首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tunneling nanotube (TNT)-like structures are intercellular membranous bridges that mediate the transfer of various cellular components including endocytic organelles. To gain further insight into the magnitude and mechanism of organelle transfer, we performed quantitative studies on the exchange of fluorescently labeled endocytic structures between normal rat kidney (NRK) cells. This revealed a linear increase in both the number of cells receiving organelles and the amount of transferred organelles per cell over time. The intercellular transfer of organelles was unidirectional, independent of extracellular diffusion, and sensitive to shearing force. In addition, during a block of endocytosis, a significant amount of transfer sustained. Fluorescence microscopy revealed TNT-like bridges between NRK cells containing F-actin but no microtubules. Depolymerization of F-actin led to the disappearance of TNT and a strong inhibition of organelle exchange. Partial ATP depletion did not affect the number of TNT but strongly reduced organelle transfer. Interestingly, the myosin II specific inhibitor S-(−)-blebbistatin strongly induced both organelle transfer and the number of TNT, while the general myosin inhibitor 2,3-butanedione monoxime induced the number of TNT but significantly inhibited transfer. Taken together, our data indicate a frequent and continuous exchange of endocytic organelles between cells via TNT by an actomyosin-dependent mechanism.  相似文献   

2.
Cell to cell communication is essential for the organization/coordination of multicellular systems and cellular development. Cellular communication is mediated by soluble factors, including growth factors, neurotransmitters, cytokines/chemokines, gap junctions, and the recently described tunneling nanotubes (TNT). TNT are long cytoplasmatic bridges that enable long range directed communication between cells. The proposed function for TNT is the cell-to-cell transfer of large cellular structures such as vesicles and organelles. We demonstrate that HIV-infection of human macrophages results in an increased number of TNT, and show HIV particles within these structures. We propose that HIV “highjacks” TNT communication to spread HIV through an intercellular route between communicated cells, contributing to the pathogenesis of AIDS.  相似文献   

3.
Organelle exchange between cells via tunneling nanotubes (TNTs) is a recently described form of intercellular communication. Here, we show that the selective elimination of filopodia from PC12 cells by 350 nM cytochalasin B (CytoB) blocks TNT formation but has only a weak effect on the stability of existing TNTs. Under these conditions the intercellular organelle transfer was strongly reduced, whereas endocytosis and phagocytosis were not affected. Furthermore, the transfer of organelles significantly correlated with the presence of a TNT-bridge. Thus, our data support that in PC12 cells filopodia-like protrusions are the principal precursors of TNTs and CytoB provides a valuable tool to selectively interfere with TNT-mediated cell-to-cell communication.  相似文献   

4.
Cell-to-cell communication is a fundamental process for development and maintenance of multicellular organisms. Diverse mechanisms for the exchange of molecular information between cells have been documented, such as the exchange of membrane fragments (trogocytosis), formation of tunneling nanotubes (TNTs) and release of microvesicles (MVs). In this study we assign to Fas signalling a pivotal role for intercellular communication in CD4+ T cells. Binding of membrane-bound FasL to Fas expressing target cells triggers a well-characterized pro-apoptotic signalling cascade. However, our results, pairing up flow cytometric studies with confocal microscopy data, highlight a new social dimension for Fas/FasL interactions between CD4+ T cells. Indeed, FasL enhances the formation of cell conjugates (8 fold of increase) in an early time-frame of stimulation (30 min), and this phenomenon appears to be a crucial step to prime intercellular communication. Our findings show that this communication mainly proceeds along a cytosolic material exchange (ratio of exchange >10, calculated as ratio of stimulated cells signal divided by that recorded in control cells) via TNTs and MVs release. In particular, inhibition of TNTs genesis by pharmacological agents (Latruculin A and Nocodazole) markedly reduced this exchange (inhibition percentage: >40% and >50% respectively), suggesting a key role for TNTs in CD4+ T cells communication. Although MVs are present in supernatants from PHA-activated T cells, Fas treatment also leads to a significant increase in the amount of released MVs. In fact, the co-culture performed between MVs and untreated cells highlights a higher presence of MVs in the medium (1.4 fold of increase) and a significant MVs uptake (6 fold of increase) by untreated T lymphocytes. We conclude that Fas signalling induces intercellular communication in CD4+ T cells by different mechanisms that seem to start concomitantly with the main pathway (programmed cell death) promoted by FasL.  相似文献   

