首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lysenin, a novel protein that we isolated from the coelomic fluid of the earthworm Eisenia foetida, binds specifically to sphingomyelin (SM) among various phospholipids found in cell membranes, and causes cytolysis. The plasma membrane of mammalian spermatozoa is known to contain SM at relatively high levels and we therefore examined the effects of lysenin on the spermatozoa of various animals. Lysenin had lethal effects on spermatozoa of 5 of 33 species of invertebrates tested and on spermatozoa of 30 of 39 species of vertebrates. We postulated that plasma membranes of the spermatozoa of most invertebrates might not contain SM whereas those of most vertebrate species might contain SM. These possibilities were supported by our failure to detect SM chemically in the testes of three species of invertebrates, in none of which spermatozoa responded to lysenin. In contrast, we detected SM in the testes of all 25 vertebrate species examined, irrespective of a negative or positive response of spermatozoa to lysenin. None of the six species of Protista examined was affected by lysenin. Our survey suggests that, in general, the spermatozoa of animals can be grouped into two categories, invertebrate and vertebrate, depending on the absence or presence of SM in their plasma membrane. The incorporation of SM into spermatozoa seems first to have occurred in protochordates during the course of evolution. Discussions about the exceptional responses to lysenin observed in the spermatozoa of five species of invertebrates and of nine species of vertebrates are made from phylogenetic and reproductive viewpoints. J. Exp. Zool. 286:538-549, 2000.  相似文献   

2.
Several bacterial strains were examined for their ability to degrade the nitroaromatic explosive 2,4,6-trinitrotoluene (TNT). The strains examined included various clostridial strains isolated from a 4-year-old munition enrichment, related clostridial strains obtained from a culture collection, two enteric bacteria, and three lactobacilli. All Clostridium species tested were able to reduce TNT rapidly in a complex medium. In cell suspension experiments, these strains were also able to reduce 2,4-diamino-6-nitrotoluene (DANT) to 2,4,6-triaminotoluene (TAT) and to produce a compound that is not yet identified; thus, they could not be distinguished from one another with regard to the pathway of transformation. The enteric strains and the lactobacilli were able to perform the initial reduction of TNT, but none was capable of reducing DANT in cell suspensions. Received 31 October 1995/ Accepted in revised form 29 March 1996  相似文献   

3.
Past production and handling of munitions has resulted in soil contamination at various military facilities. Depending on the concentrations present, these soils pose both a reactivity and toxicity hazard and the potential for groundwater contamination. Many munitions-related chemicals have been examined for mutagenicity in the Ames test, but because the metabolites may be present in low environmental concentrations, a more sensitive method is needed to elucidate the associated mutagenicity. RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), TNT (2,4,6-trinitrotoluene), tetryl (N-methyl-N-2,4,6-tetranitroaniline), TNB (1,3,5-trinitrobenzene) and metabolites were examined for mutagenicity in a microsuspension modification of the Salmonella histidine reversion assay with and without metabolic activation. TNB and tetryl were positive in TA98 (32.5, 5.2revertants/nmole) and TA100 (7.4, 9.5revertants/nmole) without metabolic activation and were more potent than TNT (TA98, 0.3revertants/nmole; TA100, 2.4revertants/nmole). With the exception of the tetranitroazoxytoluene derivatives, TNT metabolites were less mutagenic than TNT. RDX and two metabolites were negative in both strains, however, hexahydro-1,3,5-trinitroso-1,3,5-triazine was positive in TA100 with and without S9. Microsuspension bioassay results tend to correlate well with published Ames test data, however, there are discrepancies among the published data sets and the microsuspension assay results.  相似文献   

