共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of microbial immigration in the veinal colonization pattern of Aureobasidium pullulans on the adaxial surface of apple leaves was investigated in two experiments at two periods (early and late seasons) in 2004 by applying green fluorescent protein (GFP)-tagged blastospores to the foliage of orchard trees. Individual leaves were resampled by a semidestructive method immediately after inoculation (t(0)) and about 1 (t(1)), 2 (t(2)), and 3 (t(3)) weeks later. At t(0), there were no significant (P < or = 0.05) differences in densities (cells/mm(2)) on veinal (excluding midvein) sites and those on interveinal sites, but at all points thereafter, densities were significantly higher on veins. GFP-tagged A. pullulans cells remained primarily as singletons on interveinal regions (> or =90% at all points), while > or =20% of cells over veins at t(3) were in colonies of > or =4 cells. The colonies that developed from single cells placed on midveins and other veins were significantly larger than those that developed on interveinal regions of detached field and seedling leaves incubated under controlled conditions. Colonies primarily developed linearly along veins, reaching average colony sizes (72 h) of 24.4 +/- 12.7 (mean +/- standard deviation) cells. In contrast, colonies on interveinal regions tended to average only 2.9 +/- 1.3 cells, with less linearity. To examine the potential role of A. pullulans growth-inhibiting factors associated with interveinal features, single GFP-tagged A. pullulans cells in droplets previously incubated on interveinal sites were placed on midveins and compared to midvein colonies derived from cells in a water-only suspension. No differences in colony size resulted. Our results indicate that immigration limitation and growth-inhibiting factors are not the primary factors responsible for A. pullulans veinal colonization patterns in the field. Rather, indirect evidence suggests that growth-promoting substances occur locally in the veinal areas. 相似文献
2.
Colonization of apple leaves by the yeast-like fungus Aureobasidium pullulans was studied in the field on eight dates over 2 years. Population densities from adaxial leaf surfaces were approximately log10 0.5-2.6 U higher when enumerated directly along line transects as microscopic counts of A. pullulans cells specifically identified by fluorescence in situ hybridization (FISH) than indirectly as CFU obtained by plating leaf washings from comparable surfaces onto nutrient media. Site-specific mapping of the leaf landscape colonized by A. pullulans was facilitated by use of geographic information system (GIS) software. Colonization was plotted and analyzed both qualitatively (as occupancy) and quantitatively (as density). Overall, when expressed as mean occupancy per date, 22-42% of the microscope fields (each 0.196 mm2) contained > or = 1 A. pullulans cell. Occupancy on a microscope field basis was greater over the midvein (47-89%) or smaller veins (49-65%) than over interveinal regions (11-21%). Intensity of colonization, whether expressed as percentage of total A. pullulans cells associated with a particular leaf feature or as cell density per unit area, was also significantly greater (P < 0.05) over the veinal areas compared with the interveinal areas. The primary fungal morphotypes involved in colonization were blastospores, swollen cells, and chlamydospores; only infrequently were hyphae or pseudohyphae seen. Numbers of microcolonies (> or = 10 clustered cells) and percentage of total A. pullulans cells that occurred as microcolonies increased over the growing season and were significantly greater (P < 0.05) over veinal regions compared with interveinal regions. Locally high concentrations of A. pullulans were associated with naturally occurring micro-wounds in interveinal areas. We conclude that A. pullulans colonizes the phylloplane predominantly as single cells and groups thereof in a highly heterogeneous fashion and that sites exist that are relatively conducive (veins; wounds) or nonconducive (unwounded interveinal areas) for epiphytic fungal growth. 相似文献
3.
4.
5.
A xylanolytic yeast strain Aureobasidium pullulans NRRL Y 2311-1, was found to produce all enzymes required for complete degradation of galactomannan and galactoglucomannan.
The enzymes differed in function and cellular localization: endo-β-1,4-mannanase was secreted into the culture fluid, β-mannosidase
was strictly intracellular, and α-galactosidase and β-glucosidase were found both extracellularly and intracellularly. Among
these enzyme components, only extracellular β-mannanase and intracellular β-mannosidase were inducible. The production of
β-mannanase and β-mannosidase was 10- to 100-fold higher in galactomannan medium than in medium with one of the other carbon
sources. β-mannanase and β-mannosidase were coinduced in glucose-grown cells by galactomannan, galactoglucomannan, and β-1,4-manno-oligosaccharides.
