首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The protein-protein interaction energy of 12 nonhomologous serine protease-inhibitor and 15 antibody-antigen complexes is calculated using a molecular mechanics formalism and dissected in terms of the main-chain vs. side-chain contribution, nonrotameric side-chain contributions, and amino acid residue type involvement in the interface interaction. There are major differences in the interactions of the two types of protein-protein complex. Protease-inhibitor complexes interact predominantly through a main-chain-main-chain mechanism while antibody-antigen complexes interact predominantly through a side-chain-side-chain or a side-chain-main-chain mechanism. However, there is no simple correlation between the main-chain-main-chain interaction energy and the percentage of main-chain surface area buried on binding. The interaction energy is equally effected by the presence of nonrotameric side-chain conformations, which constitute approximately 20% of the interaction energy. The ability to reproduce the interface interaction energy of the crystal structure if original side-chain conformations are removed from the calculation is much greater in the protease-inhibitor complexes than the antibody-antigen complexes. The success of a rotameric model for protein-protein docking appears dependent on the extent of the main-chain-main-chain contribution to binding. Analysis of (1) residue type and (2) residue pair interactions at the interface show that antibody-antigen interactions are very restricted with over 70% of the antibody energy attributable to just six residue types (Tyr > Asp > Asn > Ser > Glu > Trp) in agreement with previous studies on residue propensity. However, it is found here that 50% of the antigen energy is attributable to just four residue types (Arg = Lys > Asn > Asp). On average just 12 residue pair interactions (6%) contribute over 40% of the favorable interaction energy in the antibody-antigen complexes, with charge-charge and charge/polar-tyrosine interactions being prominent. In contrast protease inhibitors use a diverse set of residue types and residue pair interactions.  相似文献   

2.
The functional importance of protein-protein interactions indicates that there should be strong evolutionary constraint on their interaction interfaces. However, binding interfaces are frequently affected by amino acid replacements. Change due to coevolution within interfaces can contribute to variability but is not ubiquitous. An alternative explanation for the ability of surfaces to accept replacements may be that many residues can be changed without affecting the interaction. Candidates for these types of residues are those that make interchain interaction only through the protein main chain, β-carbon, or associated hydrogen atoms. Since almost all residues have these atoms, we hypothesize that this subset of interface residues may be more easily substituted than those that make interactions through other atoms. We term such interactions "residue type independent." Investigating this hypothesis, we find that nearly a quarter of residues in protein interaction interfaces make exclusively interchain residue-type-independent contacts. These residues are less structurally constrained and less conserved than residues making residue-type-specific interactions. We propose that residue-type-independent interactions allow substitutions in binding interfaces while the specificity of binding is maintained.  相似文献   

3.
We have investigated the roles played by C-Hcdots, three dots, centeredpi interactions in RNA binding proteins. There was an average of 55 C-Hcdots, three dots, centeredpi interactions per protein and also there was an average of one significant C-Hcdots, three dots, centeredpi interaction for every nine residues in the 59 RNA binding proteins studied. Main-chain to side-chain C-Hcdots, three dots, centeredpi interactions is the predominant type of interactions in RNA binding proteins. The donor atom contribution to C-Hcdots, three dots, centeredpi interactions was mainly from Phe, Tyr, Trp, Pro, Gly, Lys, His and Ala residues. The acceptor atom contribution to main-chain to side-chain C-Hcdots, three dots, centeredpi and side-chain to side-chain C-Hcdots, three dots, centeredpi interactions was mainly from Phe and Tyr residues. On the contrary, the acceptor atoms of Trp residues contributed to all the four types of C-Hcdots, three dots, centeredpi interactions. Also, Trp contributed both donor and acceptor atoms in main-chain to side-chain, main-chain to side-chain five-member aromatic ring and side-chain to side-chain C-Hcdots, three dots, centeredpi interactions. The secondary structure preference analysis of C-Hcdots, three dots, centeredpi interacting residues showed that, Arg, Gln, Glu, His, Ile, Leu, Lys, Met, Phe and Tyr preferred to be in helix, while Ala, Asp, Cys, Gly, Trp and Val preferred to be in strand conformation. Long-range C-Hcdots, three dots, centeredpi interactions are the predominant type of interactions in RNA binding proteins. More than 50% of C-Hcdots, three dots, centeredpi interacting residues had a higher conservation score. Significant percentage of C-Hcdots, three dots, centeredpi interacting residues had one or more stabilization centers. Seven percent of the theoretically predicted stabilizing residues were also involved in C-Hcdots, three dots, centeredpi interactions and hence these residues may also contribute additional stability to RNA binding proteins.  相似文献   

