首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Arginase activity (3.1 ± 0.5 units/g (wet wt) of tissue) was found associated to the cytosolic fraction of the gill cells of the bivalve Semele solida. The enzyme, with a molecular weight of 120,000 ± 3000, was partially purified, and some of the enzymic properties were were examined. The activation of the enzyme by Mn2+ followed hyperbolic kinetics with a KMn value of 0.10 ± 0.02 μM. In addition to Mn2+, the metal ion requirement of the enzyme was satisfied by Ni2+, Cd2+ and Co2+; Zn2+ was inhibitory to ail the Values of Km for arginine and Ki for lysine inhibition, were the same, regardless of the metal ion used to activate the enzyme; Km values were 20 mM at pH 7.5 and 12 mM at the optimum pH of 9.5. Competitive inhibition was caused by ornithine, lysine and proline, whereas branched chain amino acids were non competitive inhibitors of the enzyme.  相似文献   

2.
Tosylphenylalanine chloromethyl ketone (TPCK) and tosyllysine chloromethyl ketone (TLCK) are irreversible modifiers of histidine which is located in the catalytic triad of chymotrypsin and trypsin, respectively. The effects of TPCK and TLCK on the histidine in the catalytic triad of the desensitized butyrylcholinesterase (BChE), prepared from human serum by heating at 45°C for 24 h, were investigated in detail. It is found that these reagents do not modify, but reversibly inhibit the desensitized enzyme as a function of time. Just as it is for the native enzyme, TPCK is a hyperbolic mixed-type inhibitor of the desensitized BChE with Ki, a and ß values of 0.017 ± 0.003 mM, 3.942 ± 1.125 and 0.524 ± 0.070, respectively. However, TLCK is the pure competitive inhibitor of the desensitized BChE with a Ki value of 0.008 ± 0.000 mM, while it is hyperbolic mixed-type inhibitor of the native form. These findings show that the conformation of the active site cavity of desensitized BChE is different from that of the native enzyme.  相似文献   

3.
An ionically unbound and thermostable polyphenol oxidase (PPO) was extracted from the leaf of Musa paradisiaca. The enzyme was purified 2.54-fold with a total yield of 9.5% by ammonium sulfate precipitation followed by Sephadex G-100 gel filtration chromatography. The purified enzyme exhibited a clear single band on native polyacrylamide gel electrophoresis (PAGE) and sodium dodecyl sulfate (SDS) PAGE. It was found to be monomeric protein with molecular mass of about 40 kD. The zymographic study using crude extract as enzyme source showed a very clear band around 40 kD and a faint band at around 15 kD, which might be isozymes. The enzyme was optimally active at pH 7.0 and 50°C temperature. The enzyme was active in wide range of pH (4.0–9.0) and temperature (30–90°C). From the thermal inactivation studies in the range 60–75°C, the half-life (t1/2) values of the enzyme ranged from 17 to 77 min. The inactivation energy (Ea) value of PPO was estimated to be 91.3 kJ mol?1. It showed higher specificity with catechol (Km = 8 mM) as compared to 4-methylcatechol (Km = 10 mM). Among metal ions and reagents tested, Cu2+, Fe2+, Hg2+, Mn2+, Ni2+, protocatechuic acid, and ferrulic acid enhanced the enzyme activity, while K+, Na+, Co2+, kojic acid, ascorbic acid, ethylenediamine tetraacetic acid (EDTA), sodium azide, β-mercaptoethanol, and L-cysteine inhibited the activity of the enzyme.  相似文献   

