首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Regulated intestinal epithelial cell migration plays a key role in wound healing and maintenance of a healthy gastrointestinal tract. Epidermal growth factor (EGF) stimulates cell migration and wound closure in intestinal epithelial cells through incompletely understood mechanisms. In this study we investigated the role of the small GTPase Rac in EGF-induced cell migration using an in vitro wound-healing assay. In mouse colonic epithelial (MCE) cell lines, EGF-stimulated wound closure was accompanied by a doubling of the number of cells containing lamellipodial extensions at the wound margin, increased Rac membrane translocation in cells at the wound margin, and rapid Rac activation. Either Rac1 small interfering (si)RNA or a Rac1 inhibitor completely blocked EGF-stimulated wound closure. Whereas EGF failed to activate Rac in colon cells from EGF receptor (EGFR) knockout mice, stable expression of wild-type EGFR restored EGF-stimulated Rac activation and migration. Pharmacological inhibition of either phosphatidylinositol 3-kinase (PI3K) or Src family kinases reduced EGF-stimulated Rac activation. Cotreatment of cells with both inhibitors completely blocked EGF-stimulated Rac activation and localization to the leading edge of cells and lamellipodial extension. Our results present a novel mechanism by which the PI3K and Src signaling cascades cooperate to activate Rac and promote intestinal epithelial cell migration downstream of EGFR.  相似文献   

3.
Inoue T  Meyer T 《PloS one》2008,3(8):e3068
Phosphatidylinositol 3-OH kinase (PI3K) has been widely studied as a principal regulator of cell polarization, migration, and chemotaxis. Surprisingly, recent studies showed that mammalian neutrophils and Dictyostelium discoideum cells can polarize and migrate in the absence of PI3K activity. Here we directly probe the roles of PI3K and its downstream effector, Rac, in HL-60 neutrophils by using a chemical biology approach whereby the endogenously present enzymes are synthetically activated in less than one minute. We show that uniform activation of endogenous PI3K is sufficient to polarize previously unpolarized neutrophils and trigger effective cell migration. After a delay following symmetrical phosphatidylinositol (3,4,5)-triphosphate (PIP(3)) production, a polarized distribution of PIP(3) was induced by positive feedback requiring actin polymerization. Pharmacological studies argue that this process does not require receptor-coupled trimeric G proteins. Contrary to the current working model, rapid activation of endogenous Rac proteins triggered effective actin polymerization but failed to feed back to PI3K to generate PIP(3) or induce cell polarization. Thus, the increase in PIP(3) concentration at the leading edge is generated by positive feedback with an AND gate logic with a PI3K-Rac-actin polymerization pathway as a first input and a PI3K initiated non-Rac pathway as a second input. This AND-gate control for cell polarization can explain how Rac can be employed for both PI3K-dependent and -independent signaling pathways coexisting in the same cell.  相似文献   

4.
The lamellipodium, an essential structure for cell migration, plays an important role in the invasion and metastasis of cancer cells. Although Rac1 recognized as a key player in the formation of lamellipodia, the molecular mechanisms underlying lamellipodial motility are not fully understood. Optogenetic technology enabled us to spatiotemporally control the activity of photoactivatable Rac1 (PA-Rac1) in living cells. Using this system, we revealed the role of phosphatidylinositol 3-kinase (PI3K) in Rac1-dependent lamellipodial motility in PC-3 prostate cancer cells. Through local blue laser irradiation of PA-Rac1-expressing cells, lamellipodial motility was reversibly induced. First, outward extension of a lamellipodium parallel to the substratum was observed. The extended lamellipodium then showed ruffling activity at the periphery. Notably, PI(3,4,5)P3 and WAVE2 were localized in the extending lamellipodium in a PI3K-dependent manner. We confirmed that the inhibition of PI3K activity greatly suppressed lamellipodial extension, while the ruffling activity was less affected. These results suggest that Rac1-induced lamellipodial motility consists of two distinct activities, PI3K-dependent outward extension and PI3K-independent ruffling.  相似文献   

