首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. We report on the kinetic properties of murine liver 4,5-dioxovaleric acid:L-alanine aminotransferase (DOVA transaminase). 2. The transamination of 4,5-dioxovaleric acid (DOVA) led to the production of delta-aminolevulinic acid. 3. L-Alanine was the preferred amino group donor among the common 20 amino acids. 4. The optimum pH of the reaction was 7-8. 5. A Km of 220 microM for DOVA and a Km of 970 microM for L-alanine were obtained. 6. The reaction was inhibited by each of the following: glyoxylate, beta-chloroalanine, methylglyoxal, delta-aminolevulinate, pyruvate, heme, and gabaculine. 7. None of several xenobiotic inducers of microsomal mixed function oxidases tested had a significant effect on DOVA transaminase activity in studies performed with murine primary hepatocyte cultures.  相似文献   

2.
1. L-Alanine: 4,5-dioxovaleric acid aminotransferase (DOVA transaminase) activity was measured in murine liver, kidney and spleen homogenates. 2. Among the organs examined, the specific activity of the enzyme was highest in kidney, followed by liver then spleen. 3. No differences in DOVA transaminase activity in kidney, liver and spleen homogenates were detected between mouse strains C57BL/6J and DBA/2J. 4. Based on enzyme activity, the capacity of DOVA transaminase to catalyze the formation of delta-aminolevulinic acid (ALA) in liver appeared much greater than the capacity of ALA synthase. 5. In DBA/2J animals, DOVA transaminase activity in liver mitochondrial fractions prepared by differential centrifugation was 24 nmol ALA formed/hr/mg protein compared with 0.63 nmol ALA formed/hr/mg protein for ALA synthase. 6. Cell fractionation analyses indicated that liver DOVA transaminase is located in the mitochondrial matrix. 7. The liver enzyme was purified from mitoplasts by chromatography on DEAE-Sephacel followed by affinity chromatography on L-alanine-AH-Sepharose. 8. The specific activity of the purified DOVA transaminase was 1600 nmol ALA formed/hr/mg protein. 9. The yield of the purification was ca 90 micrograms of protein per gram liver wet weight. 10. The purified enzyme had a subunit mol. wt of 146,000 +/- 5000 as determined by electrophoresis under denaturing conditions.  相似文献   

3.
L-alanine:4,5-dioxovalerate transaminase (EC 2.6.1.44) has been purified to homogeneity from rat liver mitochondria. Molecular weight of the native enzyme is estimated to be 230,000 +/- 3000 by gel filtration. Under denaturing condition, the dissociated enzyme has a subunit of approximately 41,000 +/- 2000, indicating the enzyme apparently is composed of six identical subunits. The enzyme is heat stable and has optimal activity at pH 6.9. Km values for L-alanine and 4,5-dioxovalerate are 3.3 X 10(-3) M and 2.8 X 10(-4) M respectively. Excess dioxovalerate inhibits the enzyme activity. Pyridoxal phosphate and dithiothreitol also inhibit the enzyme activity.  相似文献   

4.
Usually, 4,5-dioxovaleric acid (DOVA) is determined in biological materials by measuring the absorption at 269 nm of its benzoquinoxaline derivative which is formed by condensation with 2,3-diaminonaphthalene (DAN). Not only must this benzoquinoxaline be separated from unreacted DAN and flavins which have interfering uv absorption but, when working with higher-plant tissues, additional interfering compounds with uv absorption, ionic and solubility properties similar to polyphenols must also be removed. The separation of the DOVA-derived benzoquinoxaline from all these interfering compounds by a series of solvent extractions utilizing the difference in ionic behaviour of the benzoquinoxaline and the interfering contaminants is described.It was found that a small but significant amount of a benzoquinoxaline is formed when 5-aminolaevulinic acid (ALA) was incubated with DAN at pH 8 at 60°C and was due to the prior non-enzymic deamination of a small portion of ALA to DOVA: this benzoquinoxaline was spectrophotometrically, spectrofluorimetrically, and chromatographically indistinguishable from that formed by the condensation of DOVA and DAN. Since formation of this benzoquinoxaline interferes with the assay of l-alanine:4,5-dioxovaleric acid aminotransferase (EC 2.6.1.43), a procedure to measure DOVA formed by this enzyme from ALA and pyruvate is described in which the DOVA is first separated from the ALA by ion-exchange chromatography prior to condensation with DAN: this method permits the separate determination of both DOVA and ALA concentrations in the aminotransferase reaction mixture.  相似文献   