4.
31P-nmr has been used to investigate the specific interaction of three divalent metal ions, Mg2+, Mn2+, and Co+2, with the phosphate groups of DNA. Mg2+ is found to have no significant effect on any of the 31P-nmr parameters (chemical shift, line-width, T1, T2, and NOE) over a concentration range extending from 20 to 160 mM. The two paramagnetic ions, Mn2+ and Co2+, on the other hand, significantly change the 31P relaxation rates even at very low levels. From an analysis of the paramagnetic contributions to the spin–lattice and spin–spin relaxation rates, the effective internuclear metal–phosphorus distances are found to be 4.5 ± 0.5 and 4.1 ± 0.5 Å for Mn2+ and Co2+, respectively, corresponding to only 15 ± 5% of the total bound Mn2+ and Co2+ being directly coordinated to the phosphate groups (inner-sphere complexes). This result is independent of any assumptions regarding the location of the remaining metal ions which may be bound either as outer-sphere complexes relative to the phosphate groups or elsewhere on the DNA, possibly to the bases. Studies of the temperature effects on the 31P relaxation rates of DNA in the absence and presence of Mn2+ and Co2+ yielded kinetic and thermodynamic parameters which characterize the association and dissociation of the metal ions from the phosphate groups. A two-step model was used in the analysis of the kinetic data. The lifetimes of the inner-sphere complexes are 3 × 10?7 and 1.4 × 10?5 s for Mn2+ and Co2+, respectively. The rates of formation of the inner-sphere complexes with the phosphate are found to be about two orders of magnitude slower than the rate of the exchange of the water of hydration of the metal ions, suggesting that expulsion of water is not the rate-determining step in the formation of the inner-sphere complexes. Competition experiments demonstrate that the binding of Mg2+ ions is 3–4 times weaker than the binding of either Mn2+ or Co2+. Since the contribution from direct phosphate coordination to the total binding strength of these metal ion complexes is small (~15%), the higher binding strength of Mn2+ and Co2+ may be attributed either to base binding or to formation of stronger outer-sphere metal–phosphate complexes. At high levels of divalent metal ions, and when the metal ion concentration exceeds the DNA–phosphate concentration, the fraction of inner-sphere phosphate binding increases. In the presence of very high levels of Mg2+ (e.g., 3.1M), the inner-sphere ? outer-sphere equilibrium is shifted toward ~100% inner-sphere binding. A comparison of our DNA results and previous results obtained with tRNA indicates that tRNA and DNA have very similar divalent metal ion binding properties. A comparison of the present results with the predictions of polyelectrolyte theories is presented.  相似文献   

5.
C Zimmer  G Luck  H Triebel 《Biopolymers》1974,13(3):425-453
The effects of metal ions of the first-row transition and of alkaline earth metals on the DNA helix conformation have been studied by uv difference spectra, circular dichroism, and sedimentation measurements. At low ionic strength (10?3 M NaClO4) DNA shows a maximum in the difference absorption spectra in the presence of Zn2+, Mn2+, Co2+, Cd2+, and Ni2+ but not with Mg2+ or Ca2+. The amplitude of this maximum is dependent on GC content as revealed by detailed studies of the DNA-Zn2+ complex of eight different DNA's. Pronounced changes also occur in the CD spectra of DNA transition metal complexes. A transition appears up to a total ratio of approximately 1 Zn2+ per DNA phosphate at 10?3 M NaClO4; then no further change was observed up to high concentrations. The characteristic CD changes are strongly dependent on the double-helical structure of DNA and on the GC content of DNA. Differences were also observed in hydrodynamic properties of DNA metal complexes as revealed by the greater increase of the sedimentation coefficient of native DNA in the presence of transition metal ions. Spectrophotometric acid titration experiments and CD measurements at acidic pH clearly indicate the suppression of protonation of GC base-pair regions on the addition of transition metal ions to DNA. Similar effects were not observed with DNA complexes with alkaline earth metal ions such as Mg2+ or Ca2+. The data are interpreted in terms of a preferential interaction of Zn2+ and of other transition metal ions with GC sites by chelation to the N-7 of guanine and to the phosphate residue. The binding of Zn2+ to DNA disappears between 0.5 M and 1 M NaClO4, but complex formation with DNA is observable again in the presence of highly concentrated solutions of NaClO4 (3?7.2 M NaClO4) or at 0.5 to 2 M Mn2+. At relatively high cation concentration Mg2+ is also effective in changing the DNA comformation. These structural alterations probably result from both the shielding of negatively charged phosphate groups and the breakdown of the water structure along the DNA helix. Differential effects in CD are also observed between Mn2+, Zn2+ on one hand and Mg2+ on the other hand under these conditions. The greater sensitivity of the double-helical conformation of DNA to the action of transition metal ions is due to the affinity of the latter to electron donating sites of the bases resulting from the d electronic configuration of the metal ions. An order of the relative phosphate binding ability to base-site binding ability in native DNA is obtained as follows: Mg2+, Ba2+, < Ca2+ < Fe2+, Ni2+, Co2+ < Mn2+, Zn2+ < Cd2+ < Cu2+. The metal-ion induced conformational changes of the DNA are explained by alternation of the winding angle between base pairs as occurs in the transition from B to C conformation. These findings are used for a tentative molecular interpretation of some effects of Zn2+ and Mn2+ in DNA synthesis reported in the literature.  相似文献   