4.
The types of troponin-T (TNT) expressed in neonatal chicken breast muscle were examined by two-dimensional gel electrophoresis (2-D PAGE), immunoblotting, and peptide mapping. When troponin from neonatal chicken breast muscle or whole lysate of the muscle was displayed on 2-D PAGE, multiple spots were observed in the TNT region on the gel. They differed slightly from those in adult breast- and leg-type TNT, but were positively stained with the antibody specific for TN-T. These results indicate that multiple spots observed in the TNT region are all TNT isoforms. The TNT isoforms in the neonatal breast muscle were classified into two groups, based on size. Each group contained about five variants. The first group with a larger size was in the molecular weight range of adult breast TNT, while the smaller-sized second group was in the molecular weight range of adult leg TNT. Overall peptide map patterns of variants in the first group and also that of adult breast TNT resembled each other, whereas those of variants in the second group were similar to that of adult leg TNT. The TNT of adult breast-type appeared at about 2- to 3-weeks posthatch, and thereafter became a major TNT isoform.  相似文献   

5.
Screening of a wide range of microorganisms (32 strains) isolated from various anthropogenic and natural environments and of a number of collection strains showed that the early stages of 2,4,6-trinitrotoluene (TNT) transformation by the majority of the strains studied resulted in the formation of hydroxylaminodinitrotoluenes (HADNTs). The levels of HADNTs were in a number of cases comparable to the initial TNT level. The alternative reductive attack at TNT through the reduction of the aromatic ring was not characteristic of most of the prokaryotes studied. The susceptibility to the toxic effect of TNT was different for gram-positive and gram-negative bacteria.  相似文献   

6.
After World War II, large amounts of obsolete ammunition were dumped in various lakes in Sweden. Trinitrotoluene, TNT, was one of the main components of the dumped explosives. In this study, four different lake microcosms originating from lakes where relatively large amounts of ammunition were dumped were used to mimic the effect of TNT release on the natural microbial community. Increased microbial growth was found in lake microcosms amended with TNT. However, negligible mineralization of TNT was detected, suggesting that TNT was not utilized as a carbon source, but as a nitrogen source. Random amplified polymorphic DNA (RAPD) analysis indicated that the TNT induced no significant differences in microbial community composition and therefore, no major changes in natural selection, despite the increased microbial growth in the presence of the compound. More than 95% of the added TNT bound irreversibly to the sediments, possibly as a result of microbial transformation to reactive metabolites that subsequently bound covalently to components of the sediment. The results, taken together, suggest that no permanent change in the microbial ecology occurred as a result of the TNT amendment. This was probably due partly to the transient exposure of the microbial communities to the TNT before it became irreversibly bound to the sediment, and partly to the fact that TNT was not a primary growth substrate that strongly affects natural selection.  相似文献   

7.
Initial Stages of 2,4,6-Trinitrotoluene Transformation by Microorganisms   总被引:4,自引:1,他引:3  
Zaripov  S. A.  Naumov  A. V.  Suvorova  E. S.  Garusov  A. V.  Naumova  R. P. 《Microbiology》2004,73(4):398-403
Screening of a wide range of microorganisms (32 strains) isolated from various anthropogenic and natural environments and of a number of collection strains showed that the early stages of 2,4,6-trinitrotoluene (TNT) transformation by the majority of the strains studied resulted in the formation of hydroxylaminodinitrotoluenes (HADNTs). The levels of HADNTs were in a number of cases comparable to the initial TNT level. The alternative reductive attack on TNT through the reduction of the aromatic ring was not characteristic of most of the prokaryotes studied. The susceptibility to the toxic effect of TNT was different for gram-positive and gram-negative bacteria.  相似文献   