5.
Mesenchymal cell migration as exhibited by fibroblasts is distinct from amoeboid cell migration and is characterized by dynamic competition among multiple protrusions, which determines directional persistence and responses to spatial cues. Localization of phosphoinositide 3-kinase (PI3K) signaling is thought to play a broadly important role in cell motility, yet the context-dependent functions of this pathway have not been adequately elucidated. By mapping the spatiotemporal dynamics of cell protrusion/retraction and PI3K signaling monitored by total internal reflection fluorescence microscopy, we show that randomly migrating fibroblasts reorient polarity through PI3K-dependent branching and pivoting of protrusions. PI3K inhibition did not affect the initiation of newly branched protrusions, nor did it prevent protrusion induced by photoactivation of Rac. Rather, PI3K signaling increased after, not before, the onset of local protrusion and was required for the lateral spreading and stabilization of nascent branches. During chemotaxis, the branch experiencing the higher chemoattractant concentration was favored, and, thus, the cell reoriented so as to align with the external gradient.  相似文献   

6.
Epithelial cell migration during wound healing requires coordinated signaling pathways that direct polarization of the leading and trailing ends of the cells, cytoskeletal organization, and remodeling of focal adhesions. These inherently mechanical processes are disrupted by cyclic stretch (CS), but the specific signaling molecules involved in this disruption are not well understood. In this study, we demonstrate that inhibition of phosphatidylinositol 3-kinase (PI3K) or expression of a dominant-negative form of PI3K caused inhibition of airway epithelial cell wound closure. CS caused a sustained decrease in activation of PI3K and inhibited wound healing. Expression of constitutively active PI3K stimulated translocation of Tiam1 to the membrane, increased Rac1 activity, and increased wound healing of airway epithelial cells. Increased Rac1 activity resulted in increased phosphorylation of JNK1. PI3K activation was not regulated by association with focal adhesion kinase. Restoration of efficient cell migration during CS required coexpression of constitutively active PI3K, focal adhesion kinase, and JIP3.  相似文献   

7.
This study was designed to identify the molecular mechanisms of phosphatidylinositol 3-kinase (PI3K)-induced actin filament remodeling and cell migration. Expression of active forms of PI3K, v-P3k or Myr-P3k, was sufficient to induce actin filament remodeling to lead to an increase in cell migration, as well as the activation of Akt in chicken embryo fibroblast (CEF) cells. Either the inhibition of PI3K activity using a PI3K-specific inhibitor, LY-294002, or the disruption of Akt activity restored the integrity of actin filaments in CEF cells and inhibited PI3K-induced cell migration. We also found that expression of an activated form of Akt (Myr-Akt) was sufficient to remodel actin filaments to lead to an increase in cell migration, which was unable to be inhibited by the presence of LY-294002. Furthermore, we found that p70S6K1 kinase was a downstream molecule that can mediate the effects of both PI3K and Akt on actin filaments and cell migration. Overexpression of an active form of p70S6K1 was sufficient to induce actin filament remodeling and cell migration in CEF cells, which requires Rac activity. These results demonstrate that activation of PI3K activity alone is sufficient to remodel actin filaments to increase cell migration through the activation of Akt and p70S6K1 in CEF cells. phosphatidylinositol 3-kinase; Rac; actin filaments  相似文献   