6.
Properties of brain L-glutamate decarboxylase: inhibition studies   总被引:15,自引:12,他引:3  
—l -Glutamate decarboxylase purified from mouse brain was found to be highly sensitive to the sulfhydryl reagents, 5,5-dithiobis (2-nitrobenzoic acid) (DTNB) and p-chloromerburibenzoate (PCMB), which were competitive inhibitors (Ki for DTNB is 1·1 · 10?8m ). Iodoacetamide and iodoacetic acid were less effective inhibitors than DTNB and PCMB. The mercapto acids, 3-mercaptopropionic, 2-mercaptopropionic, and 2-mercaptoacetic acids were potent competitive inhibitors with Ki values of 1·8, 53 and 300 μm , respectively. 2-Mercaptoethanol was less effective. Aminooxyacetic acid was the most potent carbonyl-trapping reagent tested inhibiting the enzyme activity completely at 1·6 μm , followed by hydroxylamine, hydrazine, semicarbazide, and d -penicillamine. Carboxylic acids with a net negative charge were strong competitive inhibitors e.g. d -glutamate (Ki 0·9 mm ), α-ketoglutarate (Ki, l·2mm ), fumarate (Ki,1·8 mm ), dl -β-hydroxyglutamate (Ki, 2·8 mm ), l -aspartate (ki, 3·1 mm ) and glutarate (Ki, 3·5 mm ). 2-Aminophosphonobutyric and 2-aminophosphonopropionic acids, phosphonic analogs of glutamate and aspartate, respectively, had no effect at l0mm . γ-Aminobutyric acid, l -glutamine, l -γ-methylene-glutamine, and α,γ-diaminoglutaric acid, amino acids with no net negative charge at neutral pH, had no effect at 5 mm . Glutaric and α-ketoglutaric acids were the most potent inhibitors among the various dicarboxylic and α-keto-dicarboxylic acids tested (Ki, 3·5 and 1·2 mm , respectively). Compounds with one carbon less, succinic and oxalacetic acids, or with one carbon more, adipic and α-ketoadipic acids, were less inhibitory. The monovalent cations, Li+, Na+, NH4+, and Cs+ had no effect on l -glutamate decarboxylase activity in concentrations up to 10mm . Divalent cations, on the other hand, were very potent inhibitors. Among eleven divalent cations tested, Zn2+ was the most potent inhibitor, inhibiting to the extent of 50 per cent at 10μm . The decreasing order of inhibitory potency was: Zn2+ > Cd2+, Hg2+, Cu2+ > Ni2+ > Mn2+ Co2+ > Ba2+ > Ca2+ > Mg2+ > Sr+2, The anions, I?, Br?, Cl? and F? were only weak inhibitors. The Ki value for Cl? was 17mm . The above findings suggest minimally the presence of aldehyde, sulfhydryl and positively charged groups at or near the active site of the holoenzyme. Intermediates of glycolysis had little effect on l -glutamate decarboxylase activity, but intermediates of the tricarboxylic acid cycle, e.g. α-ketoglutarate (Ki= 1·2 mm ) and fumarate (Ki= 1·8 mm ) were relatively potent inhibitors. The nucleotides, ATP, ADP, AMP, cyclic AMP, GTP, GDP, GMP, and cyclic GMP were weak inhibitors. l -Norepinephrine (Ki= 1·3 mm ) and serotonin were potent inhibitors, while acetylcholine, dopamine and histamine were less effective. Ethanol and dioxane inhibited the enzyme activity to the extent of 20-50 per cent at 10 per cent (v/v), while slight activation was observed at low concentrations (0·1-1 per cent) of both solvents. The possible role of Zn2+ and some metabolites in the regulation of steady-state levels of γ-aminobutyric acid also was discussed.  相似文献   