4.
Cellular functions of an organism are maintained by protein-protein interactions. Those proteins that bind multiple partners asynchronously (date hub proteins) are important to make the interaction network coordinated. It is known that many date hub proteins bind different partners at overlapping (OV) interfaces. To understand how OV interfaces of date hub proteins can recognize multiple partners, we analyzed the difference between OV and non-overlapping (Non-OV) regions of interfaces involved in the binding of different partners. By using the structures of 16 date hub proteins with various interaction partners (ranging from 5 to 33), we compared buried surface area, compositions of amino acid residues and secondary structures, and side-chain orientations. It was found that buried interface residues are important for recognizing multiple partners, while exposed interface residues are important for determining specificity to a particular ligand. In addition, our analyses reveal that residue compositions in OV and Non-OV regions are different and that residues in OV region show diverse side-chain torsion angles to accommodate binding to multiple targets.  相似文献   

5.
We compare the geometric and physical-chemical properties of interfaces involved in specific and non-specific protein-protein interactions in crystal structures reported in the Protein Data Bank. Specific interactions are illustrated by 70 protein-protein complexes and by subunit contacts in 122 homodimeric proteins; non-specific interactions are illustrated by 188 pairs of monomeric proteins making crystal-packing contacts selected to bury more than 800 A2 of protein surface. A majority of these pairs have 2-fold symmetry and form "crystal dimers" that cannot be distinguished from real dimers on the basis of the interface size or symmetry. The chemical and amino acid compositions of the large crystal-packing interfaces resemble the protein solvent-accessible surface. These interfaces are less hydrophobic than in homodimers and contain much fewer fully buried atoms. We develop a residue propensity score and a hydrophobic interaction score to assess preferences seen in the chemical and amino acid compositions of the different types of interfaces, and we derive indexes to evaluate the atomic packing, which we find to be less compact at non-specific than at specific interfaces. We test the capacity of these parameters to identify homodimeric proteins in crystal structures, and show that a simple combination of the non-polar interface area and the fraction of buried interface atoms assigns the quaternary structure of 88% of the homodimers and 77% of the monomers in our data set correctly. These success rates increase to 93-95% when the residue propensity score of the interfaces is taken into consideration.  相似文献   

6.
Protein-protein interactions are critical determinants in biological systems. Engineered proteins binding to specific areas on protein surfaces could lead to therapeutics or diagnostics for treating diseases in humans. But designing epitope-specific protein-protein interactions with computational atomistic interaction free energy remains a difficult challenge. Here we show that, with the antibody-VEGF (vascular endothelial growth factor) interaction as a model system, the experimentally observed amino acid preferences in the antibody-antigen interface can be rationalized with 3-dimensional distributions of interacting atoms derived from the database of protein structures. Machine learning models established on the rationalization can be generalized to design amino acid preferences in antibody-antigen interfaces, for which the experimental validations are tractable with current high throughput synthetic antibody display technologies. Leave-one-out cross validation on the benchmark system yielded the accuracy, precision, recall (sensitivity) and specificity of the overall binary predictions to be 0.69, 0.45, 0.63, and 0.71 respectively, and the overall Matthews correlation coefficient of the 20 amino acid types in the 24 interface CDR positions was 0.312. The structure-based computational antibody design methodology was further tested with other antibodies binding to VEGF. The results indicate that the methodology could provide alternatives to the current antibody technologies based on animal immune systems in engineering therapeutic and diagnostic antibodies against predetermined antigen epitopes.  相似文献   