8.
Several epidemiological studies and animal experiments showed that 2,4,6-trinitrotoluene (TNT), a commonly used explosive, induced reproductive toxicity. To clarify whether the toxicity results from the interference of endocrine systems or direct damage to reproductive organs, we examined the effects of TNT on the male reproductive system in Fischer 344 rats. TNT administration induced germ cell degeneration, the disappearance of spermatozoa in seminiferous tubules, and a dramatic decrease in the sperm number in both the testis and epididymis. TNT increased the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in sperm whereas plasma testosterone levels did not decrease. These results suggest that TNT-induced toxicity is derived from direct damage to spermatozoa rather than testosterone-dependent mechanisms. To determine the mechanism of 8-oxodG formation in vivo , we examined DNA damage induced by TNT and its metabolic products in vitro . 4-Hydroxylamino-2,6-dinitrotoluene, a TNT metabolite, induced Cu(II)-mediated damage to 32 P-labeled DNA fragments and increased 8-oxodG formation in calf thymus DNA, although TNT itself did not. DNA damage was enhanced by NADH, suggesting that NADH-mediated redox reactions involving TNT metabolites enhanced toxicity. Catalase and bathocuproine inhibited DNA damage, indicating the involvement of H 2 O 2 and Cu(I). These findings suggest that TNT induces reproductive toxicity through oxidative DNA damage mediated by its metabolite. We propose that oxidative DNA damage in the testis plays a role in reproductive toxicity induced by TNT and other nitroaromatic compounds.  相似文献   

9.
Neural crest cells are highly motile, yet a limited number of genes governing neural crest migration have been identified by conventional studies. To test the hypothesis that cell migration genes are likely to be conserved over large evolutionary distances and from diverse tissues, we searched for vertebrate homologs of genes important for migration of various cell types in the invertebrate nematode and examined their expression during vertebrate neural crest cell migration. Our systematic analysis utilized a combination of comparative genomic scanning, functional pathway analysis and gene expression profiling to uncover previously unidentified genes expressed by premigratory, emigrating and/or migrating neural crest cells. The results demonstrate that similar gene sets are expressed in migratory cell types across distant animals and different germ layers. Bioinformatics analysis of these factors revealed relationships between these genes within signaling pathways that may be important during neural crest cell migration.  相似文献   

10.
The ability of the strains-destructors of various aromatic compounds to utilize trinitrotoluene (TNT) up to concentration of 70 mg/1 was shown. An increase in the TNT concentration from 100 to 150 mg/1 did not inhibit its conversion rate by the Kocuria palustris RS32 strain. The Acinetobacter sp. VT 11 strain utilized TNT as a sole substrate for growth; 3,5-dinitro-4-methyl anilide acetate and 2,6-dinitro-4-aminotoluene were identified as intermediates of TNT degradation by active strains of Pseudomonas sp. VT-7W and Kocuria rosea RS51. At the same time, 4-methyl-3,5-dinitroformamide was discovered for the first time upon the TNT destruction by the bacteria strains of Rhodococcus opacus 1G and Rhodococcus sp. VT-7. The active bacterial strains achieved an 82-90% destruction of TNT when they were introduced into the soil.  相似文献   

11.
In this study, the enhanced degradation of TNT using cultures of genome-shuffled Stenotrophomonas maltophilia OK-5 mt-3 has been examined and the proteome of shuffled strain was compared to the wild-type OK-5 strain. Genome shuffling of S. maltophilia OK-5 was used to achieve a rapid enhancement of TNT degradation. The initial mutant population was generated by NTG treatment and UV irradiation. The wild-type OK-5 strain was able to degrade 0.2 mM TNT within 6 days, yet barely tolerated 0.5 mM TNT while the shuffled OK-5 mt-3 was capable of completely degrading 0.5 mM TNT within 8 days, and 1.2 mM within 24 days. The proteomic analysis of the shuffled OK-5 mt-3 demonstrated the changes in the expression levels of certain proteins compared to wild-type OK-5. These results provide clues for understanding TNT tolerance and improved TNT degradation by shuffled S. maltophilia OK-5 mt-3 and have possible applications in the processing of industrial waste containing relatively high TNT concentrations.  相似文献   

