首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Advanced glycation end products (AGEs) from the Maillard reaction contribute to protein aging and the pathogenesis of age- and diabetes-associated complications. The alpha-dicarbonyl compound methylglyoxal (MG) is an important intermediate in AGE synthesis. Recent studies suggest that pyridoxamine inhibits formation of advanced glycation and lipoxidation products. We wanted to determine if pyridoxamine could inhibit MG-mediated Maillard reactions and thereby prevent AGE formation. When lens proteins were incubated with MG at 37 degrees C, pH 7.4, we found that pyridoxamine inhibits formation of methylglyoxal-derived AGEs concentration dependently. Pyridoxamine reduces MG levels in red blood cells and plasma and blocks formation of methylglyoxal-lysine dimer in plasma proteins from diabetic rats and it prevents pentosidine (an AGE derived from sugars) from forming in plasma proteins. Pyridoxamine also decreases formation of protein carbonyls and thiobarbituric-acid-reactive substances in plasma proteins from diabetic rats. Pyridoxamine treatment did not restore erythrocyte glutathione (which was reduced by almost half) in diabetic animals, but it enhanced erythrocyte glyoxalase I activity. We isolated a major product of the reaction between MG and pyridoxamine and identified it as methylglyoxal-pyridoxamine dimer. Our studies show that pyridoxamine reduces oxidative stress and AGE formation. We suspect that a direct interaction of pyridoxamine with MG partly accounts for AGE inhibition.  相似文献   

2.
We recently demonstrated that methylglyoxal (MG) induced apoptosis of brain microvascular endothelial cells (IHECs) that was preceded by glutathione (GSH) depletion. Here, we test the hypothesis that MG induces occludin glycation and disrupts IHEC barrier function, which is prevented by GSH-dependent MG metabolism. Exposure of IHECs to MG decreased transendothelial electrical resistance (TEER) in association with MG-adduct formation. A 65-kDa MG-glycated protein corresponded to occludin, which was confirmed by immunoprecipitation. Moreover, immunofluorescence staining showed that MG disrupted the architectural organization of ZO-1. Occludin glycation and ZO-1 disruption were prevented by N-acetylcysteine (NAC). Accordingly, TEER loss was abrogated by NAC (via GSH synthesis) and exacerbated by buthionine sulfoximine (BSO; GSH synthesis inhibitor). BSO treatment attenuated d-lactate production, consistent with a role for GSH in glyoxalase I-catalyzed MG elimination. Although MG increased reactive oxygen species (ROS) generation, the ROS scavengers tempol and tiron did not block barrier disruption. This suggests that endogenously generated ROS were unlikely to be a major cause of or did not reach a threshold to elicit barrier failure as elicited by exogenous hydrogen peroxide (300–400 μM). Immunohistochemistry revealed a lower percentage of microvessels stained with anti-occludin, but a higher percentage stained with anti-MG in diabetic rat brain compared to controls. Western analyses confirmed the decrease in diabetic brain occludin expression, but an increase in glycated occludin levels. These results provide novel evidence that reactive carbonyl species can mediate occludin glycation in cerebral microvessels and in microvascular endothelial cells that contribute to barrier dysfunction, a process that was prevented by GSH through enhanced MG catabolism.  相似文献   