7.
Jiang L  Kuhlman B  Kortemme T  Baker D 《Proteins》2005,58(4):893-904
Water-mediated hydrogen bonds play critical roles at protein-protein and protein-nucleic acid interfaces, and the interactions formed by discrete water molecules cannot be captured using continuum solvent models. We describe a simple model for the energetics of water-mediated hydrogen bonds, and show that, together with knowledge of the positions of buried water molecules observed in X-ray crystal structures, the model improves the prediction of free-energy changes upon mutation at protein-protein interfaces, and the recovery of native amino acid sequences in protein interface design calculations. We then describe a "solvated rotamer" approach to efficiently predict the positions of water molecules, at protein-protein interfaces and in monomeric proteins, that is compatible with widely used rotamer-based side-chain packing and protein design algorithms. Finally, we examine the extent to which the predicted water molecules can be used to improve prediction of amino acid identities and protein-protein interface stability, and discuss avenues for overcoming current limitations of the approach.  相似文献   

8.
Ma XH  Wang CX  Li CH  Chen WZ 《Protein engineering》2002,15(8):677-681
Three useful variables from the interfaces of 20 protein-protein complexes were investigated. These variables are the side-chain accessible number (N(b)), the number of hydrophilic pairs (N(pair)) and buried a polar solvent accessible surface areas (DeltaDeltaASA(apol)). An empirical model based on the three variables was developed to describe the free energy of protein associations. As the results show, the side-chain accessible numbers characterize the loss of side-chain conformational entropy of protein interactions and the effective empirical function presented here has great capability for estimating the binding free energy. It was found that the variables of interface information capture most of the significant features of protein-protein association. Also, we applied the model based on the variables as a rescoring function to docking simulations and found that it has the potential to distinguish the 'true' binding mode. It is clear that the simple and empirical scale developed here is an attractive target function for calculating binding free energy for various biological processes to rational protein design.  相似文献   

9.
Molecular principles of the interactions of disordered proteins   总被引:6,自引:0,他引:6  
Thorough knowledge of the molecular principles of protein-protein recognition is essential to our understanding of protein function at the cellular level. Whereas interactions of ordered proteins have been analyzed in great detail, complexes of intrinsically unstructured/disordered proteins (IUPs) have hardly been addressed so far. Here, we have collected a database of 39 complexes of experimentally verified IUPs, and compared their interfaces with those of 72 complexes of ordered, globular proteins. The characteristic differences found between the two types of complexes suggest that IUPs represent a distinct molecular implementation of the principles of protein-protein recognition. The interfaces do not differ in size, but those of IUPs cover a much larger part of the surface of the protein than for their ordered counterparts. Moreover, IUP interfaces are significantly more hydrophobic relative to their overall amino acid composition, but also in absolute terms. They rely more on hydrophobic-hydrophobic than on polar-polar interactions. Their amino acids in the interface realize more intermolecular contacts, which suggests a better fit with the partner due to induced folding upon binding that results in a better adaptation to the partner. The two modes of interaction also differ in that IUPs usually use only a single continuous segment for partner binding, whereas the binding sites of ordered proteins are more segmented. Probably, all these features contribute to the increased evolutionary conservation of IUP interface residues. These noted molecular differences are also manifested in the interaction energies of IUPs. Our approximation of these by low-resolution force-fields shows that IUPs gain much more stabilization energy from intermolecular contacts, than from folding, i.e. they use their binding energy for folding. Overall, our findings provide a structural rationale to the prior suggestions that many IUPs are specialized for functions realized by protein-protein interactions.  相似文献   

10.
Human genetic variation is the incarnation of diverse evolutionary history, which reflects both selectively advantageous and selectively neutral change. In this study, we catalogue structural and functional features of proteins that restrain genetic variation leading to single amino acid substitutions. Our variation dataset is divided into three categories: i) Mendelian disease-related variants, ii) neutral polymorphisms and iii) cancer somatic mutations. We characterize structural environments of the amino acid variants by the following properties: i) side-chain solvent accessibility, ii) main-chain secondary structure, and iii) hydrogen bonds from a side chain to a main chain or other side chains. To address functional restraints, amino acid substitutions in proteins are examined to see whether they are located at functionally important sites involved in protein-protein interactions, protein-ligand interactions or catalytic activity of enzymes. We also measure the likelihood of amino acid substitutions and the degree of residue conservation where variants occur. We show that various types of variants are under different degrees of structural and functional restraints, which affect their occurrence in human proteome.  相似文献   