7.
Dihydroorotase (DHO; EC 3.5.2.3) is an essential metalloenzyme in the biosynthesis of pyrimidine nucleotides. Here, we identified and characterized DHO from the pathogenic bacterium Klebsiella pneumoniae (Kp). The activity of KpDHO toward l-dihydroorotate was observed with K m = 0.04 mM and V max = 8.87 μmol/(mg min). Supplementing the standard growth medium with Co2+, Mn2+, Mg2+, or Ni2+ increased enzyme activity. The catalytic activity of KpDHO was inhibited with Co2+, Zn2+, Mn2+, Cd2+, Ni2+, and phosphate ions. Substituting the putative metal binding residues His17, His19, Lys103, His140, His178, and Asp251 with Ala completely abolished KpDHO activity. However, the activity of the mutant D251E was fourfold higher than that of the wild-type protein. On the basis of these biochemical and mutational analyses, KpDHO (KPN01074) was identified as type II DHO.  相似文献   

8.
A bacterial arginase was purified to homogeneity from a strain of Bacillus brevis. The native enzyme, with an estimated MW of 143,000, migrated on SDS-PAGE as a single polypeptide of estimated MW of 33,000. The enzyme, highly specific to l-arginine, showed the maximum activity at pH 11.0 in the presence of Mn2+ ions and the pI was 4.8 by isoelectric focusing. The enzyme activity was increased significantly by the addition of Mn2+, Ni2+, or Co2+ ions, and inhibited potently by chemicals such as HgCl2, N-bromosuccinimide, or glutathione. The Kms for l-arginine and l-canavanine were 0.69 and 22.2 mm, respectively. The enzyme was inhibited competitively by γ-guanidinobutyric acid, and non-competitively by l-lysine, l-ornithine, creatine, blasticidin S, and edeine B1 Analysis of the N-terminal amino acid sequence of the purified bacterial enzyme found 33–36% homologies with the Agrobacterium, yeast, rat, and human enzymes.  相似文献   

9.
Abstract: Synaptosomes can be loaded with mag-fura-2 without significant perturbation of their ATP content by incubation for 10 min at 37°C with 10 µM mag-fura-2 acetoxymethyl ester in Hanks'-HEPES buffer (pH 7.45). The intrasynaptosomal free Mg2+ concentration ([Mg2+]i) was found to be dependent on external Mg2+ concentration, increasing from 0.8 to 1.25 mM when the concentration of Mg2+ in the incubation medium increased from 1 to 8 mM. Dissipation of the Na+ gradient across the plasma membrane of synaptosomes by treatment with the Na+ ionophore monensin (0.2 mM) or with veratridine (0.2 mM) and ouabain (0.6 mM) produced a moderate increase of [Mg2+]i, from 1.0 to 1.2–1.3 mM in an incubation medium containing 5 mM Mg2+. Plasma membrane depolarization by incubation of synaptosomes in a medium containing 68 mM KCl and 68 mM NaCl had no effect on [Mg2+]i. Reversal of the Na+ gradient by incubation of synaptosomes in a medium in which external Na+ was replaced by choline increased [Mg2+]i up to 1.6 and 2.2 mM for extrasynaptosomal Mg2+ concentrations of 1 and 8 mM, respectively. We conclude that a Na+/Mg2+ exchange operates in the plasma membrane of synaptosomes. In the presence of Mg2+ in the incubation medium, extrasynaptosomal ATP, but not ADP or adenosine, increased [Mg2+]i from 1.1 ± 0.1 up to 1.6 ± 0.1 mM. The nonhydrolyzable ATP analogue adenosine 5′-(βγ-imido)triphosphate antagonized the effect of ATP, but had no effect by itself on [Mg2+]i. It is concluded that Mg2+ transport across the plasma membrane of synaptosomes is modulated by the activity of an ecto-ATPase or an ecto-protein kinase.  相似文献   