5.
Cell-to-cell communication is essential for the development and maintenance of multicellular organisms. The tunneling nanotube (TNT) is a recently recognized distinct type of intercellular communication device. TNTs are thin protrusions of the plasma membrane and allow direct physical connections of the plasma membranes between remote cells. The proposed functions for TNTs include the cell-to-cell transfer of large cellular structures such as membrane vesicles and organelles, as well as signal transduction molecules in a wide variety of cell types. Moreover TNT and TNT-related structures are thought to facilitate the intercellular spreading of virus and/or pathogenic proteins. Despite their contribution to normal cellular functions and importance in pathological conditions, virtually nothing is known about the molecular basis for their formation. We have recently shown that M-Sec (also called TNFaip2) is a key molecule for TNT formation. In cooperation with the RalA small GTPase and the exocyst complex, M-Sec can induce the formation of functional TNTs, indicating that the remodeling of the actin cytoskeleton and vesicle trafficking are involved in M-Sec-mediated TNT formation. Discovery of the role of M-Sec will accelerate our understanding of TNTs, both at the molecular and physiological levels.  相似文献   

6.
Cell–cell communication is critical to coordinate the activity and behavior of a multicellular organism. The cells of the immune system not only must communicate with similar cells, but also with many other cell types in the body. Therefore, the cells of the immune system have evolved multiple ways to communicate. Exosomes and tunneling nanotubes (TNTs) are two means of communication used by immune cells that contribute to immune functions. Exosomes are small membrane vesicles secreted by most cell types that can mediate intercellular communication and in the immune system they are proposed to play a role in antigen presentation and modulation of gene expression. TNTs are membranous structures that mediate direct cell-cell contact over several cell diameters in length (and possibly longer) and facilitate the interaction and/or the transfer of signals, material and other cellular organelles between connected cells. Recent studies have revealed additional, but sometimes conflicting, structural and functional features of both exosomes and TNTs. Despite the new and exciting information in exosome and TNT composition, origin and in vitro function, biologically significant functions are still being investigated and determined. In this review, we discuss the current field regarding exosomes and TNTs in immune cells providing evaluation and perspectives of the current literature.  相似文献   

7.
A new mechanism of cell-cell communication was recently proposed after the discovery of tunneling nanotubes (TNTs) between cells. TNTs are membrane protrusions with lengths of tens of microns and diameters of a few hundred nanometers that permit the exchange of membrane and cytoplasmic constituents between neighboring cells. TNTs have been reported to mediate intercellular Ca2+ signaling; however, our simulations indicate that passive diffusion of Ca2+ ions alone would be inadequate for efficient transmission between cells. Instead, we observed spontaneous and inositol trisphosphate (IP3)-evoked Ca2+ signals within TNTs between cultured mammalian cells, which sometimes remained localized and in other instances propagated as saltatory waves to evoke Ca2+ signals in a connected cell. Consistent with this, immunostaining showed the presence of both endoplasmic reticulum and IP3 receptors along the TNT. We propose that IP3 receptors may actively propagate intercellular Ca2+ signals along TNTs via Ca2+-induced Ca2+ release, acting as amplification sites to overcome the limitations of passive diffusion in a chemical analog of electrical transmission of action potentials.  相似文献   

8.
Mesenchymal stem cell (MSC)-based therapies have been proposed as novel treatments for intervertebral disc (IVD) degeneration. We have previously demonstrated that when MSCs are co-cultured with nucleus pulposus (NP) cells with direct cell-cell contact, they differentiate along the NP lineage and simultaneously stimulate the degenerate NP cell population to regain a normal (non-degenerate) phenotype, an effect which requires cell-cell communication. However, the mechanisms by which NP cells and MSCs interact in this system are currently unclear. Thus, in this study we investigated a range of potential mechanisms for exchange of cellular components or information that may direct these changes, including cell fusion, gap-junctional communication and exchange of membrane components by direct transfer or via microvesicle formation. Flow cytometry of fluorescently labeled MSCs and NP cells revealed evidence of some cell fusion and formation of gapjunctions, although at the three timepoints studied these phenomena were detectable only in a small proportion of cells. While these mechanisms may play a role in cell-cell communication, the data suggests they are not the predominant mechanism of interaction. However, flow cytometry of fluorescently dual-labeled cells showed that extensive bi-directional transfer of membrane components is operational during direct co-culture of MSCs and NP cells. Furthermore, there was also evidence for secretion and internalization of membrane-bound microvesicles by both cell types. Thus, this study highlights bi-directional intercellular transfer of membrane components as a possible mechanism of cellular communication between MSC and NP cells.  相似文献   