12.
Extensive biodegradation of TNT (2,4,6-trinitrotoluene) by the white rot fungus Phanerochaete chrysosporium was observed. At an initial concentration of 1.3 mg/liter, 35.4 +/- 3.6% of the [14C]TNT was degraded to 14CO2 in 18 days. The addition of glucose 12 days after the addition of TNT did not stimulate mineralization, and, after 18 days of incubation with TNT only, about 3.3% of the initial TNT could be recovered. Mineralization of [14C]TNT adsorbed on soil was also examined. Ground corncobs served as the nutrient for slow but sustained degradation of [14C]TNT to 14CO2 such that 6.3 +/- 0.6% of the [14C]TNT initially present was converted to 14CO2 during the 30-day incubation period. Mass balance analysis of liquid cultures and of soil-corncob cultures revealed that polar [14C]TNT metabolites are formed in both systems, and high-performance liquid chromatography analyses revealed that less than 5% of the radioactivity remained as undegraded [14C]TNT following incubation with the fungus in soil or liquid cultures. When the concentration of TNT in cultures (both liquid and soil) was adjusted to contamination levels that might be found in the environment, i.e., 10,000 mg/kg in soil and 100 mg/liter in water, mineralization studies showed that 18.4 +/- 2.9% and 19.6 +/- 3.5% of the initial TNT was converted to 14CO2 in 90 days in soil and liquid cultures, respectively. In both cases (90 days in water at 100 mg/liter and in soil at 10,000 mg/kg) approximately 85% of the TNT was degraded. These results suggest that this fungus may be useful for the decontamination of sites in the environment contaminated with TNT.  相似文献   

13.
Extensive biodegradation of TNT (2,4,6-trinitrotoluene) by the white rot fungus Phanerochaete chrysosporium was observed. At an initial concentration of 1.3 mg/liter, 35.4 +/- 3.6% of the [14C]TNT was degraded to 14CO2 in 18 days. The addition of glucose 12 days after the addition of TNT did not stimulate mineralization, and, after 18 days of incubation with TNT only, about 3.3% of the initial TNT could be recovered. Mineralization of [14C]TNT adsorbed on soil was also examined. Ground corncobs served as the nutrient for slow but sustained degradation of [14C]TNT to 14CO2 such that 6.3 +/- 0.6% of the [14C]TNT initially present was converted to 14CO2 during the 30-day incubation period. Mass balance analysis of liquid cultures and of soil-corncob cultures revealed that polar [14C]TNT metabolites are formed in both systems, and high-performance liquid chromatography analyses revealed that less than 5% of the radioactivity remained as undegraded [14C]TNT following incubation with the fungus in soil or liquid cultures. When the concentration of TNT in cultures (both liquid and soil) was adjusted to contamination levels that might be found in the environment, i.e., 10,000 mg/kg in soil and 100 mg/liter in water, mineralization studies showed that 18.4 +/- 2.9% and 19.6 +/- 3.5% of the initial TNT was converted to 14CO2 in 90 days in soil and liquid cultures, respectively. In both cases (90 days in water at 100 mg/liter and in soil at 10,000 mg/kg) approximately 85% of the TNT was degraded. These results suggest that this fungus may be useful for the decontamination of sites in the environment contaminated with TNT.  相似文献   

14.
The biological removal of 2,4,6-trinitrotoluene (TNT) was studied in a bench-scale bioreactor using a bacterial culture of strain OK-5 originally isolated from soil samples contaminated with TNT. The TNT was completely removed within 4 days of incubation in a 2.5 L benchscale bioreactor containing a newly developed medium. The TNT was catabolized in the presence of different supplemented carbons. Only minimal growth was observed in the killed controls and cultures that only received TNT during the incubation period. This catabolism was affected by the concentration ratio of the substrate to the biomass. The addition of various nitrogen sources produced a delayed effect for the TNT degradation. Tween 80 enhanced the degradation of TNT under these conditions. Two metabolic intermediates were detected and identified as 2-amino-4,6-dinitrotoluene and 4-amino-2,6-dinitrotoluene based on HPLC and GC-MS analyses, respectively. Strain OK-5 was characterized using the BIOLOG system and fatty acid profile produced by a microbial identification system equipped with a Hewlett packard HP 5890 II gas chromatograph. As such, the bacterium was identified as aStenotrophomonas species and designated asStenotrophomonas sp. OK-5.  相似文献   