10.
A thermostable d-xylase isomerase from a newly isolated thermophilic Streptomyces sp. (PLC) strain is described. The enzyme was purified to homogeneity. It is a homotetramer with a native molecular mass of 183 kDa and a subunit molecular mass of 46 kDa. The enzyme has a K m of 35 mM for d-xylose and also accepts d-glucose as substrate, however, with a tenfold higher K m (0.4 M) and half the maximum velocity. Both the activity and stability of this d-xylose isomerase depend strongly on divalent metal ions. Two metal ions bind per subunit to non-identical sites. Mg2+, Mn2+ and Co2+ are of comparable efficiency for the d-xylose isomerase reaction. Con2+ is the most efficient cofactor for d-glucose isomerization. The enzyme remains fully active up to 95°C. The activity decreases at 53°C in the presence of Co2+ and Mg2+ with a half-life of 7 and 9 days respectively. In the presence of Mn2+ the enzyme activity remains constant for at least 10 days and at 70°C 50% of the activity is lost after 5 days.  相似文献   

11.
The dxr gene encoding the 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) from the cyanobacterium Synechocystis sp. PCC6803 was expressed in Escherichia coli to produce both the native and N-terminal histidine-tagged forms of DXR. The enzymes were purified from the cell extracts using either anion exchange chromatography or metal affinity chromatography and gel filtration. The purified recombinant native and histidine-tagged enzymes each displayed a single band on sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) gels, corresponding to the calculated subunit molecular weights of 42,500 and 46,700, respectively. By native PAGE, both enzymes were dimers under reducing conditions. The kinetic properties for the enzymes were characterized and only minor variations were observed, demonstrating that the N-terminal histidine tag does not greatly affect the activity of the enzyme. Both enzymes had similar properties to previously characterized reductoisomerases from other sources. The Km's for the metal ions Mn2+, Mg2+, and Co2+ were determined for native DXR for the first time, with the Km for Mg2+ being approximately 200-fold higher than the Km's for Mn2+ and Co2+.  相似文献   

12.
An intracellular, inducible β-galactosidase [EC 3.2.1.23] was partially purified from Verticillium albo-atrum. The activity was associated with a particle of about one million molecular weight and required polyhydroxyl compounds for stabilization and activation. It was inhibited by various sulfhydryl inhibitors and EDTA. The latter inhibition could be overcome by adding Mn2+ to reaction mixtures. The β- galactoside (ONPG) activity toward lactose (apparent Km= 0.08 M) and o-nitrophenyl-β-D-galactoside (ONPG) (apparent Km= 2×10-23M) purified in parallel. Lactose competitively inhibited the degradation of ONPG with a Ki of 0.1 M. When activated by glycerol, the enzyme produced not only glucose and galactose from lactose, but also other unidentified products, perhaps by transglycosylation.  相似文献   