9.
Two major types of intercellular communication are found in the central nervous system (CNS), namely wiring transmission (WT; point-to-point communication via private channels, e.g. synaptic transmission) and volume transmission (VT; communication in the extracellular fluid and in the cerebrospinal fluid). Volume and synaptic transmission become integrated because their chemical signals activate different types of interacting receptors in heteroreceptor complexes located synaptically and extrasynaptically in the plasma membrane. In VT, we focus on the role of the extracellular-vesicle type of VT, and in WT, on the potential role of the tunnelling-nanotube (TNT) type of WT. The so-called exosomes appear to be the major vesicular carrier for intercellular communication but the larger microvesicles also participate. Extracellular vesicles are released from cultured cortical neurons and different types of glial cells and modulate the signalling of the neuronal–glial networks of the CNS. This type of VT has pathological relevance, and epigenetic mechanisms may participate in the modulation of extracellular-vesicle-mediated VT. Gerdes and co-workers proposed the existence of a novel type of WT based on TNTs, which are straight transcellular channels leading to the formation in vitro of syncytial cellular networks found also in neuronal and glial cultures.  相似文献   

10.
Connexins and their channels in cell growth and cell death   总被引:7,自引:0,他引:7  
Direct communication between cells, mediated by gap junctions, is nowadays considered as an indispensable mechanism in the maintenance of cellular homeostasis. In fact, gap junctional intercellular communication is actively involved in virtually all aspects of the cellular life cycle, ranging from cell growth to cell death. For a long time, it was believed that this was merely a result of the capacity of gap junctions to control the direct intercellular exchange of essential cellular messengers. However, recent data show that the picture is more complicated than initially thought, as structural precursors of gap junctions, connexins and gap junction hemichannels, can affect the cellular homeostatic balance independently of gap junctional intercellular communication. In this paper, we summarize the current knowledge concerning the roles of connexins and their channels in the control of cellular homeostasis, with the emphasis on cell growth and cell death. We also briefly discuss the role of gap junctional intercellular communication in carcinogenesis and the potential use of connexins as tools for cancer therapy.  相似文献   

11.
Toxicity testing is vital to protect human health from exposure to toxic chemicals in the environment. Furthermore, combining novel cellular models with molecular profiling technologies, such as metabolomics can add new insight into the molecular basis of toxicity and provide a rich source of biomarkers that are urgently required in a 21st Century approach to toxicology. We have used an NMR-based metabolic profiling approach to characterise for the first time the metabolome of the RPTEC/TERT1 cell line, an immortalised non-tumour human renal epithelial cell line that recapitulates phenotypic characteristics that are absent in other in vitro renal cell models. RPTEC/TERT1 cells were cultured with either the dosing vehicle (DMSO) or with exposure to one of six compounds (nifedipine, potassium bromate, monuron, D-mannitol, ochratoxin A and sodium diclofenac), several of which are known to cause renal effects. Aqueous intracellular and culture media metabolites were profiled by (1)H NMR spectroscopy at 6, 24 and 72 hours of exposure to a low effect dose (IC(10)). We defined the metabolome of the RPTEC/TERT1 cell line and used a principal component analysis approach to derive a panel of key metabolites, which were altered by chemical exposure. By considering only major changes (±1.5 fold change from control) across this metabolite panel we were able to show specific alterations to cellular processes associated with chemical treatment. Our findings suggest that metabolic profiling of RPTEC/TERT1 cells can report on the effect of chemical exposure on multiple cellular pathways at low-level exposure, producing different response profiles for the different compounds tested with a greater number of major metabolic effects observed in the toxin treated cells. Importantly, compounds with established links to chronic renal toxicity produced more diverse and severe perturbations to the cellular metabolome than non-toxic compounds in this model. As these changes can be rationalised with the different pharmacological and toxicity profiles of the chemicals it is suggested that metabolic profiling in the RPTEC/TERT1 model would be useful in investigating the mechanism of action of toxins at a low dose.  相似文献   

12.
Tunneling nanotubes (TNTs) are nanoscaled, F-actin containing membrane tubes that connect cells over several cell diameters. They facilitate the intercellular exchange of diverse components ranging from small molecules to organelles and pathogens. In conjunction with recent findings that TNT-like structures exist in tissue, they are expected to have important implications in cell-to-cell communication. In this review we will focus on a new function of TNTs, namely the transfer of electrical signals between remote cells. This electrical coupling is not only determined by the biophysical properties of the TNT, but depends on the presence of connexons interposed at the membrane interface between TNT and the connected cell. Specific features of this coupling are compared to conventional gap junction communication. Finally, we will discuss possible down-stream signaling pathways of this electrical coupling in the recipient cells and their putative effects on different physiological activities. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.  相似文献   