11.
Cell-surface-anchored immunoglobulin superfamily (IgSF) proteins are widespread throughout the human proteome, forming crucial components of diverse biological processes including immunity, cell-cell adhesion, and carcinogenesis. IgSF proteins generally function through protein-protein interactions carried out between extracellular, membrane-bound proteins on adjacent cells, known as trans-binding interfaces. These protein-protein interactions constitute a class of pharmaceutical targets important in the treatment of autoimmune diseases, chronic infections, and cancer. A molecular-level understanding of IgSF protein-protein interactions would greatly benefit further drug development. A critical step toward this goal is the reliable identification of IgSF trans-binding interfaces. We propose a novel combination of structure and sequence information to identify trans-binding interfaces in IgSF proteins. We developed a structure-based binding interface prediction approach that can identify broad regions of the protein surface that encompass the binding interfaces and suggests that IgSF proteins possess binding supersites. These interfaces could theoretically be pinpointed using sequence-based conservation analysis, with performance approaching the theoretical upper limit of binding interface prediction accuracy, but achieving this in practice is limited by the current ability to identify an appropriate multiple sequence alignment for conservation analysis. However, an important contribution of combining the two orthogonal methods is that agreement between these approaches can estimate the reliability of the predictions. This approach was benchmarked on the set of 22 IgSF proteins with experimentally solved structures in complex with their ligands. Additionally, we provide structure-based predictions and reliability scores for the 62 IgSF proteins with known structure but yet uncharacterized binding interfaces.  相似文献   

12.
Cho KI  Lee K  Lee KH  Kim D  Lee D 《Proteins》2006,65(3):593-606
In this study, we investigate what types of interactions are specific to their biological function, and what types of interactions are persistent regardless of their functional category in transient protein-protein heterocomplexes. This is the first approach to analyze protein-protein interfaces systematically at the molecular interaction level in the context of protein functions. We perform systematic analysis at the molecular interaction level using classification and feature subset selection technique prevalent in the field of pattern recognition. To represent the physicochemical properties of protein-protein interfaces, we design 18 molecular interaction types using canonical and noncanonical interactions. Then, we construct input vector using the frequency of each interaction type in protein-protein interface. We analyze the 131 interfaces of transient protein-protein heterocomplexes in PDB: 33 protease-inhibitors, 52 antibody-antigens, 46 signaling proteins including 4 cyclin dependent kinase and 26 G-protein. Using kNN classification and feature subset selection technique, we show that there are specific interaction types based on their functional category, and such interaction types are conserved through the common binding mechanism, rather than through the sequence or structure conservation. The extracted interaction types are C(alpha)-- H...O==C interaction, cation...anion interaction, amine...amine interaction, and amine...cation interaction. With these four interaction types, we achieve the classification success rate up to 83.2% with leave-one-out cross-validation at k = 15. Of these four interaction types, C(alpha)--H...O==C shows binding specificity for protease-inhibitor complexes, while cation-anion interaction is predominant in signaling complexes. The amine ... amine and amine...cation interaction give a minor contribution to the classification accuracy. When combined with these two interactions, they increase the accuracy by 3.8%. In the case of antibody-antigen complexes, the sign is somewhat ambiguous. From the evolutionary perspective, while protease-inhibitors and sig-naling proteins have optimized their interfaces to suit their biological functions, antibody-antigen interactions are the happenstance, implying that antibody-antigen complexes do not show distinctive interaction types. Persistent interaction types such as pi...pi, amide-carbonyl, and hydroxyl-carbonyl interaction, are also investigated. Analyzing the structural orientations of the pi...pi stacking interactions, we find that herringbone shape is a major configuration in transient protein-protein interfaces. This result is different from that of protein core, where parallel-displaced configurations are the major configuration. We also analyze overall trend of amide-carbonyl and hydroxyl-carbonyl interactions. It is noticeable that nearly 82% of the interfaces have at least one hydroxyl-carbonyl interactions.  相似文献   