5.
The enzyme L-alanine:4,5-dioxovalerate aminotransferase (EC 2.6.1.43), which catalyzes the synthesis of 5-aminolevulinic acid, was purified 161-fold from Chlorella regularis. The enzyme also showed L-alanine:glyoxylate aminotransferase activity (EC 2.6.1.44). The activity of glyoxylate aminotransferase was 56-fold greater than that of 4,5-dioxovalerate aminotransferase. The ratio of the two activities remained nearly constant during purification, and when the enzyme was subjected to a variety of treatments. 4,5-Dioxovalerate aminotransferase activity was competitively inhibited by glyoxylate, with a Ki value of 0.5 mM. Double-reciprocal plots of velocity versus 4,5-dioxovalerate with varying L-alanine concentrations indicate a ping-pong reaction mechanism. The apparent Km values for 4,5-dioxovalerate and L-alanine were 0.12 and 3.5 mM, respectively. The enzyme is an acidic protein having an isoelectric point of 4.8. The molecular weight of the enzyme was estimated to be 126,000, with two identical subunits. These results suggest that, in Chlorella, as in bovine liver mitochondria and Euglena, both 4,5-dioxovalerate and glyoxylate aminotransferase activities are associated with the same protein. From the activity ratio of transamination and catalytic properties, it is concluded that this enzyme does not function primarily as a part of the 5-carbon pathway to 5-aminolevulinic acid synthesis.  相似文献   

6.
The kinetic properties of the enzyme L-glutamate:4,5-dioxovaleric acid aminotransferase (Glu:DOVA transaminase) from Euglena gracilis have been studied. 5-Aminolevulinic acid formation was linear with time for at least 45 min at 37 degrees C and L-glutamate was the most effective amino-group donor. Lineweaver-Burk double-reciprocal plots suggested a ping-pong reaction mechanism, with Km values for L-glutamate and DOVA of 1.92 mM and 0.48 mM respectively. Competitive parabolic substrate inhibition by DOVA at concentrations greater than 3.5-4.5 mM was observed. Glyoxylate (4-10 mM) was found to be a competitive inhibitor with respect to DOVA, whereas at low concentrations (0-4 mM) noncompetitive plots were obtained. An analysis of the possible enzyme forms involved, was carried out. In more crude preparations most of the enzyme is found to be in the form of an enzyme-glutamate complex.  相似文献   

7.
L-Alanine:4,5-dioxovalerate aminotransferase, which catalyzes transamination between L-alanine and 4,5-dioxovalerate to yield delta-aminolevulinate and pyruvate, has been purified from Pseudomonas riboflavina IFO 3140. The enzyme had a molecular weight of 190,000 and consisted of four identical subunits. It was crystallized as pale yellow needles. The enzyme used L-alanine (relative activity 100), beta-alanine (39), and L-ornithine (14) as amino donors. gamma-aminobutyrate (55) and epsilon-aminocaproate (34) were also effective as amino donors. The reaction proceeded according to a ping-pong mechanism and the Km values for L-alanine and 4,5-dioxovalerate were 1.7 and 0.75 mM, respectively. The activity of the enzyme is strongly inhibited by pyruvate, hemin, and methylglyoxal. Methylglyoxal interacted with the enzyme and brought about a complete inactivation.  相似文献   

