ribosomal peptide synthesis were investigated using PhetRNAPhe as an acceptor. This minimal reaction was characterized in detail and was shown to be stimulated by CMP, cytidine and cytosine. By using several cytidine and cytosine analogs evidence is provided that this enhancement is rather caused by base pairing to rRNA, followed by a structural change, than by a base mediated general acid/base catalysis. Only derivatives of AMP proved active as P-site substrates. Further, a significant contribution of the 2′-OH to activity was indicated by the finding that AcLeu-dAMP was inactive as donor substrate, although it is a good inhibitor of peptide bond formation and thus, is presumably bound to the P-site. However, Di(AcLeu)-2′-OCH3-Ade and DiAcLeu-AMP were moderately active in this assay suggesting that the reactivity of the 3′-acylaminoacid ester is stimulated by the presence of the 2′-oxygen group. A model is discussed how further interactions of the 2′-OH in the transition state might influence peptidyl transferase activity.  相似文献   

20.
A new synthesis of N-maleoyl-omega-amino acids, their use for the introduction of the maleimido group into peptide factors as well as the stability of this group under standard conditions of conventional peptide synthesis are described. The relatively high stability of N-maleoyl-peptide derivatives in aqueous solutions at neutral or slightly acidic pH values as well as the fast addition of thiol compounds to the maleimido group indicate that these peptide derivatives are well suited for the preparation of tracers of peptide factors and of peptide-protein conjugates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号