8.
The intracellular signaling processes controlling malignant B cell migration and tissue localization remain largely undefined. Tandem PH domain-containing proteins TAPP1 and TAPP2 are adaptor proteins that specifically bind to phosphatidylinositol-3,4-bisphosphate, or PI(3,4)P2, a product of phosphoinositide 3-kinases (PI3K). While PI3K enzymes have a number of functions in cell biology, including cell migration, the functions of PI(3,4)P2 and its binding proteins are not well understood. Previously we found that TAPP2 is highly expressed in primary leukemic B cells that have strong migratory capacity. Here we find that SDF-1-dependent migration of human malignant B cells requires both PI3K signaling and TAPP2. Migration in a transwell assay is significantly impaired by pan-PI3K and isoform-selective PI3K inhibitors, or by TAPP2 shRNA knockdown (KD). Strikingly, TAPP2 KD in combination with PI3K inhibitor treatment nearly abolished the migration response, suggesting that TAPP2 may contribute some functions independent of the PI3K pathway. In microfluidic chamber cell tracking assays, TAPP2 KD cells show reduction in percentage of migrating cells, migration velocity and directionality. TAPP2 KD led to alterations in chemokine-induced rearrangement of the actin cytoskeleton and failure to form polarized morphology. TAPP2 co-localized with the stable F-actin-binding protein utrophin, with both molecules reciprocally localizing against F-actin accumulated at the leading edge upon SDF-1 stimulation. In TAPP2 KD cells, Rac was over-activated and localized to multiple membrane protrusions, suggesting that TAPP2 may act in concert with utrophin and stable F-actin to spatially restrict Rac activation and reduce formation of multiple membrane protrusions. TAPP2 function in cell migration is also apparent in the more complex context of B cell migration into stromal cell layers – a process that is only partially dependent on PI3K and SDF-1. In summary, this study identified TAPP2 as a novel regulator of malignant B cell migration and a potential therapeutic intervention target.  相似文献   

9.
Histamine induces chemotaxis of mast cells through the histamine H4 receptor. This involves the activation of small GTPases, Rac1 and Rac2, downstream of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K). Activation of the H4 receptor also results in phospholipase C (PLC)-mediated calcium mobilization; however, it is unclear whether the PLC‑calcium pathway interacts with the PI3K-Rac pathway. Here, we demonstrated that calcium mobilization regulates the PI3K-dependent activation of Rac GTPases through calmodulin. A PLC inhibitor (U73122) and an intracellular calcium chelator (BAPTA-AM) suppressed the histamine-induced activation of Rac, whereas the calcium ionophore ionomycin increased the active Rac GTPases, suggesting that intracellular calcium regulates the activation of Rac. The calmodulin antagonist (W-7) inhibited the histamine-induced activation of Rac and migration of mast cells, indicating that calmodulin mediates the effect of calcium. Inhibition of calcium/calmodulin signaling suppressed histamine-induced phosphorylation of Akt. The Akt inhibitor MK-2206 attenuated histamine-induced migration of mast cells. However, it did not suppress the activation of Rac GTPases. These results suggest that Rac GTPases and Akt play independent roles in the histamine-induced chemotaxis of mast cells. Our findings enable further elucidation of the molecular mechanism of histamine-induced chemotaxis of mast cells and help identify therapeutic targets for allergic and inflammatory conditions involving mast cell accumulation.  相似文献   

10.
Although it is known that the spatial coordination of Rac and Rho activity is essential for cell migration, the molecular mechanisms regulating these GTPases during migration are unknown. We found that the expression of constitutively activated R-Ras (38V) blocked membrane protrusion and random migration. In contrast, expression of dominant negative R-Ras (41A) enhanced migrational persistence and membrane protrusion. Endogenous R-Ras is necessary for cell migration, as cells that were transfected with siRNA for R-Ras did not migrate. Expression of R-Ras (38V) decreased Rac activity and increased Rho activity around the entire cell periphery, whereas expression of dominant negative R-Ras (41A) showed the converse, suggesting that R-Ras can spatially activate Rho and inactivate Rac. Consistent with this role, endogenous R-Ras localized and was preferentially activated at the leading edge of migratory cells in response to adhesion. The effects of R-Ras on cell migration are mediated by PI3-Kinase, as an effector mutant that uncouples PI3-Kinase binding from R-Ras (38V) rescued migration. From these data, we hypothesize that R-Ras plays a key role in cell migration by locally regulating the switch from Rac to Rho activity after membrane protrusion and adhesion.  相似文献   