3.
Altered glyoxalase‐1 (GLO‐1) activity and expression is associated with the development of late diabetic complications, malignancy and oxidative stress‐ and aging‐related diseases. In the present study, we developed a flow cytometry method for GLO‐1 detection in human leukocytes isolated from peripheral blood samples to investigate GLO‐1 expression in leukocyte subsets from type 1 and 2 diabetes mellitus patients (n = 11) and healthy subjects (n = 8). The flow cytometry analysis of GLO‐1 in leukocytes showed that expression index of GLO‐1‐positive cells was slightly increased in mononuclear leukocytes from diabetic patients. This result correlated with the increase in GLO‐1 activity in the whole blood samples of type 2 diabetes patients. In conclusion, the present study demonstrates that flow cytometry is suitable for the detection of the GLO‐1 enzyme in human leukocytes and that this method could be used to investigate the fast adaptation of the glyoxalase system related to the pathogenesis of late complications of diabetes mellitus and other glycation stress‐related disorders. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Oxidative stress plays a crucial role in the progression and development of diabetes and its complications due to chronic hyperglycemia. The present study was aimed to investigate the kidney tissue protective nature of d-pinitol, a cyclitol present in soybean, by assessing the key markers of hyperglycemia-mediated oxidative stress, proinflammatory cytokines and ultrastructural alterations in streptozotocin-induced diabetic rats. Oral administration of d-pinitol (50 mg/kg body weight/day) for 30 days to diabetic group of rats showed a significant elevation in the level of total protein and significant decline in the levels of blood urea, serum uric acid, creatinine and advanced glycation endproducts (AGEs) and kidney proinflammatory cytokines such as TNF-α, IL-1β, IL-6, NF-κB p65 subunit and nitrite. Further, d-pinitol administration elicited a significant attenuation in the activities of kidney enzymatic antioxidants such as superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione-S-transferase (GST) and glutathione reductase (GR) and the levels of kidney non-enzymatic antioxidants such as vitamin E, vitamin C and reduced glutathione (GSH) in the diabetic group of rats, with a concomitant decline in the levels of kidney lipid peroxides, hydroperoxides and protein carbonyls. The histological and ultrastructural observations on the kidney tissues also confirmed the renoprotective nature of d-pinitol. Thus the present study demonstrated the renoprotective nature of d-pinitol by attenuating the hyperglycemia-mediated proinflammatory cytokines and antioxidant competence in kidney tissues of streptozotocin-induced diabetic rats.  相似文献   

5.
The glyoxalase system and its main enzyme, glyoxalase 1 (GLO1), protect cells from advanced glycation end products (AGEs), such as methylglyoxal (MG) and other reactive dicarbonyls, the formation of which is increased in diabetes patients as a result of excessive glycolysis. MG is partly responsible for harmful protein alterations in living cells, notably in neurons, leading to their dysfunction, and recent studies have shown a negative correlation between GLO1 expression and tissue damage. Neuronal dysfunction is a common diabetes complication due to elevated blood sugar levels, leading to high levels of AGEs. The aim of our study was to determine whether single nucleotide polymorphisms (SNPs) in the GLO1 gene influence activity of the enzyme. In total, 125 healthy controls, 101 type 1 diabetes, and 100 type 2 diabetes patients were genotyped for three common SNPs, rs2736654 (A111E), rs1130534 (G124G), and rs1049346 (5′-UTR), in GLO1. GLO1 activity was determined in whole blood lysates for all participants of the study.  相似文献   

6.
This study was designed to evaluate the effects of dimerumic acid (DMA) on receptor for advanced glycation endproducts (RAGE) signal activation and THP-1 monocyte inflammation treated with S100b, a specific ligand of RAGE. We found that DMA inhibited inflammatory cytokine production via upregulation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and alleviated oxidative stress through attenuation of p47phox translocation to the membrane of S100b-treated THP-1 monocytes. We found that DMA activated Nrf2 mediated by the p38 kinase pathway in THP-1 monocytes. However, anti-inflammatory activity of DMA was attenuated by Nrf2 siRNA treatment. In an animal model, methylglyoxal (MG; 200 mg/kg bw) was chosen to induce diabetes in Balb/C mice (6 weeks) in this work. The in vivo verification of anti-inflammation in peripheral blood mononuclear cells by DMA treatment was confirmed by tumor necrosis factor-α and interleukin-1β measurements. Oral glucose tolerance test, insulin tolerance test, hyperinsulinemia, and hyperglycemia were improved in MG-treated mice by DMA treatment and these effects were greater than those of silymarin and N-acetylcysteine. Furthermore, DMA increased hepatic glyoxalase mRNA and glutathione mediated by Nrf2 activation to metabolize MG into d-lactic acid, thereby reducing serum and hepatic AGE levels and suppressing inflammatory factor generation in MG-treated mice. However, DMA did not exert the antiglycation activity in MG–bovine serum albumin incubation. Taken together, the results indicate that DMA is a novel antioxidant and Nrf2 activator that lowers AGE levels and may prove to be an effective treatment for diabetes.  相似文献   

