共查询到20条相似文献,搜索用时 15 毫秒
1.
S Shinozawa Y Gomita Y Araki 《Physiological chemistry and physics and medical NMR》1991,23(2):101-106
The effects of Aclarubicin (aclacinomycin A; ACM) and Doxorubicin (adriamycin; ADM) on oxidative phosphorylation in rat liver mitochondria were studied in vitro. The state 3 oxygen uptake of mitochondria was reduced by only 2% by 20 microM of ADM, while the same concentration of ACM caused a 67% reduction. When 20 microM of ADM acted on state 4a oxygen uptake of mitochondria, only a slight decrease in state 3, state 4b, dinitrophenol-stimulated respiration and the respiratory control index was observed. In contrast 20 microM of ACM caused significant inhibition of all the above factors when compared with the controls. It was concluded that ACM has strong inhibitory action on the mitochondrial electron transfer system in vitro, and that one can expect functional failure of mitochondria to occur clinically during adverse response to the administration of this drug. 相似文献
2.
3.
The sesquiterpene lactone, 'parthenin' the toxic principle of the allergenic weed Parthenium hysterophorus, inhibited 'state 3' respiration and stimulated 'state 4' respiration in rat liver and kidney mitochondria as well as ATPase activity in the presence of Mg2+ ions. These properties indicate that the toxic action of parthenin may be related to its interference with oxidative phosphorylation. 相似文献
4.
Y H Wei Y S Chen J F Lee J Y Huang C H Lee 《Proceedings of the National Science Council, Republic of China. Part B, Life sciences》1990,14(2):61-68
The effect of ethanol intake on liver mitochondrial functions was investigated by feeding rats with a liquid isocaloric diet containing various concentrations of ethanol. We found that after feeding the liquid diet for 2 to 3 months, the body weight of rats did not show a significant difference between treated and control groups. However, the mitochondrial respiration rate decreased significantly with the increase of ethanol concentration in the diet. We found that when the rats were fed on 10.8% ethanol, the average succinate-supported State 3 respiration rate decreased from 54.5 to 44.8 nmol O2/min/mg and the glutamate-malate-supported State 3 respiration rate decreased from 38.8 to 23.6 nmol O2/min/mg as compared with the control. Interestingly, we noted that ethanol intake caused a more drastic effect on State 3 respiration than on State 4 respiration, irrespective of the substrate utilized by the mitochondria. In addition, the respiratory control and ADP/O ratios were found to decrease concomitantly with the increase of ethanol level in the diet. Moreover, we found that the effect of ethanol on both respiratory control and ADP/O ratios of liver mitochondria was more pronounced in glutamate-malate-supported respiration than succinate-supported respiration. These results clearly demonstrate that ethanol intake by the rat can cause impairment of liver mitochondrial respiration and oxidative phosphorylation, and that these effects are exerted through damage to mitochondrial membranes. 相似文献
5.
Both Km and Vmax values of cytochrome c oxidase for cytochrome c were elevated in oleic acid-incorporated mitochondria, whereas the amount of oleic acid incorporated into submitochondrial particles was smaller than that into mitochondria and the fatty acid had little effect on the enzyme activity. The degree of change in the bulk membrane fluidity was, however, almost the same in mitochondria and submitochondrial particles. Solubilized cytochrome c oxidase was insensitive to the effect of oleic acid. Oleic acid may act as a modifier of the interaction between cytochrome c oxidase and membrane lipids. 相似文献
6.
The effect of thyroidectomy (Tx) and subsequent treatment with triiodothy-ronine (T3) on rat kidney mitochondrial oxidative phosphorylation was examined. Thyroidectomy resulted in lowering of state 3 respiration
rates and cytochrome contents. Thyroidectomized animals administered with T3 (20 Μg/100 g body wt) resulted in the nonsynchronous stimulation of state 3 respiration rates in kidney mitochondria with
glutamate, Β-hydroxybutyrate, succinate and ascorbate+TMPD as substrates. Cytoch-rome contents were also elevated differentially.
Increase in the state 4 respiration rates was transient and reversible. However, primary dehydrogenases were not generally
altered in the Tx and T3-treated Tx animals. The results thus indicate that the T3treatment to-Tx animals brings about differential and nonsynchronous increase in the respiratory parameters and respiratory
chain components of kidney mitochondria. 相似文献
7.
8.
Kriváková P Lábajová A Cervinková Z Drahota Z 《Physiological research / Academia Scientiarum Bohemoslovaca》2007,56(1):137-140
Using high-resolution oxygraphy, we tested the changes of various parameters characterizing the mitochondrial energy provision system that were induced by peroxidative damage. In the presence of succinate as respiratory substrate, 3 mM t-butyl hydroperoxide increased respiration in the absence of ADP, which indicated partial uncoupling of oxidative phosphorylation. Low activity of coupled respiration was still maintained as indicated by the ADP-activated and oligomycin-inhibited respiration. However, during the incubation the phosphorylative capacity decreased as indicated by the continuous decrease of the mitochondrial membrane potential. Under these experimental conditions the maximum capacity of the succinate oxidase system was inhibited by 50% in comparison with values obtained in the absence of t-butyl hydroperoxide. Our data thus indicate that the oxygraphic evaluation of mitochondrial function represents a useful tool for evaluation of changes participating in peroxidative damage of cell energy metabolism. 相似文献
9.