13.
The effect of divalent metal ions on the activity of a mutant histidinol phosphate phosphatase has been studied. The enzyme was isolated from strain TA387, a mutant of Salmonella typhimurium with a nonsense lesion near the midpoint of the bifunctional hisB gene. Mn2+, Mg2+, Co2+, and Zn2+ shift the optimal pH of phosphatase activity to 6.5 while Be2+ and Ca2+ have no effect on the shape of the pH profile. In the absence of divalent metal ions, the pH optimum is 7.5. Four Me2+ ions, Mn2+, Co2+, Zn2+, and Fe2+ decreased the Km of histidinol phosphate at pH 6.5 from 5.5 mm (without Me2+) to 0.14 mm. Ni2+ and Be2+ increased the Km to 22.2 and 25.0 mm, respectively, and Ca2+ and Mg2+ had an intermediate effect. Changes in maximal velocity were substantially less, only about 2-fold changes being observed. It was shown that the maximal velocity at optimal pH was the same in the absence and presence of Mn2+. Kinetic analysis indicated that there was a rapid equilibrium-ordered addition of Mn2+ to the enzyme before the addition of the substrate, histidinol phosphate. A kimn2+ of 4.3 μm was calculated for the metal ion activation at both pH 6.5 and 7.5. Addition of ethyl-enediaminetetracetate (EDTA) strongly inhibited the phosphatase; inhibition could be reversed by addition of several Me2+ ions, Mg2+ being the most efficient followed by Mn2+. Prolonged incubation with EDTA led to irreversible inactivation.  相似文献   

14.
Aminopeptidase B, which is one of the four cysteinyl-glycinases of Escherichia coli K-12, was purified to electrophoretic homogeneity and its enzymatic characteristics were observed. Aminopeptidase B was activated by various divalent cations such as Ni2+, Mn2+, Co2+, and Cd2+, and lost its activity completely on dialysis against EDTA. This indicates that aminopeptidase B is a metallopeptidase. It was stabilized against heat in the presence of Mn2+ or Co2+. The activity of aminopeptidase B, which was saturated with one of above divalent cations, was enhanced on the addition of a very small amount of a second divalent cation. α-Glutamyl p-nitroanilide, leucine p-nitroanilide, and methionine p-nitroanilide were good substrates for aminopeptidase B, while native peptides, cysteinylglycine and leucylglycine, were far better substrates. The kcat/Km for cysteinylglycine was much bigger than those for leucylglycine or leucine p-nitroanilide.  相似文献   

15.
Vacuoles were isolated from leaves of Kalanchoë daigremontiana Hamet et Perrier de la Bathie, and the ionic sensitivity of the vacuolar ATPase was studied in vacuole homogenates desalted on Sephadex G-25. The ATPase activity was dependent on the presence of divalent cations (Mg2+≥ Mn2+≥ Ca2+, Co2+; Zn2+ had no effect). Mg2+-dependent ATPase activity was stimulated by anions (Cl? > malate2+, HCO?3), with maximal stimulation at concentrations above 50 mM. Mg2+-Dependent activity was inhibited by NO?3 above 2 mM, but no saturation was observed up to 100 mM. No stimulation by K+ or Na+ was detected; stimulation by NH+4 was abolished by 0.01% (w/v) Triton X-100, suggesting that the NH+4 effect was due to the permeability of vacuolar membrane vesicles to NH3. Trans-tonoplast electrical potentials (Δψ) and intra-vacuolar pH were measured with glass microelectrodes and antimony covered glass micro-pH-electrodes, respectively. Free vacuofes isolated from Kalanchoë tubiflora (Harv.) Hamet were slightly positive with respect to the suspension medium. This Δψ was insensitive to the protonophore FCCP and depolarized by about 4 mV on addition of 50 mM KCl, still remaining about +5 mV. Upon addition of 7 mM Mg-ATP, vacuoles showed an FCCP-sensitive increase of Δψ from +9.2 ± 2.8 (13) to +17.8 ± 3.7 (12) mV [given as x?± sd (n)] and an internal acidification from pH 5.4 ± 0.2 (11) to pH 4.3 ± 0.4 (12). Mg-ADP and ATP without Mg2+ had no effect on Δψ. It is concluded that the H4 pumping at the tonoplast is due to the functioning of the anion-sensitive vacuolar ATPase and that this is an essential part of the mechanism of nocturnal acid accumulation in CAM.  相似文献   