8.
Biosynthesis of 5-aminolevulinic acid in mammalian cells is catalyzed by aminolevulinic acid synthase in a condensation reaction utilizing glycine and succinyl X coenzyme A. An alternate pathway in mammalian cells may involve the biosynthesis of aminolevulinic acid via a transamination reaction in which L-alanine is the amino donor and 4,5-dioxovaleric acid is the acceptor. This transamination reaction, or one very similar, is employed by plants for the biosynthesis of aminolevulinic acid which is ultimately converted to chlorophyll. The effect of glyoxalase I on the diversion of dioxovaleric acid to other products was tested using both purified glyoxalase I and crude tissue homogenates. Glyoxalase I is a metalloenzyme and glutathione is a co-substrate. Purified glyoxalase I reduced the amount of aminolevulinic acid formed in the presence of dioxovaleric acid, L-alanine, glutathione, and purified L-alanine: 4,5-dioxovaleric acid aminotransferase (dioxovalerate transaminase). The conversion of dioxovaleric acid to aminolevulinic acid was inhibited by the addition of glutathione when a dialyzed bovine liver homogenate served as the source of both glyoxalase I and dioxovalerate transaminase. Removal of metals from bovine liver homogenates produced an 85% decrease in glyoxalase I activity. These 'metal-free' homogenates still affected the conversion of dioxovaleric acid to aminolevulinic acid after preincubation with MgSO4. The effect of glyoxalase I on the metabolism of dioxovaleric acid was also studied using a fluorometric enzyme assay for the quantification of dioxovaleric acid via a coupled enzyme reaction converting it to uroporphyrin. Homogenates of both liver and barley diminished the amount of dioxovaleric acid detected by the coupled assay, but this effect could be prevented by dialysis of the homogenates. Addition of glutathione to dialyzed homogenates markedly reduced the amount of uroporphyrin generated from dioxovaleric acid. Metal-free homogenates supplemented with glutathione reduced the conversion of dioxovaleric acid to uroporphyrin in the coupled assay, but preincubation with MgSO4 greatly augmented this effect. These studies point out the difficulty in evaluating dioxovaleric acid as a heme precursor using whole cell homogenates.  相似文献   

9.
In this work we describe a sensitive method for the detection of 4,5-dioxovaleric acid (DOVA). 4,5-Dioxovaleric acid is derivatized with 2,3-diaminonaphthalene to form 3-(benzoquinoxalinyl-2)propionic acid (BZQ), a product with favorable UV absorbance and fluorescence properties. The high-performance liquid chromatographic method with UV absorbance and fluorescence detection is simple and its detection limit is approximately 100 fmol. This method was used to detect 4,5-dioxovaleric acid formation during metal-catalyzed 5-aminolevulinic acid (ALA) oxidation. Iron and ferritin were active in the formation of 4,5-dioxovaleric acid in the presence of 5-aminolevulinic acid. In addition, HPLC–MS–MS assay was used to characterize BZQ. The determination of 4,5-dioxovaleric acid is of great interest for the study of the mechanism of the metal-catalyzed damage of biomolecules by 5-aminolevulinic acid. This reaction may play a role in carcinogenesis after lead intoxication. The high frequency of liver cancer in acute intermittent porphyria patients may also be due to this reaction.  相似文献   

10.
11.
4,5-Dioxovaleric acid (DOVA) was synthesized from 5-bromolevulinic acid via formation of the pyridinium bromide of 5-bromolevulinic acid, followed by nitrone formation with p-nitrosodimethylaniline, and hydrolysis of the nitrone to yield DOVA. Partial purification of DOVA was obtained by passage of the reaction mixture through a cation exchange column. DOVA was identified by paper electrophoresis and by a specific fluorometric assay. DOVA was nonenzymatically transaminated to 5-aminolevulinic acid (ALA) with glycine serving as the amino donor. Other compounds tested were less effective amino donors. Glyoxylic acid was identified as a reaction product by paper electrophoresis and a specific calorimetric test. ALA was identified by paper electrophoresis, paper chromatography of a pyrrole derivative, reaction with Ehrlich reagent, and by its enzymatic conversion by a barley extract to porphobilinogen and uroporphyrin. The nonenzymatic transamination was inhibited by Tris and was stimulated by high pH. The existence of this nonenzymatic activity is discussed in relation to previous reports of dova transaminase activity in cell extracts.  相似文献   