7.
Methylglyoxal (MG) is a reactive α-oxoaldehyde that increases under diabetic conditions and subsequently contributes to the complications associated with this disease. Piceatannol is a naturally occurring analogue of resveratrol that possesses multiple biological functions. The present study investigated the effects of piceatannol on MG-induced cytotoxicity in MC3T3-E1 osteoblastic cells. Piceatannol significantly restored MG-induced reductions in cell viability and reduced lactate dehydrogenase release in MG-treated MC3T3-E1 osteoblastic cells, which suggests that it suppressed MG-induced cytotoxicity. Piceatannol also increased glyoxalase I activity and glutathione levels in MG-treated cells, which indicates that it enhanced the glyoxalase system and thus cellular protection. The present study also showed that piceatannol inhibited the generation of inflammatory cytokines and reactive oxygen species and ameliorated mitochondrial dysfunction induced by MG. Furthermore, piceatannol treatment significantly reduced the levels of endoplasmic reticulum stress and autophagy induced by MG. Therefore, piceatannol could be a potent option for the development of antiglycating agents for the treatment of diabetic osteopathy.  相似文献   

8.
Diabetes was the first disease state where evidence emerged for increased formation of methylglyoxal. Metabolism of methylglyoxal by the glyoxalase system has been linked to the development of vascular complications of diabetes - nephropathy, retinopathy, neuropathy and cardiovascular disease. Increased formation of methylglyoxal in hyperglycaemia associated with diabetes and down regulation of glyoxalase 1 by inflammatory signalling in vascular cells leads to a marked increased modification of proteins by methylglyoxal to form advanced glycation endproducts at the sites of vascular complications. Hotspot protein targets of methylglyoxal that suffer functional impairment - the dicarbonyl proteome - likely play a key role in the mechanisms underlying the development of vascular complications in diabetes: particularly modification of integrin binding sites in extracellular matrix proteins leading to endothelial cell shedding and anoikis, modification of mitochondrial proteins and increased formation of reaction oxygen species, and modification of apolipoprotein B100 of low density lipoprotein leading to its increased atherogenicity. Some current therapeutic agents counter partially dysfunctional metabolism of methylglyoxal by the glyoxalase system in diabetes - including the recent development of high dose thiamine therapy for early stage diabetic nephropathy. Further pharmacologic strategies are required to overcome the down regulation of glyoxalase1 in diabetes. The glyoxalase system is likely to be a continuing and future focus for research on clinical biomarkers and therapeutic development for respectively assessment of metabolic control and prevention of vascular complications in diabetes and obesity.  相似文献   

9.
Methylglyoxal (MG), a highly reactive dicarbonyl derived from metabolic processes, is the most powerful precursor of advanced glycation end products (AGEs). Glycative stress has been recently associated with ovarian dysfunctions in aging and PCOS syndrome. We have investigated the role of the NAD+-dependent Class III deacetylase SIRT1 in the adaptive response to MG in mouse oocytes and ovary. In mouse oocytes, MG induced up-expression of glyoxalase 1 (Glo1) and glyoxalase 2 (Glo2) genes, components of the main MG detoxification system, whereas inhibition of SIRT1 by Ex527 or sirtinol reduced this response. In addition, the inhibition of SIRT1 worsened the effects of MG on oocyte maturation rates, while SIRT1 activation by resveratrol counteracted MG insult. Ovaries from female mice receiving 100 mg/kg MG by gastric administration for 28 days (MG mice) exhibited increased levels of SIRT1 along with over-expression of catalase, superoxide dismutase 2, SIRT3, PGC1α and mtTFA. Similar levels of MG-derived AGEs were observed in the ovaries from MG and control groups, along with enhanced protein expression of glyoxalase 1 in MG mice. Oocytes ovulated by MG mice exhibited atypical meiotic spindles, a condition predisposing to embryo aneuploidy. Our results from mouse oocytes revealed for the first time that SIRT1 could modulate MG scavenging by promoting expression of glyoxalases. The finding that up-regulation of glyoxalase 1 is associated with that of components of a SIRT1 functional network in the ovaries of MG mice provides strong evidence that SIRT1 participates in the response to methylglyoxal-dependent glycative stress in the female gonad.  相似文献   