13.
Protein-protein interfaces are regions between 2 polypeptide chains that are not covalently connected. Here, we have created a nonredundant interface data set generated from all 2-chain interfaces in the Protein Data Bank. This data set is unique, since it contains clusters of interfaces with similar shapes and spatial organization of chemical functional groups. The data set allows statistical investigation of similar interfaces, as well as the identification and analysis of the chemical forces that account for the protein-protein associations. Toward this goal, we have developed I2I-SiteEngine (Interface-to-Interface SiteEngine) [Data set available at http://bioinfo3d.cs.tau.ac.il/Interfaces; Web server: http://bioinfo3d.cs.tau.ac.il/I2I-SiteEngine]. The algorithm recognizes similarities between protein-protein binding surfaces. I2I-SiteEngine is independent of the sequence or the fold of the proteins that comprise the interfaces. In addition to geometry, the method takes into account both the backbone and the side-chain physicochemical properties of the interacting atom groups. Its high efficiency makes it suitable for large-scale database searches and classifications. Below, we briefly describe the I2I-SiteEngine method. We focus on the classification process and the obtained nonredundant protein-protein interface data set. In particular, we analyze the biological significance of the clusters and present examples which illustrate that given constellations of chemical groups in protein-protein binding sites may be preferred, and are observed in proteins with different structures and different functions. We expect that these would yield further information regarding the forces stabilizing protein-protein interactions.  相似文献   

14.
We have studied the effect of point mutations of the primary binding residue (P1) at the protein-protein interface in complexes of chymotrypsin and elastase with the third domain of the turkey ovomucoid inhibitor and in trypsin with the bovine pancreatic trypsin inhibitor, using molecular dynamics simulations combined with the linear interaction energy (LIE) approach. A total of 56 mutants have been constructed and docked into their host proteins. The free energy of binding could be reliably calculated for 52 of these mutants that could unambiguously be fitted into the binding sites. We find that the predicted binding free energies are in very good agreement with experimental data with mean unsigned errors between 0.50 and 1.03 kcal/mol. It is also evident that the standard LIE model used to study small drug-like ligand binding to proteins is not suitable for protein-protein interactions. Three different LIE models were therefore tested for each of the series of protein-protein complexes included, and the best models for each system turn out to be very similar. The difference in parameterization between small drug-like compounds and protein point mutations is attributed to the preorganization of the binding surface. Our results clearly demonstrate the potential of free energy calculations for probing the effect of point mutations at protein-protein interfaces and for exploring the principles of specificity of hot spots at the interface.  相似文献   

15.
The goal of this work is to learn from nature about the magnitudes of side-chain motions that occur when proteins bind small organic molecules, and model these motions to improve the prediction of protein-ligand complexes. Following analysis of protein side-chain motions upon ligand binding in 63 complexes, we tested the ability of the docking tool SLIDE to model these motions without being restricted to rotameric transitions or deciding which side chains should be considered as flexible. The model tested is that side-chain conformational changes involving more atoms or larger rotations are likely to be more costly and less prevalent than small motions due to energy barriers between rotamers and the potential of large motions to cause new steric clashes. Accordingly, SLIDE adjusts the protein and ligand side groups as little as necessary to achieve steric complementarity. We tested the hypothesis that small motions are sufficient to achieve good dockings using 63 ligands and the apo structures of 20 different proteins and compared SLIDE side-chain rotations to those experimentally observed. None of these proteins undergoes major main-chain conformational change upon ligand binding, ensuring that side-chain flexibility modeling is not required to compensate for main-chain motions. Although more frugal in the number of side-chain rotations performed, this model substantially mimics the experimentally observed motions. Most side chains do not shift to a new rotamer, and small motions are both necessary and sufficient to predict the correct binding orientation and most protein-ligand interactions for the 20 proteins analyzed.  相似文献   

16.
The environmental preference for the occurrence of noncanonical hydrogen bonding and cation-pi interactions, in a data set containing 71 nonredundant (alpha/beta)(8) barrel proteins, with respect to amino acid type, secondary structure, solvent accessibility, and stabilizing residues has been performed. Our analysis reveals some important findings, which include (a) higher contribution of weak interactions mediated by main-chain atoms irrespective of the amino acids involved; (b) domination of the aromatic amino acids among interactions involving side-chain atoms; (c) involvement of strands as the principal secondary structural unit, accommodating cross strand ion pair interaction and clustering of aromatic amino acid residues; (d) significant contribution to weak interactions occur in the solvent exposed areas of the protein; (e) majority of the interactions involve long-range contacts; (f) the preference of Arg is higher than Lys to form cation-pi interaction; and (g) probability of theoretically predicted stabilizing amino acid residues involved in weak interaction is higher for polar amino acids such as Trp, Glu, and Gln. On the whole, the present study reveals that the weak interactions contribute to the global stability of (alpha/beta)(8) TIM-barrel proteins in an environment-specific manner, which can possibly be exploited for protein engineering applications.  相似文献   

