首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An efficient enzyme kinetics assay using electrospray ionization mass spectrometry (ESI-MS) was initially applied to the catalytic mechanism investigation of a carbohydrate sulfotransferase, NodST. Herein, the recombinant NodST was overexpressed with a His(6)-tag and purified via Ni-NTA metal-affinity chromatography. In this bisubstrate enzymatic system, an internal standard similar in structure and ionization efficiency to the product was chosen in the ESI-MS assay, and a single point normalization factor was determined and used to quantify the product concentration. The catalytic mechanism of NodST was rapidly determined by fitting the MS kinetic data into a nonlinear regression analysis program. The initial rate kinetics analysis and product inhibition study described support a hybrid double-displacement, two-site ping-pong mechanism of NodST with formation of a sulfated NodST intermediate. This covalent intermediate was further isolated and detected via trypsin digestion and Fourier transform ion cyclotron resonance mass spectrometry. To our knowledge, these are the first mechanistic data reported for the bacterial sulfotransferase, NodST, which demonstrated the power of mass spectrometry in elucidating the reaction pathway and catalytic mechanism of promising enzymatic systems.  相似文献   

2.
Here we report a new method for oxosteroid identification utilizing “tandem mass tag hydrazine” (TMTH) carbonyl-reactive derivatisation reagent. TMTH is a reagent with a chargeable tertiary amino group attached through a linker to a carbonyl-reactive hydrazine group. Thirty oxosteroids were analysed after derivatisation with TMTH by electrospray ionization mass spectrometry (ESI-MS) and were found to give high ion-currents compared to underivatised molecules. ESI-tandem mass spectrometry (MS/MS) analysis of the derivatives yielded characteristic fragmentation patterns with specific mass reporter ions derived from the TMT group. A shotgun ESI-MS method incorporating TMTH derivatisation was applied to a urine sample.  相似文献   

3.
The cell wall binding domains (CBD) of bacteriophage endolysins target the enzymes to their substrate in the bacterial peptidoglycan with extraordinary specificity. Despite strong interest in these enzymes as novel antimicrobials, little is known regarding their interaction with the bacterial wall and their binding ligands. We investigated the interaction of Listeria phage endolysin PlyP35 with carbohydrate residues present in the teichoic acid polymers on the peptidoglycan. Biochemical and genetic analyses revealed that CBD of PlyP35 specifically recognizes the N-acetylglucosamine (GlcNAc) residue at position C4 of the polyribitol-phosphate subunits. Binding of CBDP35 could be prevented by removal of wall teichoic acid (WTA) polymers from cell walls, and inhibited by addition of purified WTAs or acetylated saccharides. We show that Listeria monocytogenes genes lmo2549 and lmo2550 are required for decoration of WTAs with GlcNAc. Inactivation of either gene resulted in a lack of GlcNAc glycosylation, and the mutants failed to bind CBDP35. We also report that the GlcNAc-deficient phenotype of L. monocytogenes strain WSLC 1442 is due to a small deletion in lmo2550, resulting in synthesis of a truncated gene product responsible for the glycosylation defect. Complementation with lmo2550 completely restored display of characteristic serovar 1/2 specific WTA and the wild-type phenotype.  相似文献   

4.
Recent advances in the development of electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) now permit the near routine analysis of oligonucleotides and intact nucleic acids. These developments have led to the use of mass spectrometry (MS) as a detection platform for genomics studies. Among the various uses of mass spectrometry in genomics, applications focused on the characterization of single nucleotide polymorphisms (SNPs) and short tandem repeats (STRs) are particularly well-suited to MALDI or ESI-based analysis. It is predicted that continued developments in methodology and instrumentation will further improve the capabilities of mass spectrometry for nucleic acid analysis.  相似文献   