15.
Troponin T (TNT) expressed in the developing chicken cardiac muscle was examined by immunoblotting combined with two-dimensional electrophoresis (2-D PAGE) and peptide mapping. When the whole lysate of the neonatal heart was examined by 2-D PAGE, two TNT variants were detected on the gel by monoclonal antibody to TNT. Expression of the two variants was developmentally regulated: one isoform (type I) was expressed from embryonic through neonatal stages, and the other (type II) from the late embryonic stage through adulthood during cardiac muscle development. The type-I isoform, but not type-II isoform, was also expressed transiently in chicken skeletal muscle at embryonic stages. As judged from the peptide maps, the two isoforms differed in the N-terminal region but not in the C-terminal region.  相似文献   

16.
The degradation of 2,4,6-trinitrotoluene (TNT) by seven strains of white rot fungi was examined in two different media containing 50 mg L−1 of TNT. When TNT was added into a nutrient-rich YMG medium at the beginning of the incubation, four of the fungal strains completely removed TNT during several days of incubation and showed higher removal rates than those of Phanerochaete chrysosporium. TNT added into YMG medium after a 5-day preincubation period completely disappeared within 12 hours, and the removal rates were higher than those in N-limited minimal medium. Isomers of hydroxylamino-dinitrotoluene were identified as the first detectable metabolites of TNT. These were transformed to amino-dinitrotoluenes, which also disappeared during further incubation from cultures of Irpex lacteus. During the initial phase of TNT degradation by I. lacteus, dinitrotoluenes were also detected after the transient formation of a hydride-Meisenheimer complex, indicating that I. lacteus used two different pathways of TNT degradation simultaneously. Received: 29 March 2000 / Accepted: 23 May 2000  相似文献   

17.
Energetic compounds have been used in a variety of industrial and military applications worldwide leading to widespread environmental contamination. Many of these compounds are toxic and resist degradation by oxidative enzymes resulting in a need for alternative remediation methods. It has been shown that trinitrotoluene (TNT)-contaminated soil subjected to treatment in strictly anaerobic bioreactors results in tight binding of TNT transformation products to soil organic matter. The research presented here examined the fate of TNT and its metabolites in bioreactors under three different aeration regimes. In all treatment regimes, the typical metabolites of aminodinitrotoluenes and diaminonitrotoluenes were observed prior to irreversible binding into the soil fraction of the slurry. Significant transformation of TNT into organic acids or simple diols, as others report in prior work, was not observed in any of the treatments and is an unlikely fate of TNT in anaerobic soil slurries. These results indicate that aeration does not dramatically affect transformation or fate of TNT in reactor systems that receive a rich carbon source but does affect the rate at which metabolites become tightly bound to the soil. The most rapid transformations and lowest redox potentials were observed in reactors in which an aerobic headspace was maintained suggesting that aerobes play a role in establishing conditions that are most conducive to TNT reduction.  相似文献   