12.
Tyrosine aminotransferase has been purified from chicken liver to homogeneity by a 5-step procedure. The resultant enzyme preparation has a specific activity (256 units activity/mg protein) comparable to results published for the enzyme purified from rat liver and represented an overall recovery of 35-40%. In terms of structure (native and subunit molecular weights, immunological reactivity, and kinetic parameters) (apparent Michaelis constants for L-tyrosine and 2-oxoglutarate, oxoacid specificity, pH optimum) the purified enzyme from chicken liver exhibits remarkable similarities to tyrosine amino-transferase from rat liver.  相似文献   

13.
During chlorophyll biosynthesis, 4,5-dioxovaleric acid is supposed to be an intermediate between 2-oxoglutarate and 5-aminolevulinic acid. Although the occurrence of 4,5-dioxovaleric acid in cells and culture filtrates of unicellular green algae treated with levulinic acid has been previously reported, improvement of the analytical method now shows that 4,5-dioxovaleric acid does not occur in these organisms but arises due to interference of 5-aminolevulinic acid in 4,5-dioxovaleric acid analysis. The significance of 4,5-dioxovaleric acid as a free metabolite in 5-aminolevulinic acid biosynthesis must therefore be reconsidered.  相似文献   

14.
In the present study, we examined the possibility that the excess heme generation within mitochondria may provide a local concentration, sufficient to inhibit the activity of L-alanine:4,5-dioxovalerate transaminase, the enzyme proposed for an alternate route of delta-aminolevulinic acid biosynthesis in mammalian system. This was accomplished by assaying together L-alanine:4,5-dioxovalerate transaminase and heme synthetase activities in intact mitochondria isolated from rat liver. Endogenous heme in intact mitochondria has been generated in excess, by increasing the concentration of the substrate of heme synthetase. Our studies showed that the activity of L-alanine:4,5-dioxovalerate transaminase decreased as the rate of heme formation increased. In intact mitochondria, almost 50% inhibition of alanine:4,5-dioxovalerate transaminase was obtained with 4.0 mumole of heme generation. We conclude that end product inhibition of L-alanine:4,5-dioxovalerate transaminase by hemin, which was proposed in earlier report by us (FEBS Letter (1985), 189, 129), is an important physiological mechanism for the regulation of hepatic heme biosynthesis.  相似文献   

15.
The occurrence of four l-alanine:2-oxoglutarate aminotransferase (AOAT) isoenzymes (AOAT-like proteins): alanine aminotransferase 1 and 2 (AlaAT1 and AlaAT2, EC 2.6.1.2) and l-glutamate:glyoxylate aminotransferase 1 and 2 (GGAT1 and GGAT2, EC 2.6.1.4) was demonstrated in Arabidopsis thaliana leaves. These enzymes differed in their substrate specificity, susceptibility to pyridoxal phosphate inhibitors and behaviour during molecular sieving on Zorbax SE-250 column. A difference was observed in the electrostatic charge values at pH 9.1 between GGAT1 and GGAT2 as well as between AlaAT1 and AlaAT2, despite high levels of amino acid sequence identity (93 % and 85 %, respectively). The unprecedented evidence for the monomeric structure of both AlaAT1 and AlaAT2 is presented. The molecular mass of each enzyme estimated by molecular sieving on Sephadex G-150 and Zorbax SE-250 columns and SDS/PAGE was approximately 60 kDa. The kinetic parameters: Km (Ala)=1.53 mM, Km (2-oxoglutarate)=0.18 mM, kcat=124.6 s−1, kcat/Km=8.1 × 104 M−1·s−1 of AlaAT1 were comparable to those determined for other AlaATs isolated from different sources. The two studied GGATs also consisted of a single subunit with molecular mass of 47.3–70 kDa. The estimated Km values for l-glutamate (1.2 mM) and glyoxylate (0.42 mM) in the transamination catalyzed by putative GGAT1 contributed to indentification of the enzyme. Based on these results we concluded that each of four AOAT genes in Arabidopsis thaliana leaves expresses different AOAT isoenzyme, functioning in a native state as a monomer.  相似文献   

16.
Pharmacologic concentrations of either LiCl, LiN03 and LiF or the lithium salts of pyruvic or glutamic acids inhibit the formation of alanine arising from the transamination of glutamate in the presence of pyruvate. Lithium pyruvate is the most effective inhibitor, while the addition of K+ to the incubation reaction can effectively reduce this inhibition. Some possible modes of action of the lithium ion is presented.  相似文献   