11.
Tumor cell motility is the essential step in cancer metastasis. Previously, we showed that oxytocin and epidermal growth factor (EGF) effects on cell migration in prostate cancer cells require Giα2 protein. In the current study, we investigated the interactions among G-protein coupled receptor (GPCR), Giα2, PI3-kinase, and Rac1 activation in the induction of migratory and invasive behavior by diverse stimuli. Knockdown and knockout of endogenous Giα2 in PC3 cells resulted in attenuation of transforming growth factor β1 (TGFβ1), oxytocin, SDF-1α, and EGF effects on cell migration and invasion. In addition, knockdown of Giα2 in E006AA cells attenuated cell migration and overexpression of Giα2 in LNCaP cells caused significant increase in basal and EGF-stimulated cell migration. Pretreatment of PC3 cells with Pertussis toxin resulted in attenuation of TGFβ1- and oxytocin-induced migratory behavior and PI3-kinase activation without affecting EGF-induced PI3-kinase activation and cell migration. Basal- and EGF-induced activation of Rac1 in PC3 and DU145 cells were not affected in cells after Giα2 knockdown. On the other hand, Giα2 knockdown abolished the migratory capability of PC3 cells overexpressing constitutively active Rac1. The knockdown or knockout of Giα2 resulted in impaired formation of lamellipodia at the leading edge of the migrating cells. We conclude that Giα2 protein acts at two different levels which are both dependent and independent of GPCR signaling to induce cell migration and invasion in prostate cancer cells and its action is downstream of PI3-kinase–AKT–Rac1 axis.  相似文献   

12.
Self-amplification of phosphoinositide 3-kinase (PI3K) signaling is believed to regulate asymmetric membrane extension and cell migration, but the molecular organization of the underlying feedback circuit is elusive. Here we use an inducible approach to synthetically activate PI3K and interrogate the feedback circuitry governing self-enhancement of 3′-phosphoinositide (3-PI) signals in NIH3T3 fibroblasts. Synthetic activation of PI3K initially leads to uniform production of 3-PIs at the plasma membrane, followed by the appearance of asymmetric and highly amplified 3-PI signals. A detailed spatiotemporal analysis shows that local self-amplifying 3-PI signals drive rapid membrane extension with remarkable directional persistence and initiate a robust migratory response. This positive feedback loop is critically dependent on the small GTPase HRas. Silencing of HRas abrogates local amplification of 3-PI signals upon synthetic PI3K activation and results in short-lived protrusion events that do not support cell migration. Finally, our data indicate that this feedback circuit is likely to operate during platelet-derived growth factor–induced random cell migration. We conclude that positive feedback between PI3K and HRas is essential for fibroblasts to spontaneously self-organize and generate a productive migratory response in the absence of spatial cues.  相似文献   

13.
Inflammatory bowel diseases are associated with increased risk of developing colon cancer. A possible role of the pro-inflammatory leukotriene D4 (LTD4) in this process has been implicated by the findings that LTD4 can signal increased proliferation and survival, both hallmarks of a cancer cell, in non-transformed intestinal epithelial cells. Here we make the novel finding that LTD4 can also signal increased motility in these cells. In parallel, we found that LTD4 induced a simultaneous transient 10-fold increase in Rac but not Cdc42 activity. These data were also supported by the ability of LTD4 to activate the Rac GDP/GTP exchange factor Vav2. Further, LTD4 triggered a 3-fold transient increase in phosphatidylinositol 3-kinase (PI3K) phosphorylation, a possible upstream activator of the Vav2/Rac signaling pathway. The activation of Rac was blocked by the PI3K inhibitors LY294002 and wortmannin and by transfection of a kinase-negative mutant of PI3K or a dominant-negative form of Vav2. Furthermore, Rac was found to co-localize with actin in LTD4-generated membrane ruffles that were formed by a PI3K-dependent mechanism. In accordance, the inhibition of the PI3K and Rac signaling pathway also blocked the LTD4-induced migration of the intestinal cells. The present data reveal that an inflammatory mediator such as LTD4 cannot only increase proliferation and survival of non-transformed intestinal epithelial cells but also, via a PI3K/Rac signaling pathway, trigger a motile response in such cells. These data demonstrate the capacity of inflammatory mediators to participate in the process by which inflammatory bowel conditions increase the risk for colon cancer development.  相似文献   