13.
Osteoclasts are the multinucleated giant cells formed by cell fusion of mononuclear osteoclast precursors. Despite the finding of several membrane proteins involving DC‐STAMP as regulatory proteins required for fusion among osteoclast precursors, cellular and molecular events concerning this process are still ambiguous. Here we identified Tunneling Nanotubes (TNTs), long intercellular bridges with small diameters, as the essential cellular structure for intercellular communication among osteoclast precursors in prior to cell fusion. Formation of TNTs was highly associated with osteoclastogenesis and it was accompanied with the significant induction of the M‐Sec gene, an essential gene for TNT formation. M‐Sec gene expression was significantly upregulated by RANKL‐treatment in osteoclast precursor cell line. Blockage of TNT formation by Latrunclin B or by M‐Sec siRNA significantly suppressed osteoclastogenesis. We have detected the rapid intercellular transport of not only the membrane phospholipids labeled with DiI but also the DC‐STAMP‐GFP fusion protein through TNTs formed among osteoclast precursors during osteoclastogenesis. Transportation of such regulatory molecules through TNTs would be essential for the process of the specific cell fusion among osteoclast precursors. J. Cell. Biochem. 114: 1238–1247, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
Intercellular coupling between cumulus cells and oocytes persists after oocyte meiotic maturation has been initiated. The experiments described here focus on the relationship between oocyte-cumulus cell intercellular coupling during maturation and the subsequent embryonic development of spontaneous mouse parthenotes. Several lines of evidence suggest that this coupling during oocyte maturation is required for the acquisition of the capacity for spontaneous mouse parthenotes to develop embryologically. First, the period of time that LT/Sv oocytes remained coupled to cumulus cells during oocyte maturation in vivo corresponded to that required for the acquisition of the capacity for parthenogenetic embryonic development. Second, the longer that cumulus cells were present during Fpontaneous oocyte maturation in vitro, the higher was the percentageofova undergoing subsequent parthenogenetic development. Third, cumulus cell-free oocytes cocultured with cumulus cell-enclosed oocytes during the maturation period in vitro did not develop embryologically. Fourth, intercellular coupling between cumulus cells and oocytes persisted throughout the oocyte maturation period in vitro. Fifth, incubation of oocyte-cumulus cell complexes in medium containing follicle-stimulating hormone (FSH) promoted uncoupling and decreased the percentage of ova undergoing parthenogenetic development. Thus, cell-to-cell communication, mediated via the intercellular coupling pathway between cumulus cells and oocytes, plays an important role during oocyte maturation and relates to subsequent preimplantation development.  相似文献   

15.

Background

Tunneling nanotubes (TNTs) may offer a very specific and effective way of intercellular communication. Here we investigated TNTs in the human retinal pigment epithelial (RPE) cell line ARPE-19. Morphology of TNTs was examined by immunostaining and scanning electron microscopy. To determine the function of TNTs between cells, we studied the TNT-dependent intercellular communication at different levels including electrical and calcium signalling, small molecular diffusion as well as mitochondrial re-localization. Further, intercellular organelles transfer was assayed by FACS analysis.

Methodology and Principal Findings

Microscopy showed that cultured ARPE-19 cells are frequently connected by TNTs, which are not attached to the substratum. The TNTs were straight connections between cells, had a typical diameter of 50 to 300 nm and a length of up to 120 µm. We observed de novo formation of TNTs by diverging from migrating cells after a short time of interaction. Scanning electron microscopy confirmed characteristic features of TNTs. Fluorescence microscopy revealed that TNTs between ARPE-19 cells contain F-actin but no microtubules. Depolymerisation of F-actin, induced by addition of latrunculin-B, led to disappearance of TNTs. Importantly, these TNTs could function as channels for the diffusion of small molecules such as Lucifer Yellow, but not for large molecules like Dextran Red. Further, organelle exchange between cells via TNTs was observed by microscopy. Using Ca2+ imaging we show the intercellular transmission of calcium signals through TNTs. Mechanical stimulation led to membrane depolarisation, which expand through TNT connections between ARPE-19 cells. We further demonstrate that TNTs can mediate electrical coupling between distant cells. Immunolabelling for Cx43 showed that this gap junction protein is interposed at one end of 44% of TNTs between ARPE-19 cells.