18.
The enzymatic transformation of 2,4,6-trinitrotoluene (TNT) by purified XenB, an NADPH-dependent flavoprotein oxidoreductase from Pseudomonas fluorescens I-C, was evaluated by using natural abundance and [U-(14)C]TNT preparations. XenB catalyzed the reduction of TNT either by hydride addition to the aromatic ring or by nitro group reduction, with the accumulation of various tautomers of the protonated dihydride-Meisenheimer complex of TNT, 2-hydroxylamino-4,6-dinitrotoluene, and 4-hydroxylamino-2, 6-dinitrotoluene. Subsequent reactions of these metabolites were nonenzymatic and resulted in predominant formation of at least three dimers with an anionic m/z of 376 as determined by negative-mode electrospray ionization mass spectrometry and the release of approximately 0.5 mol of nitrite per mol of TNT consumed. The extents of the initial enzymatic reactions were similar in the presence and in the absence of O(2), but the dimerization reaction and the release of nitrite were favored under aerobic conditions or under anaerobic conditions in the presence of NADP(+). Reactions of chemically and enzymatically synthesized and high-pressure liquid chromatography-purified TNT metabolites showed that both a hydroxylamino-dinitrotoluene isomer and a tautomer of the protonated dihydride-Meisenheimer complex of TNT were required precursors for the dimerization and nitrite release reactions. The m/z 376 dimers also reacted with either dansyl chloride or N-1-naphthylethylenediamine HCl, providing evidence for an aryl amine functional group. In combination, the experimental results are consistent with assigning the chemical structures of the m/z 376 species to various isomers of amino-dimethyl-tetranitrobiphenyl. A mechanism for the formation of these proposed TNT metabolites is presented, and the potential enzymatic and environmental significance of their formation is discussed.  相似文献   

19.
To determine the mechanism of 2,4,6-trinitrotoluene (TNT)-induced oxidative stress involving neuronal nitric oxide synthase (nNOS), we examined alterations in enzyme activity and gene expression of nNOS by TNT, with an enzyme preparation and rat cerebellum primary neuronal cells. TNT inhibited nitric oxide formation (IC(50) = 12.4 microM) as evaluated by citrulline formation in a 20,000 g cerebellar supernatant preparation. A kinetic study revealed that TNT was a competitive inhibitor with respect to NADPH and a noncompetitive inhibitor with respect to L-arginine. It was found that purified nNOS was capable of reducing TNT, with a specific activity of 3900 nmol of NADPH oxidized/mg/min, but this reaction required CaCl(2)/calmodulin (CaM). An electron spin resonance (ESR) study indicated that superoxide (O(2)(.-)) was generated during reduction of TNT by nNOS. Exposure of rat cerebellum primary neuronal cells to TNT (25 microM) caused an intracellular generation of H(2)O(2), accompanied by a significant increase in nNOS mRNA levels. These results indicate that CaM-dependent one-electron reduction of TNT is catalyzed by nNOS, leading to a reduction in NO formation and generation of H(2)O(2) derived from O(2)(.-). Thus, it is suggested that upregulation of nNOS may represent an acute adaptation to an increase in oxidative stress during exposure to TNT.  相似文献   

20.
Summary Cell suspension cultures of Datura innoxia were incubated in the presence of the nitro-substituted explosives 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitro-1,3,5-triazine (RDX), and 1,3,5,7-tetranitro-1,3,5,7-tetraazocyclooctane (HMX). Cellular tolerance levels and TNT biotransformation kinetics were examined. Tolerance to TNT varied as cell suspensions aged. Concentrations of RDX or HMX in excess of reported solubility limits produced no observable changes in cell viability. GC/MS analysis of TNT-treated cell media and cell lysates revealed rapid removal of TNT. Within 12 h, less than 1% of the initial TNT remained in the growth medium. Aminodinitrotoluenes (ADNTs), known metabolites of TNT, accumulated transiently in cell lysates, and to a lesser extent in cell media. ADNT concentrations started to decrease after 3 h. After 12 h, less than 5% of the initial TNT could be detected as ADNT. Total ADNTs never exceeded 26% of initial TNT, suggesting that additional biotransformation steps also occurred. No other nitroaromatics were detected. A pseudo-first order rate constant for TNT clearance was calculated, k=0.40 h−1. D. innoxia cell suspension cultures demonstrated virtually complete clearance of TNT and of subsequent ADNT metabolites in less than 12 h. This rapid metabolism of nitroaromatics by the Datura cell suspension system indicates the utility of this system for further molecular and biochemical studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号