5.
Among the many opioid peptides developed to date as nonaddictive analgesics, biphalin has exhibited extraordinary high potency and many other desirable characteristics. Biphalin is an octapeptide consisting of two monomers of a modified enkephalin, attached via a hydrazine bridge, and with the amino acids assembled in a palindromic sequence. Its structure is (Tyr-D-Ala-Gly-Phe-NH-)-2. However, this unique peptide, like any other synthetic peptide, needs strict quality control because of certain drawbacks associated with peptide synthesis. This paper discusses our approaches to characterizing and analyzing biphalin. Many techniques were used, including elemental analysis, amino acid analysis, amino acid sequence analysis (AASA), mass spectrometry (MS), 1H-NMR, 1H-correlated spectroscopy (COSY)-NMR, high-performance liquid chromatography (HPLC) and capillary electrophoresis (CE). Electrospray ionization (ESI) mass spectrometry, which included both ESI-MS and ESI-MS/MS, was performed to confirm the full sequence because AASA results alone verified only the monomer sequence, and not the full sequence. Although the 1H-NMR results led to a preliminary assignment of many protons, the 1H COSY-NMR results allowed for unequivocal assignment of almost all protons. Peptide purity was determined using two techniques, reversed-phase HPLC and CE. The counter-ion of the peptide, trifluoroacetic acid, was determined by CE, using an indirect detection method developed previously in our laboratory. This paper illustrates successful application of nonconventional techniques to characterize and analyze a structurally modified peptide, biphalin, when standard techniques for peptide analysis are inadequate.  相似文献   

6.
Using electrospray ionization tandem mass spectrometry (ESI-MS/MS) this study shows that the loss of glycerophospholipid (GPL) after chromatography was unevenly distributed across the GPL molecular species. Both TLC and HPLC caused a preferential loss of GPL with 0 to 3 double bonds: 20% and 7.2% for choline glycerophosphates (PC) and 19.7% and 7.5% for ethanolamine glycerophosphates (PE), respectively. A consequence of these losses was that GPLs containing fatty acids with four or more double bonds had a greater contribution to the total after chromatography. ESI-MS/MS analysis also showed that PC molecular species with four or more double bonds migrated at the front of the TLC band of PCs. GPLs extracted from TLC plates occasionally contained PCs that were smaller than those in the original extract. These low molecular mass PCs were easily reduced to alcohols and formed derivatives with 2,4-dinitrophenylhydrazine, suggesting that aldehydes were generated by the oxidation of unsaturated fatty acids. Directly analyzing lipid extracts by ESI-MS/MS without preliminary chromatographic separation gives an accurate distribution of GPL molecular species in lipid mixtures. However, the ionization of the phospholipids in the electrospray jet maximized at relatively low concentrations of GPL. There was a linear response between phospholipid mass and ion intensity for concentrations around 1-2 nmol/ml for both PC and PE. The total ion intensity continued to increase with concentrations above 1-2 nmol/ml, but the response was non-linear.  相似文献   

7.
Profiling of leaf extracts from mutants of Arabidopsis with defects in lipid desaturation demonstrates the utility of collision-induced dissociation time-of-flight mass spectrometry (CID-TOF MS) for screening biological samples for fatty acid compositional alterations. CID-TOF MS uses the collision cell of a quadrupole time-of-flight mass spectrometer to simultaneously fragment all of the ions produced by an ionization source. Electrospray ionization CID-TOF MS in the negative mode can be used to analyze fatty acyl anions derived from complex lipids as well as free fatty acids. Although acyl anion yield is shown to be a function of the lipid class and the position on the glycerol backbone, acyl compositional profiles can be determined, and the TOF detector provides resolution of nominally isobaric acyl species in the profiles. Good precision is obtained when data are acquired for approximately 1 min per sample.  相似文献   

8.
The synthesis and characterization of isotopomer tandem nucleic acid mass tag-peptide nucleic acid (TNT-PNA) conjugates is described along with their use as electrospray ionisation-cleavable (ESI-Cleavable) hybridization probes for the detection and quantification of target DNA sequences by electrospray ionisation tandem mass spectrometry (ESI-MS/MS). ESI-cleavable peptide TNT isotopomers were introduced into PNA oligonucleotide sequences in a total synthesis approach. These conjugates were evaluated as hybridization probes for the detection and quantification of immobilized synthetic target DNAs using ESI-MS/MS. In these experiments, the PNA portion of the conjugate acts as a hybridization probe, whereas the peptide TNT is released in a collision-based process during the ionization of the probe conjugate in the electrospray ion source. The cleaved TNT acts as a uniquely resolvable marker to identify and quantify a unique target DNA sequence. The method should be applicable to a wide variety of assays requiring highly multiplexed, quantitative DNA/RNA analysis, including gene expression monitoring, genetic profiling and the detection of pathogens.  相似文献   