The natural inducer of extracellular β-mannanase and intracellular β-mannosidase appeared to be β-1,4-mannobiose. Synthesis
of both enzymes was completely repressed by glucose, mannose, or galactose. The synthetic glycoside methyl β-d-mannopyranoside served as a nonmetabolizable inducer of both β-mannosidase and β-mannanase.
Received: 24 June 1996 / Accepted: 26 September 1996 相似文献
6.
Y W Han P R Cheeke A W Anderson C Lekprayoon 《Applied and environmental microbiology》1976,32(6):799-802
Growth characteristics and cell properties of Aureobasidium (Pullularia) pullulans were studied. The organism grew well on an acid hydrolysate of ryegrass straw over a wide range of pH and temperature. The optimum temperature and pH for the growth of the organism were 32 degrees C and 5.5, respectively. A cell yield of 1.5 g/liter of straw hydrolysate was obtained. The dried cell mass contained 42.6% crude protein, 0.4% crude fat, and 6.4% nucleic acids. The essential amino acid profile of the microbial protein was comparable to that of Candida utilis. A rat feeding study indicated that the A. pullulans cells were not toxic and that the feed intake, weight gain, and protein efficiency ratio values were superior to those obtained with C. utilis. Once the question of mathogenicity is resolved, A. pullulans could be useful for production of single-cell protein from cellulosic wastes. 相似文献
7.
Growth characteristics and cell properties of Aureobasidium (Pullularia) pullulans were studied. The organism grew well on an acid hydrolysate of ryegrass straw over a wide range of pH and temperature. The optimum temperature and pH for the growth of the organism were 32 degrees C and 5.5, respectively. A cell yield of 1.5 g/liter of straw hydrolysate was obtained. The dried cell mass contained 42.6% crude protein, 0.4% crude fat, and 6.4% nucleic acids. The essential amino acid profile of the microbial protein was comparable to that of Candida utilis. A rat feeding study indicated that the A. pullulans cells were not toxic and that the feed intake, weight gain, and protein efficiency ratio values were superior to those obtained with C. utilis. Once the question of mathogenicity is resolved, A. pullulans could be useful for production of single-cell protein from cellulosic wastes. 相似文献
8.
9.
Jin W. Lee Walter G. Yeomans Alfred L. Allen Fang Deng Richard A. Gross David L. Kaplan 《Applied microbiology》1999,65(12):5265-5271
Aureobasidium pullulans ATCC 42023 was cultured under aerobic conditions with glucose, mannose, and glucose analogs as energy sources. The exopolymer extracts produced under these conditions were composed of glucose and mannose. The molar ratio of glucose to mannose in the exopolymer extract and the molecular weight of the exopolymer varied depending on the energy source and culture time. The glucose content of exopolymer extracts formed with glucose and mannose as the carbon sources was between 91 and 87%. The molecular weight decreased from 3.5 × 106 to 2.12 × 106 to 0.85 × 106 to 0.77 × 106 with culture time. As the culture time increased, the glucose content of the exopolymer extract formed with glucosamine decreased from 55 ± 3 to 29 ± 2 mol%, and the molecular weight increased from 2.73 × 106 to 4.86 × 106. There was no evidence that glucosamine was directly incorporated into exopolymers. The molar ratios of glucose to mannose in exopolymer extracts ranged from 87 ± 3:13 ± 3 to 28 ± 2:72 ± 2 and were affected by the energy source added. On the basis of the results of an enzyme hydrolysis analysis of the exopolymer extracts and the compositional changes observed, mannose (a repeating unit) was substituted for glucose, which gave rise to a new family of exopolymer analogs. 相似文献
10.
11.