Conclusions and Significance

Our observations indicate that human RPE cell line ARPE-19 cells communicate by tunneling nanotubes and can support different types of intercellular traffic.  相似文献   

16.
17.
Effects of cAMP on intercellular coupling and osteoblast differentiation   总被引:4,自引:0,他引:4  
Bone-forming cells are organized in a multicellular network interconnected by gap junctions. Direct intercellular communication via gap junctions is an important component of bone homeostasis, coordinating cellular responses to external signals and promoting osteoblast differentiation. The cAMP pathway, a major intercellular signal transduction mechanism, regulates osteoblastic function and metabolism. We investigated the effects of this second messenger on junctional communication and on the expression of differentiation markers in human HOBIT osteoblastic cells. Increased levels of cAMP induce posttranslational modifications (i.e., phosphorylations) of connexin43 and enhancement of gap junction assembly, resulting in an increased junctional permeance to Lucifer yellow and to a positive modulation of intercellular Ca(2+) waves. Increased intercellular communication, however, was accompanied by a parallel decrease of alkaline phosphatase activity and by an increase of osteocalcin expression. cAMP-dependent stimulation of cell-to-cell coupling induces a complex modulation of bone differentiation markers.  相似文献   

18.
The art of cellular communication: tunneling nanotubes bridge the divide   总被引:1,自引:0,他引:1  
The ability of cells to receive, process, and respond to information is essential for a variety of biological processes. This is true for the simplest single cell entity as it is for the highly specialized cells of multicellular organisms. In the latter, most cells do not exist as independent units, but are organized into specialized tissues. Within these functional assemblies, cells communicate with each other in different ways to coordinate physiological processes. Recently, a new type of cell-to-cell communication was discovered, based on de novo formation of membranous nanotubes between cells. These F-actin-rich structures, referred to as tunneling nanotubes (TNT), were shown to mediate membrane continuity between connected cells and facilitate the intercellular transport of various cellular components. The subsequent identification of TNT-like structures in numerous cell types revealed some structural diversity. At the same time it emerged that the direct transfer of cargo between cells is a common functional property, suggesting a general role of TNT-like structures in selective, long-range cell-to-cell communication. Due to the growing number of documented thin and long cell protrusions in tissue implicated in cell-to-cell signaling, it is intriguing to speculate that TNT-like structures also exist in vivo and participate in important physiological processes.  相似文献   

19.
Intercellular communication via gap junctions plays a critical role in numerous cellular processes, including the control of cell growth and differentiation, maintenance of tissue homeostasis and embryonic development. Gap junctions are aggregates of intercellular channels that enable adjacent cells in solid tissues to directly exchange ions and small molecules. These channels are formed by a family of integral membrane proteins called connexins, of which the best studied is connexin43. Connexins have a high turnover rate in most tissue types, and degradation of connexins is considered to be a tightly regulated process. Post-translational modification of connexins by ubiquitin is emerging as an important event in the regulation of connexin degradation. Ubiquitination is involved in endoplasmic reticulum-associated degradation of connexins as well as in trafficking of connexins to lysosomes. At both the endoplasmic reticulum and the plasma membrane, ubiquitination of connexins is strongly affected by changes in the extracellular environment. There is increasing evidence that the regulation of connexin ubiquitination might be an important mechanism for rapidly modifying the level of functional gap junctions at the plasma membrane, under both normal and pathological conditions. This review discusses the current knowledge about the regulation of intercellular communication via gap junctions by ubiquitination of connexins.  相似文献   

20.
Neuronal communication is typically mediated via synapses and gap junctions. New forms of intercellular communication, including nanotubes (NTs) and extracellular vesicles (EVs), have been described for non‐neuronal cells, but their role in neuronal communication is not known. Recently, transfer of cytoplasmic material between donor and host neurons (“material transfer”) was shown to occur after photoreceptor transplantation. The cellular mechanism(s) underlying this surprising finding are unknown. Here, using transplantation, primary neuronal cultures and the generation of chimeric retinae, we show for the first time that mammalian photoreceptor neurons can form open‐end NT‐like processes. These processes permit the transfer of cytoplasmic and membrane‐bound molecules in culture and after transplantation and can mediate gain‐of‐function in the acceptor cells. Rarely, organelles were also observed to transfer. Strikingly, use of chimeric retinae revealed that material transfer can occur between photoreceptors in the intact adult retina. Conversely, while photoreceptors are capable of releasing EVs, at least in culture, these are taken up by glia and not by retinal neurons. Our findings provide the first evidence of functional NT‐like processes forming between sensory neurons in culture and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号