9.
Specialized natural product analysis of six Turkish endemic and two narrowly distributed Centaurea L. taxa was performed via electrospray ionization mass spectrometry (ESI-MS) fingerprinting and liquid chromatography-tandem mass spectrometry (LC-MS/MS), which is an effective methodology that is widely used for fast screening of complex natural mixtures such as food extracts, but not has not been used as commonly for plant chemophenetics. This method is preferable when it is aimed to compare a large number of plant extracts for chemophenetic purposes and when it is difficult to provide equally good chromatographic separation in all of the extracts. ESI-MS shows the major compounds in fingerprinting extracts. LC-MS/MS provides identification according to fragmentation with the advantage of MS/MS, and validation can be performed in selected reaction monitoring (SRM) mode with simultaneous precursor and product ion scans. Herein, sixteen flavones, four flavonols, four flavanones, two lignans, three sesquiterpene lactones, and four phenolic acids, a total of thirty three substances, were identified tentatively or unambiguously from the extracts. It was concluded that ESI-MS fingerprinting is a suitable method for plant chemophenetics when coupled and validated with LC-MS/MS. Moreover, it was concluded that sesquiterpene lactones, lignans, and flavonoids are suitable for taxonomic purposes in Centaurea owing to species-specific metabolite profiles.  相似文献   

10.
Large-scale manufacturing of therapeutic cells requires bioreactor technologies with online feedback control enabled by monitoring of secreted biomolecular critical quality attributes (CQAs). Electrospray ionization mass spectrometry (ESI-MS) is a highly sensitive label-free method to detect and identify biomolecules, but requires extensive sample preparation before analysis, making online application of ESI-MS challenging. We present a microfabricated, monolithically integrated device capable of continuous sample collection, treatment, and direct infusion for ESI-MS detection of biomolecules in high-salt solutions. The dynamic mass spectrometry probe (DMSP) uses a microfluidic mass exchanger to rapidly condition samples for online MS analysis by removing interfering salts, while concurrently introducing MS signal enhancers to the sample for sensitive biomolecular detection. Exploiting this active conditioning capability increases MS signal intensity and signal-to-noise ratio. As a result, sensitivity for low-concentration biomolecules is significantly improved, and multiple proteins can be detected from chemically complex samples. Thus, the DMSP has significant potential to serve as an enabling portion of a novel analytical tool for discovery and monitoring of CQAs relevant to therapeutic cell manufacturing.  相似文献   

11.
We propose two-dimensional gel electrophoresis (2-DE) and mass spectrometry to define the protein components of regulons and stimulons in bacteria, including those organisms where genome sequencing is still in progress. The basic 2-DE protocol allows high resolution and reproducibility and enables the direct comparison of hundreds or even thousands of proteins simultaneously. To identify proteins that comprise stimulons and regulons, peptide mass fingerprint (PMF) with matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI-TOF-MS) analysis is the first option and, if results from this tool are insufficient, complementary data obtained with electrospray ionization tandem-MS (ESI-MS/MS) may permit successful protein identification. ESI-MS/MS and MALDI-TOF-MS provide complementary data sets, and so a more comprehensive coverage of a proteome can be obtained using both techniques with the same sample, especially when few sequenced proteins of a particular organism exist or genome sequencing is still in progress.  相似文献   

12.
We have studied rapid and simple sugar mapping using liquid chromatography/electrospray ionization mass spectrometry (LC/MS) equipped with a graphitized carbon column. The oligosaccharide mixture was separated on the basis of the sequence, branching structure, and linkage, and each oligosaccharide was characterized based on its molecular mass. In this study we demonstrated the usefulness of capillary LC/MS (CapLC/MS) and capillary liquid chromatography/tandem mass spectrometry (CapLC/MS/MS) as sensitive means for accomplishing the structural analysis of oligosaccharides in a low-abundance glycoprotein. The carbohydrate heterogeneity and molecular mass information of each oligosaccharide can be readily obtained from CapLC/MS of a small amount of glycoprotein. CapLC/MS/MS provided b-ion series, which is informative with regard to monosaccharide sequence. Exoglycosidase digestion followed by CapLC/MS elucidated a carbohydrate residue linkage. Using this method, we characterized N-linked oligosaccharides in hepatocyte growth factor produced in mouse myeloma NS0 cells as the complex-type bi-, tri-, and tetraantennary terminated with N-glycolylneuraminic acids and alpha-linked galactose residues. Sugar mapping with CapLC/MS and CapLC/MS/MS is useful for monitoring glycosylation patterns and for structural analysis of carbohydrates in a low-abundance glycoprotein and thus will become a powerful tool in biological, pharmaceutical, and clinical studies.  相似文献   