14.
Activation of phosphoinositide (PI) 3-kinase is a required signaling pathway in fibroblast migration directed by platelet-derived growth factor. The pattern of 3' PI lipids in the plasma membrane, integrating local PI 3-kinase activity as well as 3' PI diffusion and turnover, influences the spatiotemporal regulation of the cytoskeleton. In fibroblasts stimulated uniformly with platelet-derived growth factor, visualized using total internal reflection fluorescence microscopy, we consistently observed localized regions with significantly higher or lower 3' PI levels than adjacent regions (hot and cold spots, respectively). A typical cell contained multiple hot spots, coinciding with apparent leading edge structures, and at most one cold spot at the rear. Using a framework for finite-element modeling with actual cell contact area geometries, we find that although the 3' PI pattern is affected by irregular contact area shape, cell morphology alone cannot explain the presence of hot or cold spots. Our results and analysis instead suggest that these regions reflect different local 3' PI dynamics, specifically through a combination of mechanisms: enhanced PI 3-kinase activity, reduced 3' PI turnover, and possibly slow/constrained 3' PI diffusion. The morphological polarity of the cell may thus bias 3' PI signaling to promote persistent migration in fibroblasts.  相似文献   

15.
Rac activation in neuronal cells plays an important role in lamellipodia formation that is a critical event for neuritogenesis. It is well known that the Rac activity is regulated via activation of phosphatidylinositol 3-kinase (PI3K) by a variety of receptor tyrosine kinases. Here we show that increased serine phosphorylation on RET receptor tyrosine kinase following cAMP elevation promotes lamellipodia formation of neuronal cells induced by glial cell line-derived neurotrophic factor (GDNF). We identified serine 696 in RET as a putative phosphorylation site by protein kinase A and found that mutation of this serine almost completely inhibited lamellipodia formation by GDNF without affecting activation of the PI3K/AKT signaling pathway. Mutation of tyrosine 1062 in RET, whose phosphorylation is crucial for activation of PI3K, also inhibited lamellipodia formation by GDNF. Inhibition of lamellipodia formation by mutation of either serine 696 or tyrosine 1062 was associated with decrease of the Rac1-guanine nucleotide exchange factor (GEF) activity, suggesting that this activity is regulated by two different signaling pathways via serine 696 and tyrosine 1062 in RET. Moreover, in the presence of serine 696 mutation, lamellipodia formation was rescued by replacing tyrosine 687 with phenylalanine. These findings propose a novel mechanism that receptor tyrosine kinase modulates actin dynamics in neuronal cells via its cAMP-dependent phosphorylation.  相似文献   

16.
Receptor-linked class I phosphoinositide 3-kinases (PI3Ks) induce assembly of signal transduction complexes through protein-protein and protein-lipid interactions that mediate cell proliferation, survival, and migration. Although class II PI3Ks have the potential to make the same phosphoinositides as class I PI3Ks, their precise cellular role is currently unclear. In this report, we demonstrate that class II phosphoinositide 3-kinase C2beta (PI3KC2beta) associates with the Eps8/Abi1/Sos1 complex and is recruited to the EGF receptor as part of a multiprotein signaling complex also involving Shc and Grb2. Increased expression of PI3KC2beta stimulated Rac activity in A-431 epidermoid carcinoma cells, resulting in enhanced membrane ruffling and migration speed of the cells. Conversely, expression of dominant negative PI3KC2beta reduced Rac activity, membrane ruffling, and cell migration. Moreover, PI3KC2beta-overexpressing cells were protected from anoikis and displayed enhanced proliferation, independently of Rac function. Taken together, these findings suggest that PI3KC2beta regulates the migration and survival of human tumor cells by distinct molecular mechanisms.  相似文献   

17.
Highlights? Neutrophil motility in live zebrafish requires PI(3)K activity at the leading edge ? Localized photo-activation of Rac can to direct migration in vivo ? Rac activation rescues protrusion but not polarization in PI(3)K-inhibited cells ? Separable two-tier regulation of F-actin dynamics and protrusion by PI(3)K  相似文献   