B N Kholodenko 《Journal of theoretical biology》1984,107(2):179-188
The objective of this investigation is to analyze the two following problems of the regulation of mitochondrial oxidative phosphorylation: what is the extramitochondrial parameter that controls ATP production according to the cytoplasmic demands and how the control is distributed between various mitochondrial enzymes. On the basis of the data of Groen et al. (1982) it is shown that as the respiration rates ranged over 30-50% of the maximum (i.e. within the physiological region) the contribution of the adenine nucleotide translocator to the control of the ATP flux is no less than 90%, referring to the total contribution of all mitochondrial enzymes as 100%. Founding on the key role of the adenine nucleotide translocator it has been concluded that besides the extramitochondrial [ATP]/[ADP] ratio the absolute ADP concentration is another extramitochondrial signal controlling significantly the rate of oxidative phosphorylation. 相似文献
10.
The rates of oxidation and phosphorylation in isolated rat-liver mitochondria have a steep dependence on the protonmotive force (delta mu H+) across the membrane. These experimentally observed relationships proved to be independent of the way in which delta mu H+ was varied. These results were obtained when the membrane potential (delta psi) was calculated from the distribution of K+ (in the presence of valinomycin). When triphenylmethylphosphonium (TPMP+) was used as a probe for delta psi, slightly different flow-force relationships were obtained. We conclude that unique relationships exist between delta mu H+ and the rates of oxidation and phosphorylation, and that under some conditions the behaviour of the probe TPMP+ is anomalous. 相似文献
11.
12.
13.
14.
Free fatty acids (FFA) are known to uncouple oxidative phosphorylation in mitochondria. However, their mechanism of action has not been elucidated as yet. In this study we have investigated in detail the patterns of uncoupling by the FFA oleate and palmitate in rat liver mitochondria and submitochondrial particles. The patterns of uncoupling by FFA were compared to uncoupling induced by the ionophores valinomycin (in the presence of K+) and gramicidin (in the presence of Na+) and the proton translocator carbonyl cyanide m-chlorophenylhydrazone (CCCP). The most striking difference in the pattern of uncoupling relates to the effect on the proton electrochemical potential gradient, delta mu H. Uncoupling by ionophores, particularly valinomycin, is associated with and most likely caused by a major reduction of delta mu H. In contrast, uncoupling by FFA is not associated with a significant reduction of delta mu H, indicating another mechanism of uncoupling. We suggest the use of the term decouplers for uncoupling agents such as FFA and general anesthetics that do not collapse the delta mu H [Rottenberg, H. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 3313-3317]. The protonophore CCCP and to some extent the ionophore gramicidin indicate a mixed mode of uncoupling since their effect on delta mu H is moderate when compared to that of valinomycin. Another distinguishing feature of uncouplers that collapse the delta mu H is their ability to stimulate ADP-stimulated respiration (state 3) further. Decouplers such as FFA and general anesthetics do not stimulate state 3 respiration.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
15.
Arachidonic acid (AA), 5,8,11,14-eicosateraenoic acid is abundant, active and necessary in the human body. In the present study, we reported the neuroprotective effects and mechanism of arachidonic acid on hippocampal slices insulted by glutamate, NaN(3) or H(2)O(2)in vitro. Different types of models of brain injury in vitro were developed by 1mM glutamate, 10mM NaN(3) or 2mM H(2)O(2). After 30 min of preincubation with arachidonic acid or linoleic acid, hippocampal slices were subjected to glutamate, NaN(3) or H(2)O(2), then the tissue activities were evaluated by using the 2,3,5-triphenyltetrazolium chloride method. Endogenous antioxidant enzymes activities (SOD, GSH-PX and catalase) in hippocampal slices were evaluated during the course of incubation. MK886 (5 microM; a noncompetitive inhibitor of proliferator-activated receptor [PPAR]alpha), BADGE (bisphenol A diglycidyl ether; 100 microM; an antagonist of PPARgamma) and cycloheximide (CHX; 30 microM; an inhibitor of protein synthesis) were tested for their effects on the neuroprotection afforded by arachidonic acid. Population spikes were recorded in randomly selected hippocapal slices. Arachidonic acid (1-10 microM) dose dependently protected hippocampal slices from glutamate and H(2)O(2) injury (P<0.01), and arachidonic acid (10 microM) can significantly improve the activities of Cu/Zn-SOD in hippocampal slices after 1h incubation. In addition, 10 microM arachidonic acid significantly increased the activity of Mn-SOD and catalase, and decreased the activities of Cu/Zn-SOD to control value after 3h incubation. These secondary changes of SOD during incubation can be reversed by indomethacine (10 microM; a nonspecific cyclooxygenase inhibitor) or AA 861 (20 microM; a 5-lipoxygenase inhibitor). Its neuroprotective effect was completely abolished by BADGE and CHX. These observations reveal that arachidonic acid can defense against oxidative stress by boosting the internal antioxidant system of hippocampal slices. Its neuroprotective effect may be mainly mediated by the activation of PPARgamma and synthesis of new protein in tissue. 相似文献
16.