13.
We present an optimized high-throughput method for the characterization of 2-aminobenzamide (2-AB)-labeled N-glycans from recombinant immunoglobulin G (rIgG). This method includes an optimized sample preparation protocol involving microwave-assisted deglycosylation in conjunction with an automated sample cleanup strategy and a rapid resolution reverse-phase high-performance liquid chromatography (RRRP-HPLC) separation of labeled N-glycans. The RRRP-HPLC method permits generation of a comprehensive glycan profile using fluorescence detection in 45 min. In addition, the profiling method is directly compatible with electrospray ionization mass spectrometry (ESI-MS), allowing immediate and sensitive characterization of the glycan moiety by intact MS and tandem MS (MS/MS) fragmentation. We conservatively estimate an efficiency gain of fourfold with respect to the throughput capabilities of this optimized method as compared with traditional protocols (overnight deglycosylation, sample cleanup by graphitized carbon or cellulose cartridge, high-pH anion exchange chromatography, fraction collection, and processing for matrix-assisted laser desorption/ionization time-of-flight [MALDI-TOF] MS analysis) for a single sample. Even greater gains are achieved when processing of multiple samples is considered.  相似文献   

14.
RNA interference (RNAi) has become a powerful tool for investigating gene function, and, in addition, shows potential for the development of therapeutic agents. RNAi can be triggered in a variety of eukaryotic cells using small interfering RNA (siRNA), their double-stranded precursors (double-stranded RNA) and short hairpin precursors (shRNA). Here, we describe a protocol for analyzing these RNAs and their modifications using electrospray ionization mass spectrometry (ESI-MS). This protocol involves the desalting of nucleic acids using ammonium acetate precipitation, followed by characterization using ESI-MS. This protocol has been chiefly used for analyzing siRNAs and their chemical modifications, but it has also been used and can be applied to the analysis of a wide range of native and modified oligonucleotides. This protocol provides accurate information on molecular weight for a range of nucleic acids and can be completed in less than a day.  相似文献   

15.
The synthesis and characterization of isotopomer tandem nucleic acid mass tag–peptide nucleic acid (TNT–PNA) conjugates is described along with their use as electrospray ionisation-cleavable (ESI-Cleavable) hybridization probes for the detection and quantification of target DNA sequences by electrospray ionisation tandem mass spectrometry (ESI-MS/MS). ESI-cleavable peptide TNT isotopomers were introduced into PNA oligonucleotide sequences in a total synthesis approach. These conjugates were evaluated as hybridization probes for the detection and quantification of immobilized synthetic target DNAs using ESI-MS/MS. In these experiments, the PNA portion of the conjugate acts as a hybridization probe, whereas the peptide TNT is released in a collision-based process during the ionization of the probe conjugate in the electrospray ion source. The cleaved TNT acts as a uniquely resolvable marker to identify and quantify a unique target DNA sequence. The method should be applicable to a wide variety of assays requiring highly multiplexed, quantitative DNA/RNA analysis, including gene expression monitoring, genetic profiling and the detection of pathogens.  相似文献   

16.
Laser desorption/ionization mass spectrometry (MS) is rapidly growing in popularity as an analytical characterization method in several fields. The technique shot to prominence using matrix-assisted desorption/ionization for large biomolecules (>700 Da), such as proteins, peptides and nucleic acids. However, because the matrix, which consists of small organic molecules, is also ionized, the technique is of limited use in the low-molecular-mass range (<700 Da). Recent advances in surface science have facilitated the development of matrix-free laser desorption/ionization MS approaches, which are referred to here as surface-assisted laser desorption/ionization (SALDI) MS. In contrast to traditional matrix-assisted techniques, the materials used for SALDI-MS are not ionized, which expands the usefulness of this technique to small-molecule analyses. This review discusses the current status of SALDI-MS as a standard analytical technique, with an emphasis on potential applications in proteomics.  相似文献   