18.
The phosphatidylinositol 3-kinase (PI3K) signaling pathway(s) is activated by a variety of agonists to regulate cell migration. Here, we show that the stimulation of mouse embryonic fibroblasts with platelet-derived growth factor (PDGF) induces migration in a PI3K-dependent manner. Cells lacking Akt1/PKBalpha exhibit impaired migration and peripheral ruffling in response to PDGF stimulation, whereas cells lacking Akt2/PKBbeta are normal. In addition, over-expression of Akt1/PKBalpha but not Akt2/PKBbeta is sufficient to restore PDGF-induced cell migration in an Akt1/PKBalpha and Akt2/PKBbeta deficient background. In response to PDGF stimulation, Akt1/PKBalpha selectively translocates to membrane ruffles, however, this localization is abrogated by substituting the linker region of Akt2/PKBbeta. Similarly, expression of an Akt2/PKBalpha chimera containing the linker region of Akt1/PKBalpha restored PDGF-induced migration in cells lacking both Akt1/PKBalpha and Akt2/PKBbeta. Finally, over-expression of constitutively active Rac rescues PDGF-induced migration defects in cells lacking Akt1/PKBalpha. Given these results, we suggest that Akt1/PKBalpha controls cell migration by selectively translocating to the leading edge and activating Rac.  相似文献   

19.
Fibroblast proliferation and migration play important roles in wound healing. bFGF is known to promote both fibroblast proliferation and migration during the process of wound healing. However, the signal transduction of bFGF-induced fibroblast migration is still unclear, because bFGF can affect both proliferation and migration. Herein, we investigated the effect of bFGF on fibroblast migration regardless of its effect on fibroblast proliferation. We noticed involvement of the small GTPases of the Rho family, PI3-kinase, and JNK. bFGF activated RhoA, Rac1, PI3-kinase, and JNK in cultured fibroblasts. Inhibition of RhoA did not block bFGF-induced fibroblast migration, whereas inhibition of Rac1, PI3-kinase, or JNK blocked the fibroblast migration significantly. PI3-kinase-inhibited cells down-regulated the activities of Rac1 and JNK, and Rac1-inhibited cells down-regulated JNK activity, suggesting that PI3-kinase is upstream of Rac1 and that JNK is downstream of Rac1. Thus, we concluded that PI3-kinase, Rac1, and JNK were essential for bFGF-induced fibroblast migration, which is a novel pathway of bFGF-induced cell migration.  相似文献   

20.
Endothelial cell (EC) migration has an important role in angiogenesis. Sphingosine-1 phosphate (S1P) stimulates EC migration via activation of Gi proteins. In this study, we characterized a mouse guanine nucleotide exchange factor (GEF) P-Rex2b for its regulation by Gbetagamma and PI3K and its role in S1P-induced Rac1 activation and cell migration in ECs. We found that co-expression of Gbetagamma or an active form of PI3K (PI3K(AC)) with P-Rex2b increased the SRE.Luciferase (SRE.L) reporter gene activity that can be stimulated by the Rho family of small GTPases including Rac1. Co-expression with P-Rex2b of Gbetagamma and PI3K(AC) or wild type PI3Kgamma that can be activated by Gbetagamma led to further increases in the reporter gene activity. Together with the finding that co-expression of Gbetagamma and/or PI3K(AC) increased the levels of active Rac1, we conclude that P-Rex2b is a Rac GEF that can be regulated by Gbetagamma and PI3K. Additionally, we demonstrated that Gbetagamma interacted with P-Rex2b, probably through P-Rex2b sequences at the PH domain and that the DEP and PDZ domains of P-Rex2b exerted an inhibitory effect on P-Rex2b's activity because their deletion increased the SER.L reporter gene activity. Furthermore, we found that P-Rex2b is involved in S1P-induced Rac1 activation and cell migration in ECs because siRNA-mediated suppression of P-Rex2b expression in ECs-diminished Rac1 activation and cell migration in response to S1P. Therefore, P-Rex2b is a physiologically significant Rac1 GEF that has an important role in the regulation of EC migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号