Lee JW Yeomans WG Allen AL Deng F Gross RA Kaplan DL 《Applied and environmental microbiology》1999,65(12):5265-5271
Aureobasidium pullulans ATCC 42023 was cultured under aerobic conditions with glucose, mannose, and glucose analogs as energy sources. The exopolymer extracts produced under these conditions were composed of glucose and mannose. The molar ratio of glucose to mannose in the exopolymer extract and the molecular weight of the exopolymer varied depending on the energy source and culture time. The glucose content of exopolymer extracts formed with glucose and mannose as the carbon sources was between 91 and 87%. The molecular weight decreased from 3.5 x 10(6) to 2.12 x 10(6) to 0.85 x 10(6) to 0.77 x 10(6) with culture time. As the culture time increased, the glucose content of the exopolymer extract formed with glucosamine decreased from 55 +/- 3 to 29 +/- 2 mol%, and the molecular weight increased from 2.73 x 10(6) to 4.86 x 10(6). There was no evidence that glucosamine was directly incorporated into exopolymers. The molar ratios of glucose to mannose in exopolymer extracts ranged from 87 +/- 3:13 +/- 3 to 28 +/- 2:72 +/- 2 and were affected by the energy source added. On the basis of the results of an enzyme hydrolysis analysis of the exopolymer extracts and the compositional changes observed, mannose (a repeating unit) was substituted for glucose, which gave rise to a new family of exopolymer analogs. 相似文献
12.
Aureobasidium pullulans produced extracellularly considerable amounts of polyols in the media with sucrose, glucose, fructose and mannose as sole carbon source during the late exponential and stationary phase of growth. The maximum yield of polyol was about 23% in the 20%(w/v) sucrose medium, of which mannitol was the main polyol associated with minute quantities of glycerol. Stress solutes such as NaCl and KCl did not promote polyol production. 相似文献
13.
Aureobasidium pullulans, originally introduced as an inadvertent contaminant in solutions used for evaluating the stability of prostaglandins, proved to lead to the rapid disappearance of the cyclopentenone unit of PGA2 (as monitored by circular dichroic spectroscopy). The cyclopentenone unit is converted, in various metabolites, to a 9-keto, 9 alpha or 9 beta-hydroxy group lacking the ring unsaturation. The major EtoAc-soluble 9-hydroxy metabolite (Compound-I) was shown to be 9 alpha, 15 alpha-dihydroxy-2, 3, 4, 5-tetranor-13-trans-prostenoic acid. Similar tetranor 9-hydroxy metabolites with one additional degree of unsaturation, and with a 9 beta-hydroxy group, also occur but these have not been fully characterized. Only two of the wide range of 9-keto metabolites are fully characterized by mass spectral (MS) data: 9, 15-oxo-2, 3, 4, 5-tetranorprostanoic acid and 9, 15-oxo-2, 3, 4, 5-tetranor-13-trans-prostenoic acid. The water soluble metabolites have not been characterized further. The fully characterized metabolites together with MS data from mixtures of minor metabolites indicate that A. pullulans can perform the following transformation: beta-oxidation, dehydrogenation at C-15, reduction of the enone carbon-carbon double bonds (both delta 10,11 and delta 13,14), reduction of the 9-ketone, and possibly migration of the cyclopentyl double bond (delta 10, 11 leads to delta 11, 12). A. pullulans metabolizes 15-epimeric PGA2 equally readily with the production of similar products. PGA1 affords less 9-keto metabolites with compound I constituting 33% of the product by HPLC analysis. A. pullulans displays some enantioselectivity, PGA2 and 15-epi-PGA2 are each metabolized more rapidly than their enantiomers. Other prostaglandins appear to be less readily metabolized. 相似文献
14.
在摇瓶发酵条件研究的基础上。于16L自控发酵罐上进行了罐上发酵条件优化研究。发现以10%淀粉水解物为碳源时,淀粉水解物的最适DE值为40-50,发酵培养基中的硫酸铵最适用量不同于摇瓶发酵时的量,种龄和接种量、通气量、罐压、搅拌速度和搅拌叶轮挡数等均对多糖的产生有较大的影响。另外还进行了发酵过程的动力学的研究。 相似文献
15.