17.
The basic DNA-binding modules of 128 protein-DNA interfaces have been analyzed. Although these are less planar, like the protein-protein interfaces, the protein-DNA interfaces can also be dissected into core regions in which all the fully-buried atoms are located, and rim regions having atoms with residual accessibilities. The sequence entropy of the core residues is smaller than those in the rim, indicating that the former are better conserved and possibly contribute more towards the binding free energy, as has been implicated in protein-protein interactions. On the protein side, 1014 A(2) of the surface is buried of which 63% belong to the core. There are some differences in the propensities of residues to occur in the core and the rim. In the DNA strands, the nucleotide(s) containing fully-buried atoms in all three components usually occupy central positions of the binding region. A new classification scheme for the interfaces has been introduced based on the composition of secondary structural elements of residues and the results compared with the conventional classification of DNA-binding proteins, as well as the protein class of the molecule. It appears that a common framework may be developed to understand both protein-protein and protein-DNA interactions.  相似文献   

18.
Ansari S  Helms V 《Proteins》2005,61(2):344-355
A non-redundant set of 170 protein-protein interfaces of known structure was statistically analyzed for residue and secondary-structure compositions, pairing preferences and side-chain-backbone interaction frequencies. By focussing mainly on transient protein-protein interfaces, the results underline previous findings for protein-protein interfaces but also show some new interesting aspects of transient interfaces. The residue compositions at interfaces found in this study correlate well with the results of other studies. On average, contacts between pairs of hydrophobic and polar residues were unfavorable, and the charged residues tended to pair subject to charge complementarity. Secondary structure composition analysis shows that neither helices nor beta-sheets are dominantly populated at interfaces. Analyzing the pairing preferences of the secondary structure elements revealed a higher affinity within the same elements and alludes to tight packings. In addition, the results for the side-chain and backbone interaction frequencies, which were measured under more stringent conditions, showed a high occurrence of side-chain-backbone interactions. Taking a closer look at the helix and beta-sheet binding frequencies for a given side-chain and backbone interaction underlined the relevance of tight packings. The polarity of interfaces increased with decreasing interface size. These types of information may be useful for scoring complexes in protein-protein docking studies or for prediction of protein-protein interfaces from the sequences alone.  相似文献   

19.
The accurate determination of a large number of protein structures by X-ray crystallography makes it possible to conduct a reliable statistical analysis of the distribution of the main-chain and side-chain conformational angles, how these are dependent on residue type, adjacent residue in the sequence, secondary structure, residue-residue interactions and location at the polypeptide chain termini. The interrelationship between the main-chain (phi, psi) and side-chain (chi 1) torsion angles leads to a classification of amino acid residues that simplify the folding alphabet considerably and can be a guide to the design of new proteins or mutational studies. Analyses of residues occurring with disallowed main-chain conformation or with multiple conformations shed some light on why some residues are less favoured in thermophiles.  相似文献   

20.
Gene duplication is a common evolutionary process that leads to the expansion and functional diversification of protein subfamilies. The evolutionary events that cause paralogous proteins to bind different protein ligands (functionally diverged interfaces) are investigated and compared to paralogous proteins that bind the same protein ligand (functionally preserved interfaces). We find that functionally diverged interfaces possess more subfamily-specific residues than functionally preserved interfaces. These subfamily-specific residues are usually partially buried at the interface rim and achieve specific binding through optimized hydrogen bond geometries. In addition to optimized hydrogen bond geometries, side-chain modeling experiments suggest that steric effects are also important for binding specificity. Residues that are completely buried at the interface hub are also less conserved in functionally diverged interfaces than in functionally preserved interfaces. Consistent with this finding, hub residues contribute less to free energy of binding in functionally diverged interfaces than in functionally preserved interfaces. Therefore, we propose that protein binding is a delicate balance between binding affinity that primarily occurs at the interface hub and binding specificity that primarily occurs at the interface rim.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号