17.
Chicken liver mitochondrial aspartate aminotransferase was found to be located in the intermembrane space and bound to the inner mitochondrial membrane. Purification of two mitochondrial fractions containing aspartate aminotransferase activity was performed. Both fractions showed similar chromatographic behaviour and identical isoelectric point and molecular weight values. There were no significant differences in the general kinetic mechanism, Km values, substrates inhibition and effect of various anions on the activity of mitochondrial aspartate aminotransferase purified from both fractions.  相似文献   

18.
Homogeneous aspartate aminotransferase has been prepared from chicken heart cytosol. The purification procedure includes fractionation with NH4-sulfate and with ethanol, chromatography on ion-exchange cellulose DE-32 and on hydroxylapatite. Crystallization of the enyme is described. The enzyme was shown to contain 4 SH-groups per protein subunit of molecular weight 50 000. Two of the SH-groups are fully buried, they can be blocked with thiol reagents only upon denaturation of the protein. One exposed SH-group is readily modified at alkaline pH by iodoacetamide, N-ethymaleimide or tetranitromethane, without any inhibition of enzymic activity; this group readily reacts also with 5,5,-ditthiobis (2-nitrobenzoate) and p-mercuribenzoate. One SH-group is semi-buried: it is inaccessible to the above-mentioned reagents at pH 8, but can be blocked by p-mercuribenzoate at pH about 5. Blocking with p-mercuribenzoate of two SH-groups-the exposed and the semi-buried one-lowers enzymic activity to 70% of the initial value. Syncatalytic modication of a SH-group observed in aspartate aminotransferase from pig heart cytosol does not occur in chicken enzyme.  相似文献   

19.
We searched a UniProt database of lactic acid bacteria in an effort to identify d-amino acid metabolizing enzymes other than alanine racemase. We found a d-amino acid aminotransferase (d-AAT) homologous gene (UniProt ID: Q1WRM6) in the genome of Lactobacillus salivarius. The gene was then expressed in Escherichia coli, and its product exhibited transaminase activity between d-alanine and α-ketoglutarate. This is the first characterization of a d-AAT from a lactic acid bacterium. L. salivarius d-AAT is a homodimer that uses pyridoxal-5′-phosphate (PLP) as a cofactor; it contains 0.91 molecules of PLP per subunit. Maximum activity was seen at a temperature of 60 °C and a pH of 6.0. However, the enzyme lost no activity when incubated for 30 min at 30 °C and pH 5.5 to 9.5, and retained half its activity when incubated at pH 4.5 or 11.0 under the same conditions. Double reciprocal plots of the initial velocity and d-alanine concentrations in the presence of several fixed concentrations of α-ketoglutarate gave a series of parallel lines, which is consistent with a Ping-Pong mechanism. The Km values for d-alanine and α-ketoglutarate were 1.05 and 3.78 mM, respectively. With this enzyme, d-allo-isoleucine exhibited greater relative activity than d-alanine as the amino donor, while α-ketobutylate, glyoxylate and indole-3-pyruvate were all more preferable amino acceptors than α-ketoglutarate. The substrate specificity of L. salivarius d-AAT thus differs greatly from those of the other d-AATs so far reported.  相似文献   

20.
The complete amino acid sequence of rat kidney ornithine aminotransferase [EC 2.6.1.13] is presented. The 404-residue sequence was determined by analysis of peptides generated by digestion of the S-carboxyamidomethylated protein with CNBr, Achromobacter protease I, arginylendopeptidase, or Staphylococcus aureus V8 protease. Mueckler and Pitot have reported the amino acid sequence of the rat liver enzyme (440 residues) as predicted from the nucleotide sequence of the cDNA [Mueckler, M.M. & Pitot, H.C. (1985) J. Biol. Chem. 260, 12993-12997]. The amino acid sequence of the rat kidney enzyme presented herein coincides with residue 36 (Gly) through 440 (Phe) of the predicted precursor protein, indicating that the liver and kidney enzymes are identical, and that the enzyme is processed at the amino-terminal region after translation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号