《Experimental mycology》1994,18(1):1-6
Moragues, M. D., Estevez, J. J., Rementerı́a, A., and Sevilla, M. J. 1994. Effect of n-alkanols on acidification curves of Aureobasidium pullulans suspensions. Experimental Mycology 18, 1-6. n -Alkanols, from methanol to 1-hexanol, induce yeast-to-hyphae transition in the dimorphic fungus Aureobasidium pullulans. In order to elucidate whether triggering of the morphogenetic event is membrane related, we have studied the effect of the morphogenetic n-alkanols on the pH of suspensions of A. pullulans, with no external carbon source. n -Alkanols, at their hyphal inducing concentration or higher, caused a decrease in the initial acidification rate (C) of yeast-phase cell suspensions of A. pullulans. From this effect on C, an inhibition coefficient (K) was deduced, specific for each alcohol. These coefficients were directly related to the lipid/buffer partition coefficients of the alkanols. On the other hand, germ tubes of A. pullulans, obtained in the presence of n-propanol, showed a much slower acidification rate in water than yeast cells. Moreover, 1-propanol or 1-butanol did not significantly affect the initial acidification rate of germ tubes. The latter observation was interpreted as an adaptation of cells grown in the presence of alcohol. The results of all these experiments support our hypothesis that the plasma membrane is a target of the morphogenetic effects of n-alkanols. 相似文献
16.
A rapid and relatively inexpensive method for producing protoplasts of the black yeast Aureobasidium pullulans is described. The procedure involves anaerobic incubation with the lytic preparation Driselase. 相似文献
17.
Cescutti P Pupulin R Delben F Abbate M Dentini M Sparapano L Rizzo R Crescenzi V 《Carbohydrate research》2002,337(13):1203-1209
The polysaccharides produced by Aureobasidium pullulans, grown using glucosamine as the carbon source, were investigated by means of methylation analysis, affinity chromatography and NMR spectroscopy. The results indicated that, besides a small amount of pullulan, this micro-organism was capable of producing-in low yields-mixtures of at least two different complex polysaccharides containing mainly mannose and galactose. (1)H NMR spectra of two fractions obtained by lectin affinity chromatography indicated that one polymer was constituted exclusively of mannose residues while the other contained both galactofuranosyl and mannopyranosyl residues. 相似文献
18.
Fractional composition of free and bound lipids was studied in Aureobasidium (Pullularia) pullulans 8 by preparative TLC on Silufol. Bound lipids contained a fraction (27.76 +/- 0.5%) of dark brown colour, similar to melanin. The composition of fatty acids was studied by GLC. The following fatty acids were identified and determined quantitatively: C12:0, C14:0, C15:0, C16:0, C18:0, C18:1+C15:2. The following fatty acids predominated in free and bound lipids: C16:0, C18:1+C18:2. The ratio between unsaturated and saturated fatty acids in all fractions of free and bound lipids was more than unity. The following parameters were determined for lipids; ester number (173.89 and 178.53); iodine number (44.1 and 33.10), and saponification number (181.17 and 206.03) (the values are given for free and bound lipids, respectively). 相似文献
19.
Immobilization of Aureobasidium pullulans by adsorption on solid supports and entrapment in open pore polyurethane foam were attempted. By adsorption, the highest cell loading of 0.012-0.018 g dry wt/cm(2) support was obtained in pH 2.0 medium. Under this acidic condition, the net surface charges (zeta potentials) of both the cells and supports were close to zero and no pullulan was synthesized. Cationic coatings of Cytodex and polyethylenimine were not efficient in enhancing the binding strength between the cells and the supports. Surface immobilized cells and polyurethane foam entrapped cells exhibited a similar fermentation characteristics resulting in ca. 18 g/L pullulan and ca. 5 g/L leaked cells. However, cells entrapped in the polyurethane foam were more shear resistant. The immobilized cells thus could be repeatedly used for pullulan biosynthesis. 相似文献
20.
Shengjun Wu Hanqing Chen Zhengyu Jin Qunyi Tong 《World journal of microbiology & biotechnology》2010,26(4):737-741
The effect of a two-stage cultivation temperature on the production of pullulan synthesized by Aureobasidium pullulans CGMCC1234 was investigated. Pullulan production was affected by temperature; although the optimum temperature for pullulan production was 26°C, the optimal temperature for cell growth was 32°C. Maximum pullulan production was achieved by growing A. pullulans in a first stage of 32°C for 2 days, and then in a second stage of 26°C for 2 days. Pullulan production using these two-stage temperatures significantly increased: about 27.80% (w/w) compared to constant-temperature fermentation (26°C for 4 days). The morphology of the A. pullulans (CGMCC 1234) was also affected by temperature; the lower temperature (26°C) supported unicellular biomass growth. Results of this study indicate that fermentation using two temperature stages is a promising method for pullulan production. 相似文献