17.
Laser desorption/ionization mass spectrometry (MS) is rapidly growing in popularity as an analytical characterization method in several fields. The technique shot to prominence using matrix-assisted desorption/ionization for large biomolecules (>700 Da), such as proteins, peptides and nucleic acids. However, because the matrix, which consists of small organic molecules, is also ionized, the technique is of limited use in the low-molecular-mass range (<700 Da). Recent advances in surface science have facilitated the development of matrix-free laser desorption/ionization MS approaches, which are referred to here as surface-assisted laser desorption/ionization (SALDI) MS. In contrast to traditional matrix-assisted techniques, the materials used for SALDI-MS are not ionized, which expands the usefulness of this technique to small-molecule analyses. This review discusses the current status of SALDI-MS as a standard analytical technique, with an emphasis on potential applications in proteomics.  相似文献   

18.
Bacillus amyloliquefaciens strain LP03 isolated from soil, produced an antagonistic compound that strongly inhibited the growth of plant-pathogenic fungi and a lipopeptide biosurfactant. Also, isolated strain LP03 had a marked crude oil-emulsifying activity as it developed a clear zone around the colony after incubation for 24 h at 37°C. LP03 was identified as Bacillus amyloliquefaciens by analysis of partial 16 S rRNA gene and partial gyrA gene sequence. The lipopeptide was purified by acid precipitation of cell-free culture broth, extraction of the precipitates with methanol, silica gel column chromatography, and reverse-phase, high-pressure liquid chromatography. The purified biosurfactant was analyzed biochemical structure by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) and electrospray ionization mass spectrometry/mass spectrometry (ESI-MS/MS). The masses of the two peaks were observed by HPLC chromatography. Their masses were determined to be 1,044 and 1,058 m/z with MALDI-TOF mass spectrometry. As constituents of the peptide and lipophilic part of the m/z 1,022.6, seven amino acids (Glu-Leu-Met-Leu-Pro-Leu-Leu) and β-hydroxy-C13 fatty acid were determined by ESI-MS/MS. The lipopeptide of 1,022.6 Da differed from surfactins in the substitution of leucine, valine and aspartic acid in positions 3, 4, and 5 by methionine, leucine, and proline, respectively. Novel lipopeptide was designated as bamylocin A.  相似文献   

19.
New antibacterial peptide derived from bovine hemoglobin   总被引:9,自引:0,他引:9  
Peptic digestion of bovine hemoglobin at low degree of hydrolysis yields an intermediate peptide fraction exhibiting antibacterial activity against Micrococcus luteus A270, Listeria innocua, Escherichia coli and Salmonella enteritidis after separation by reversed-phase HPLC. From this fraction a pure peptide was isolated and analyzed by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and electrospray ionization tandem mass spectrometry (ESI-MS/MS). This peptide correspond to the 107-136 fragment of the alpha chain of bovine hemoglobin. The minimum inhibitory concentrations (MIC) towards the four strains and its hemolytic activity towards bovine erythrocytes were determined. A MIC of 38 microM was reported against L. innocua and 76 microM for other various bacterial species. This peptide had no hemolytic activity up to 380 microM concentration.  相似文献   

20.
Reversed-phase HPLC (RP-HPLC) and electrospray ionization tandem mass spectrometry (ESI-MS/MS) were used to characterize the transglutaminase (TGase)-catalyzed dual modification of a peptide (EAQQIVM, named FibN) with monodansylcadaverine (MDC). The synthesized FibN peptide, which was derived from the N-terminal sequence of fibronectin, was used as the substrate for a guinea pig liver TGase (G-TGase). The time course of incorporation of MDC into FibN, detected by RP-HPLC, indicated two separate fluorescent product peaks. ESI-MS analysis of the isolated fractions indicated that products represented MDC-incorporated FibN molecules in molar ratios of 1:1 ((MDC)-FibN) and 2:1 ((MDC)2-FibN). A sequence analysis of MDC-FibN, using ESI-MS/MS, showed that the first modified residue in FibN was mainly Gln3. The kinetic analysis of MDC incorporation suggested that dual incorporation would occur by mainly one route. A one-dimensional 1H NMR comparison of MDC-FibN and unmodified FibN suggested that the first incorporation of MDC at Gln3 altered the substrate reactivity of the Gln4 residue in FibN for the G-TGase-catalyzed reaction. Thus, a detailed analysis of the peptide products using RP-HPLC and ESI-MS/MS should provide a powerful tool for exploring the mechanism of the substrate requirements of TGases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号