10.
Although insulin resistance has been traditionally associated with type 2 diabetes, recent evidence in humans and animal models indicates that insulin resistance may also develop in type 1 diabetes. A point mutation of insulin 2 gene in Ins2(Akita) mice leads to pancreatic beta-cell apoptosis and hyperglycemia, and these mice are commonly used to investigate type 1 diabetes and complications. Since insulin resistance plays an important role in diabetic complications, we performed hyperinsulinemic-euglycemic clamps in awake Ins2(Akita) and wild-type mice to measure insulin action and glucose metabolism in vivo. Nonobese Ins2(Akita) mice developed insulin resistance, as indicated by an approximately 80% reduction in glucose infusion rate during clamps. Insulin resistance was due to approximately 50% decreases in glucose uptake in skeletal muscle and brown adipose tissue as well as hepatic insulin action. Skeletal muscle insulin resistance was associated with a 40% reduction in total GLUT4 and a threefold increase in PKCepsilon levels in Ins2(Akita) mice. Chronic phloridzin treatment lowered systemic glucose levels and normalized muscle insulin action, GLUT4 and PKCepsilon levels in Ins2(Akita) mice, indicating that hyperglycemia plays a role in insulin resistance. Echocardiography showed significant cardiac remodeling with ventricular hypertrophy that was ameliorated following chronic phloridzin treatment in Ins2(Akita) mice. Overall, we report for the first time that nonobese, insulin-deficient Ins2(Akita) mice develop type 2 diabetes phenotypes including peripheral and hepatic insulin resistance and cardiac remodeling. Our findings provide important insights into the pathogenesis of metabolic abnormalities and complications affecting type 1 diabetes and lean type 2 diabetes subjects.  相似文献   

11.
12.
13.
The glyoxalase system in the cytoplasm of cells provides the primary defence against glycation by methylglyoxal catalysing its metabolism to D-lactate. Methylglyoxal is the precursor of the major quantitative advanced glycation endproducts in physiological systems - arginine-derived hydroimidazolones and deoxyguanosine-derived imidazopurinones. Glyoxalase 1 of the glyoxalase system was linked to anthropometric measurements of obesity in human subjects and to body weight in strains of mice. Recent conference reports described increased weight gain on high fat diet-fed mouse with lifelong deficiency of glyoxalase 1 deficiency, compared to wild-type controls, and decreased weight gain in glyoxalase 1-overexpressing transgenic mice, suggesting a functional role of glyoxalase 1 and dicarbonyl stress in obesity. Increased methylglyoxal, dicarbonyl stress, in white adipose tissue and liver may be a mediator of obesity and insulin resistance and thereby a risk factor for development of type 2 diabetes and non-alcoholic fatty liver disease. Increased methylglyoxal formation from glyceroneogenesis on adipose tissue and liver and decreased glyoxalase 1 activity in obesity likely drives dicarbonyl stress in white adipose tissue increasing the dicarbonyl proteome and related dysfunction. The clinical significance will likely emerge from on-going clinical evaluation of inducers of glyoxalase 1 expression in overweight and obese subjects. Increased transcapillary escape rate of albumin and increased total body interstitial fluid volume in obesity likely makes levels of glycation of plasma protein unreliable indicators of glycation status in obesity as there is a shift of albumin dwell time from plasma to interstitial fluid, which decreases overall glycation for a given glycemic exposure.  相似文献   

14.
Accelerated formation and accumulation of advanced glycation end products, as well as increased flux of glucose through polyol pathway, have been implicated in the pathogenesis of diabetic vascular complications. We investigated effects of advanced glycation end products on the levels of aldose reductase mRNA, protein, and activity in human microvascular endothelial cells. When endothelial cells were cultured with highly glycated bovine serum albumin, aldose reductase mRNA in endothelial cells demonstrated concentration-dependent elevation. The increase in aldose reductase mRNA was accompanied by elevated protein expression and enzyme activity. Significant increase in the enzyme expression was also observed when endothelial cells were cultured with serum obtained from diabetic patients with end-stage renal disease. Pretreatment of the endothelial cells with probucol or vitamin E prevented the advanced glycation end products-induced increases in aldose reductase mRNA and protein. Electrophoretic mobility shift assays using the nuclear extracts of the endothelial cells treated with advanced glycation end products showed enhancement of specific DNA binding activity for AP-1 consensus sequence. These results indicate that accelerated formation of advanced glycation end products in vivo may elicit activation of the polyol pathway, possibly via augmented oxidative stress, and amplify endothelial cell damage leading to diabetic microvascular dysfunction.  相似文献   