16.
—Some basic kinetic properties of adenylate cyclase in cell free preparations of mouse neuroblastoma were investigated. Production of cAMP from ATP by the enzyme requires the presence of either Mg2+ or Mn2+ in addition to ATP. In the presence of Mg2+, the Km for ATP is 120 ± 15 μM and the interaction of ATP and adenylate cyclase appears to be non-cooperative (Hill coefficient of 1). Magnesium ion concentrations in excess of the ATP concentration cause stimulation although similar excess concentrations of Mn2+ cause inhibition. Prostaglandin E1 and 2-chloroadenosine activate the enzyme. The Km of the cyclase for 2-chloroadenosine is 6 μm . Activation by 2-chloroadenosine leads to an increase in Vmax but does not effect the Km for ATP. At a fixed ATP concentration, the extent of activation caused by prostaglandin E1 and 2-chloroadenosine is inversely related to the Mg2+ concentration. Calcium ion causes inhibition of adenylate cyclase from 0.1 to 4mM with a Ki of 5 ± 10?4m . Ca2+ interaction with the enzyme in the absence or presence of either 2-chloroadenosine or prostaglandin E1 appears cooperative (i.e. Hill coefficients of ?2). Ca2+ inhibition is non-competitive with respect to either ATP or 2-chloroadenosine but is progressively diminished by increasing Mn2+ concentrations. Divalent cation effects and activation by 2-chloroadenosine and prostaglandin E1 of the neuroblastoma adenylate cyclase are compared with ion effects and hormone activation of the enzyme obtained from non-neuronal tissue.  相似文献   

17.
Aminopeptidase B was purified from goat brain with a purification fold of ~280 and a yield of 2.7%. The enzyme revealed a single band on both native acrylamide gel and SDS-PAGE thereby confirming apparent homogeneous preparation and its monomeric nature. The enzyme exhibited a molecular mass of 80.2 kDa and 79.7 kDa on Sephadex G-200 and SDS-PAGE respectively. The pH optimum was 7.4 and the enzyme was stable between pH 6.0 and 9.0. l-Arg-βNA was the most rapidly hydrolyzed substrate followed by Lys-βNA. The Km value with Arg-βNA was found to be 0.1 mM. Metal chelating and –SH reactive agents strongly inhibited the enzyme activity. 1,10-Phenanthroline exhibited mixed type of inhibition with a Ki of 5 × 10?5 M. The enzyme was highly sensitive to urea. Metal ions like Ni2+, Cd2+, Fe2+and Hg2+ inhibited the enzyme, whereas Co2+, Zn2+, Mn2+and Sn2+ slightly activated the enzyme.  相似文献   

18.
Oxaloacetate (OAA) decarboxylase (E.C. 4.1.1.3) was isolated fromCorynebacterium glutamicum. In five steps the enzyme was purified 300-fold to apparent homogeneity. The molecular mass estimated by gel filtration was 118 ± 6 kDa. SDS-PAGE showed a single subunit of 31.7 KDa, indicating an 4 subunit structure for the native enzyme. The enzyme catalyzed the decarboxylation of OAA to pyruvate and CO2, but no other -ketoacids were used as substrate. The cation Mn2+ was required for full activity, but could be substituted by Mg2+, Co2+, Ni2+ and Ca2+. Monovalent ions like Na+, K+ or NH 4 + were not required for activity. The enzyme was inhibited by Cu2+, Zn2+, ADP, coenzyme A and succinate. Avidin did not inhibit the enzyme activity, indicating that biotin is not involved in decarboxylation of OAA. Analysis of the kinetic properties revealed a K m for OAA of 2.1 mM and a K m of 1.2 mM for Mn2+. The V max was 158 µmol of OAA converted per min per mg of protein, which corresponds to an apparent k cat of 311 s–1.Abbreviations OAA oxaloacetate - LDH lactate dehydrogenase  相似文献   