17.
18.
Biochemical effects of PR toxin on rat liver mitochondrial respiration and oxidative phosphorylation 总被引:3,自引:0,他引:3
The in vitro effects of PR toxin, a toxic secondary metabolite produced by certain strains of Penicillium roqueforti, on the membrane structure and function of rat liver mitochondria were investigated. It was found that the respiratory control and oxidative phosphorylation of the isolated mitochondria decreased concomitantly when the toxin was added to the assay system. The respiratory control ratio decreased about 60% and the ADP/O ratio decreased about 40% upon addition of 3.1 X 10(-5) M PR toxin to the highly coupled mitochondria. These findings suggest that PR toxin impairs the structural integrity of mitochondrial membranes. On the other hand, the toxin inhibited mitochondrial respiratory functions. It exhibited noncompetitive inhibitions to succinate oxidase, succinate-cytochrome c reductase, and succinate dehydrogenase activities of the mitochondrial respiratory chain. The inhibitory constants of PR toxin to these three enzyme systems were estimated to be 5.1 X 10(-6), 2.4 X 10(-5), and 5.2 X 10(-5) M, respectively. Moreover, PR toxin was found to change the spectral features of succinate-reduced cytochrome b and cytochrome c1 in succinate-cytochrome c reductase and inhibited the electron transfer between the two cytochromes. These observations indicate that the electron transfer function of succinate-cytochrome c reductase was perturbed by the toxin. However, PR toxin did not show significant inhibition of either cytochrome oxidase or NADH dehydrogenase activity of the mitochondria. It is thus concluded that PR toxin exerts its effect on the mitochondrial respiration and oxidative phosphorylation through action on the membrane and the succinate-cytochrome c reductase complex of the mitochondria. 相似文献
19.
Although reactive oxygen species (ROS) are conventionally viewed as toxic by-products of cellular metabolism, a growing body of evidence suggests that they may act as signaling molecules. We have studied the effects of hydrogen peroxide (H(2)O(2))-induced oxidative stress on phospholipid signaling in cultured rat cortical astrocytes. H(2)O(2) stimulated the formation of phosphatidic acid and the accumulation of phosphatidylbutanol, a product of the phospholipase D (PLD)-catalyzed transphosphatidylation reaction. The effect of exogenous H(2)O(2) on the PLD response was mimicked by menadione-induced production of endogenous H(2)O(2). Oxidative stress also elicited inositol phosphate accumulation resulting from phosphoinositide phospholipase C (PLC) activation. The PLD response to H(2)O(2) was totally suppressed by chelation of both extracellular and cytosolic Ca(2+) with EGTA and BAPTA/AM, respectively. Furthermore, H(2)O(2)-induced PLD stimulation was completely abolished by the protein kinase C (PKC) inhibitors bisindolylmaleimide and chelerythrine and by PKC down-regulation. Activation of PLD by H(2)O(2) was also inhibited by the protein-tyrosine kinase inhibitor genistein. Finally, H(2)O(2) also stimulated both PLC and PLD in rat brain cortical slices. These results show for the first time that oxidative stress elicits phospholipid breakdown by both PLC and PLD in rat cultured astrocytes and brain slices. 相似文献
20.
V. H. Parker 《The Biochemical journal》1965,97(3):658-662
1. The ability of a series of compounds to uncouple oxidative phosphorylation of rat-liver mitochondria has been investigated. 2. The compounds were: 2-amino-1,1,3-tricyanopropene; carbonyl cyanide phenylhydrazone and its m-chloro and p-trifluoromethoxy derivatives; 4,5,6,7-tetrachloro-, 5-chloro-4-nitro-, 5-nitro-and 4,5,6,7-tetrachloro-1-methyl-benzotriazole; 4-hydroxy-3,5-di-iodo-, 3,5-di-bromo-4-hydroxy- and 3,5-dichloro-4-hydroxy-benzonitrile; and pentafluorophenol. 3. In a medium the components and physical condition of which were, as far as possible, kept constant, each compound was tested for ability to stimulate adenosine triphosphatase, to stimulate respiration in the presence of pyruvate as substrate, to inhibit phosphate uptake and to prevent swelling by trimethyltin. 4. Each compound was also examined with respect to its ability to produce rapid rigor mortis in mice. 5. The biological properties were compared with the dissociation constant and the hexane–water partition coefficient for each compound. 6. With the exception of 4,5,6,7-tetrachloro-1-methylbenzotriazole, all the compounds behaved qualitatively as 2,4-dinitrophenol. 7. Within each class of compound there is a relation between biological activity and the physical attributes measured. 8. The most efficient uncouplers were the most acidic and the most hydrophobic. 相似文献