15.
Diabetic encephalopathy, which is characterized by cognitive decline and dementia, commonly occurs in patients with long-standing diabetes. Previous studies have suggested that methylglyoxal (MG), an endogenous toxic compound, plays an important role in diabetic complications such as cognitive impairment. MG induces neuronal apoptosis. To clarify whether marein, a major compound from the hypoglycemic plant Coreopsis tinctoria, prevents PC12 cell damage induced by MG, we cultured PC12 cells in the presence of MG and marein. Marein attenuated MG-induced changes in the mitochondrial membrane potential (ΔΨm), mitochondrial permeability transition pores (mPTPs), intracellular Ca2+?levels, the production of reactive oxygen species (ROS), glutathione (GSH)/glutathione disulfide (GSSG) and adenosine triphosphate (ATP), and the increase in the percentage of apoptotic cells. Marein also increased glyoxalase I (Glo1) activity, phospho-AMPKα (Thr172) and Bcl-2 expression and diminished the activation of Bax, caspase-3 and inhibitor of caspase-activated deoxyribonuclease (ICAD). Importantly, pretreatment of cells with marein diminished the compound C-induced inactivation of p-AMPK. Molecular docking simulation showed that marein interacted with the γ subunit of AMPK. In conclusion, we found for the first time that the neuroprotective effect of marein is due to a reduction of damage to mitochondria function and activation of the AMPK signal pathway. These results indicate that marein may be a potent compound for preventing/counteracting diabetic encephalopathy.  相似文献   

16.
The present study was aimed at addressing the effect of hyperglycemia on the renal cortical brush border membrane. The fluidity and the functionality of the renal cortical brush border membrane have been evaluated after 6 weeks of streptozotocin-induced diabetes in rats. Lipid peroxidation and protein oxidation were first performed to confirm a state of oxidative stress. The fluidity of the brush border membrane of diabetic rats decreased significantly by 15.76%. There was an increase in the amount of early (19.39%) and advanced (42.23%) glycation end-products suggesting the accumulation of significant amount of non-enzymic glycation products at 6 weeks of diabetes. Although, the activities of both gamma-glutamyl transpeptidase and alkaline phosphatase of the brush border membrane decreased, that of the latter decreased to a significant extent with an increase in K(m) (81%) and no change in the V(max). A study of the activities of glutathione-dependent antioxidant enzymes in the renal cortical homogenates showed that the activities of glutathione peroxidase and glyoxalase II were altered significantly. Our study seems to suggest that increased free radical generation accompanied by non-enzymic glycation may be responsible for oxidative stress and an increased rigidity of the diabetic brush border membrane. Alkaline phosphatase may thus serve as a potentially useful marker of free radical induced damage to the renal cortical brush border membrane. The results also suggest that enhanced susceptibility to oxidative stress during early stages may be an important factor in the development of secondary complications of diabetes.  相似文献   

17.
Akita mice are a genetic model of type 1 diabetes. In the present studies, we investigated the phenotype of Akita mice on the FVB/NJ background and examined urinary nephrin excretion as a marker of kidney injury. Male Akita mice were compared with non-diabetic controls for functional and structural characteristics of renal and cardiac disease. Podocyte number and apoptosis as well as urinary nephrin excretion were determined in both groups. Male FVB/NJ Akita mice developed sustained hyperglycemia and albuminuria by 4 and 8 weeks of age, respectively. These abnormalities were accompanied by a significant increase in systolic blood pressure in 10-week old Akita mice, which was associated with functional, structural and molecular characteristics of cardiac hypertrophy. By 20 weeks of age, Akita mice developed a 10-fold increase in albuminuria, renal and glomerular hypertrophy and a decrease in the number of podocytes. Mild-to-moderate glomerular mesangial expansion was observed in Akita mice at 30 weeks of age. In 4-week old Akita mice, the onset of hyperglycemia was accompanied by increased podocyte apoptosis and enhanced excretion of nephrin in urine before the development of albuminuria. Urinary nephrin excretion was also significantly increased in albuminuric Akita mice at 16 and 20 weeks of age and correlated with the albumin excretion rate. These data suggest that: 1. FVB/NJ Akita mice have phenotypic characteristics that may be useful for studying the mechanisms of kidney and cardiac injury in diabetes, and 2. Enhanced urinary nephrin excretion is associated with kidney injury in FVB/NJ Akita mice and is detectable early in the disease process.  相似文献   