19.
The effects of Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Co2+, Ni2+ and Zn2+ on the kinetics and equilibrium of the association of vacant “tight” ribosomal subunits from Escherichia coli were studied. Increments of Mg2+, Ca2+, Sr2+ and, by and large, Ba2+, to ribosomes dissociated to 30 S and 50 S particles at 1.2 mm-Mg2+ (60 mm-M2+, pH 7.5, 25°C) produce nearly indistinguishable association curves, with midpoints at 1.8 mm total M2+ and complete association to 70 S particles at 4 to 5 mm total M2+ . The association rate constants at 1 mm-Mg2+, 2 mM-M2+ are similar (0.5 × 106 to 0.9 × 106m?1s?1), as are the dissociation rate constants at 1 mm-(Mg2+ + M2+) (0.2 to 0.4 s?1). Mn2+ and Zn2+ increase the degree of association, as well as further aggregation (Zn2+ especially), at lower concentrations than the alkaline earth ions. Co2+ and Ni2+ produce lower degrees of association, by promoting dissociation of the 70 S particle : the association rate constants at 1 mm-Mg2+, 2 mm-M2+ for the transition metal ions are all grouped at 2 × 106 to 3 × 106m?1s?1. Ni2+ also causes a slower inactivation of one or both subunits.The results are compatible with the view that the effects on the rate and equilibrium constants arise from decreases in the electrostatic free energies of the 30 S, 50 S and 70 S particles produced by large-scale, relatively indiscriminate, charge-neutralization “binding” of M2+ , and are difficult if not impossible to reconcile with a specific-sites mode of action of M2+.  相似文献   

20.
Abstract— The effects of divalent metal ions, sulfhydryl reagents, carbonyl trapping reagents, substrate analogs, and organic solvents on purified mouse brain 4-aminobutyrate-2-ketoglutarate transaminase (EC 2.6.1.19) and the subunit structure of this enzyme were studied. Of the metal ions tested, Hg2+ was found to be the most potent inhibitor inhibiting the enzyme 50 percent at a concentration of 0-7 μM. The order of decreasing inhibitory potency for the divalent metal ions was: Hg2+± Cd2+± Zn2+± Cu2+± Co2+± Ba2+± Sr2+± Ni2+± Mn2+± Ca2+± Mg2+. p-Chloromercuribenzoale was the most potent inhibitor among the sulfhydryl reagents tested inhibiting the enzyme to the extent of 50 per cent at 0-5 μM 3-Mercaptopropionic acid was found to be a competitive inhibitor for GABA and non-competitive for 2-ketoglutarate. The Ki, value was estimated to be 13 μM. Aminooxyacetic acid was the most potent inhibitor of the carbonyl trapping agents with a K, value of 0-06 μM. being competitive with GABA and non-competitive with 2-ketoglutarate. Hydroxylamine and hydrazine were the next most potent compounds in this group. Of a series of substrate analogs and metabolites tested, only acetic acid, propionic acid, butyric acid, glutamic acid, adipic acid, pimelic acid and 2-ketoadipic acid inhibited the enzyme to a significant extent. Dioxan inhibited the enzyme 50 per cent at a concentration of 5 per cent (v/v) whereas methanol and ethanol only inhibited 5-10 per cent at 10 per cent (v/v) concentration. A spectrum of the native enzyme at pH 7-2 showed maxima at 278 nm. 330 nm and 411 nm. Treatment of the enzyme with aminooxyacetic acid or 3-mercaptopropionic acid caused the maximum at 411 nm to disappear. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of the enzyme revealed two protein bands. The molecular weights of these two subunits were determined to be 53.000 and 58,000, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号