18.
Semicarbazide-sensitive amine oxidase (SSAO) catalyzes formation of methylglyoxal (MG) from aminoacetone; MG then reacts with proteins to form advanced glycation end products or AGEs. Because of its potential to generate MG, SSAO may contribute to AGE-associated vascular complications of aging and diabetes. We developed a method to measure SSAO activity in bovine aortic smooth muscle cells (BASMC) based on the oxidation of 2',7'-dichlorofluorescin by hydrogen peroxide and horseradish peroxidase. The SSAO activity was completely inhibited by 10 mM semicarbazide. Argpyrimidine is a readily detectable fluorescent product of the reaction between MG and arginine. Cell lysates incubated with aminoacetone formed argpyrimidine in a reaction that was inhibited by 20 mM semicarbazide. Immunostaining of tissue sections showed that aminoacetone-treated rats (normal as well as diabetic) formed more argpyrimidine in aortic smooth muscle than untreated controls. We believe that SSAO can enhance AGE synthesis in the macrovasculature of diabetic individuals by production of MG.  相似文献   

19.
Methylglyoxal is the most important intracellular glycation agent, formed nonenzymatically from triose phosphates during glycolysis in eukaryotic cells. Methylglyoxal-derived advanced glycation end-products are involved in neurodegenerative disorders (Alzheimer's, Parkinson's and familial amyloidotic polyneurophathy) and in the clinical complications of diabetes. Research models for investigating protein glycation and its relationship to methylglyoxal metabolism are required to understand this process, its implications in cell biochemistry and their role in human diseases. We investigated methylglyoxal metabolism and protein glycation in Saccharomyces cerevisiae. Using a specific antibody against argpyrimidine, a marker of protein glycation by methylglyoxal, we found that yeast cells growing on d-glucose (100 mM) present several glycated proteins at the stationary phase of growth. Intracellular methylglyoxal concentration, determined by a specific HPLC based assay, is directly related to argpyrimidine formation. Moreover, exposing nongrowing yeast cells to a higher d-glucose concentration (250 mM) increases methylglyoxal formation rate and argpyrimidine modified proteins appear within 1 h. A kinetic model of methylglyoxal metabolism in yeast, comprising its nonenzymatic formation and enzymatic catabolism by the glutathione dependent glyoxalase pathway and aldose reductase, was used to probe the role of each system parameter on methylglyoxal steady-state concentration. Sensitivity analysis of methylglyoxal metabolism and studies with gene deletion mutant yeast strains showed that the glyoxalase pathway and aldose reductase are equally important for preventing protein glycation in Saccharomyces cerevisiae.  相似文献   

20.
Nephrotoxicity is a dose-dependent side effect of cisplatin limiting its clinical usage in the field of cancer chemotherapy. Fisetin is a bioactive flavonoid with recognized antioxidant and anti-inflammatory properties. In the present study, we investigated the potential renoprotective effect and underlying mechanism of fisetin using rat model of cisplatin-induced nephrotoxicity. The elevation in serum biomarkers of renal damage (blood urea nitrogen and creatinine); degree of histopathological alterations and oxidative stress were significantly restored towards normal in fisetin treated, cisplatin challenged animals. Fisetin treatment also significantly attenuated the cisplatin-induced IκBα degradation and phosphorylation and blocked the NF-κB (p65) nuclear translocation, with subsequent elevation of pro-inflammatory cytokine, TNF-α, protein expression of iNOS and myeloperoxidase activities. Furthermore, fisetin markedly attenuated the translocation of cytochrome c protein from the mitochondria to the cytosol; decreased the expression of pro-apoptotic proteins including Bax, cleaved caspase-3, cleaved caspase-9 and p53; and prevented the decline of anti-apoptotic protein, Bcl-2. The cisplatin-induced mRNA expression of NOX2/gp91phox and NOX4/RENOX and the NADPH oxidase enzyme activity were also significantly lowered by fisetin treatment. Moreover, the evaluated mitochondrial respiratory enzyme activities and mitochondrial antioxidants were restored by fisetin treatment. Estimation of platinum concentration in kidney tissues revealed that fisetin treatment along with cisplatin did not alter the cisplatin uptake in kidney tissues. In conclusion, these findings suggest that fisetin may be used as a promising adjunct candidate for cisplatin use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号