首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The characteristics of phosphate uptake and photosynthetic capacity were studied in P-limited populations of Euglena gracilis Klebs (Z), using both P-limited batch cultures in stationary phase and cyclostat cultures grown on 14:10 LD. P uptake obeyed Michaelis-Menten kinetics between 0 and 150 μM PO4 under both growth conditions. The value of Vmax was 35% lower in the dark than in the light in the stationary phase cells. The value of K8 was not affected by light conditions, and uptake was completely inhibited in the presence of 1 mm KCN. P uptake (at 2.0 μM PO4) and photosynthetic capacity showed diel periodicity with peak rates occurring just before the beginning of the dark period for P uptake, and 8 h into the light period for photosynthetic capacity. Vmax for P uptake increased by a factor of 1.5 over the light period, whereas K8 remained constant at 1.4 μM PO4. These patterns were displayed by both nondividing stationary phase cells and populations in which less than a third of the cells divided each day, indicating that the rhythmicity is not coupled to cell division.  相似文献   

2.
The O2 uptake through water has been measured in case of Heteropneustes fossilis during development and growth and its relationship to body size established. A higher rate of O2 uptake during the early phase of ontogenesis is related to intense growth of the respiratory surface area and increasing metabolic demand of the fish.The logarithmic plot of data for O2 uptake in relation to body size shows a statistically significant two-component curve; one related to the fish when it is a fully aquatic breather and the other when it changes to bimodal gas exchange. The onset of the air breathing habit brings about a 40% drop in O2 uptake through water, which is made good through the newly developed air breathing organ.  相似文献   

3.
Photoheterotrophic growth of cell suspensions of Nicotiana tabacum L. (cv. Xanthi) in organic culture medium enriched in sucrose (30 g per liter) showed a classical sigmoid growth curve. The cells developed functional chloroplast structures during the exponential growth phase, when their chlorophyll content increased steadily. A limited drop (30%) in the chlorophyll amount and structural changes of the plastids (starch accumulation) were observed during the lag phase. The measurements of photosynthetic capacities (O2 evolution and CO2 fixation) during the growth cycle revealed changes in the photosynthetic ratio (O2/CO2), which was near 1 during the lag and stationary phases and near 2 during exponential growth. During exponential growth there was also a rapid NO3? uptake. Analysis of label distribution among the products of 14CO2 fixation showed that both CO2 assimilation pathways, linked to the ribulose-biphosphate carboxylase (the autotrophic pathway) and to phosphoenolpyruvate carboxylase (the non-autotrophic pathway) were operative with an important increase of the capacity of the latter during the exponential growth phase. Maximum rate of oxygen evolution, either endogenous or with p-benzoquinone as Hill reagent, as well as the increased CO2 Fixation capacity via the non-autotrophic pathway during the exponential phase were concomitant with a high cyanide inhibited O2 uptake.  相似文献   

4.
Sulfate transport processes and its regulation were studied in roots of poplar trees (Populus tremula x P. alba). From the exponential increase in sulfate uptake with temperature an activation energy (Ea) of 9.0±0.8 kJ mol–1 was calculated. In the concentration range 0.005–10 mM sulfate uptake showed biphasic Michaelis-Menten kinetics with a Km of 3.2±3.4 M and a Vmax of 49±11 nmol SO42– g–1 FW h–1 for the high-affinity uptake system (phase 1) and a Km of 1.33±0.41 mM and a Vmax of 255±25 nmol SO42– g–1 FW h–1 for the low-affinity system (phase 2). Xylem loading decreased linearly with temperature and remained unchanged within the sulfate concentration range studied. Regulation of sulfate uptake and xylem loading by O-acetyl serine (OAS), Cys, reduced glutathione (GSH), Met and S-methylmethionine (SMM) were tested by perfusion into the xylem sap with the pressure probe and by addition to the incubation medium. When added directly to the transport medium, Cys and GSH repressed, and OAS stimulated sulfate uptake; xylem loading was stimulated by Cys, repressed by GSH and only slightly affected by OAS. When perfused into the xylem, none of the compounds tested affected sulfate uptake of excised roots, but xylem loading was stimulated by SMM and OAS and repressed by Met. Apparently, the site of application strongly determined the effect of regulatory compounds of sulfate transport processes.  相似文献   

5.
6.
The desmid Staurastrum luetkemuellerii Donat et Ruttner and the cyanobacterium Microcystis aeruginosa Kütz. were grown in mixed cultures with various phosphate (Pi) additions. One pulse of Pi each day (semi-continuous cultures) favored M. aeruginosa whereas S. luetkemuellerii was favored when the same quantity of Pi was supplied continuously (chemostats). Both species coexisted under P limitation provided that the nutrient was supplied in an appropriate mode. The ability of each species to compete for P depended on their Pi uptake characteristics and their capability to retain the accumulated Pi. High affinity in uptake at low Pi concentrations contributed considerably to the growth eficiency of S. luetkemuellerii under continuous supply of PiM. aeruginosa was, however, consistently superior to S. luetkemuellerii in accuniulatiug the newly added P, but had a high rate of Pi release. In both -types of cultures, a net high of P went from M. aeruginosa to S. luetkemuellerii. The kinetic characteristics of the two species were used to simulate the outcome of competition experiments. Simulations agreed with the experimental data f both uptake and Pi release were considered in the model. The zlariable P*(the concentration of Pi at which the net uptake is equal to μ·QP is a function of uptake and release of Pi but could not explain the chemostat results. S. luetkemuellerii was the winner in many experiments even if its P*was higher thou that of M. aeruginosa. Thus, in the present case Pc (the concentration at which the net uptake is zero) was a better predictor of the ability to compete for Pi under steady state as well as transient conditions in the Pi supply.  相似文献   

7.
Phaeodactylum tricornutum Bohlin, the one diatom known to lack a silicon requirement for growth, and the prasinophyte Platymonas sp. are two representatives of a taxonomically diverse group of planktonic algae that have been reported to take up Si without a demonstrable requirement for the element. For both species, removal of Si from solution during growth in batch culture has at least two components; true biological uptake throughout the growth of the culture, and spontaneous inorganic precipitation of a solid silicate phase–probably Mg2Si3O8 (sepiolite)–under the elevated pH conditions that prevail late in batch growth. It is not clear to what extent previous observations of Si uptake by algae without siliceous frustules may be influenced by inorganic, non-cellular precipitation. The kinetics of true cellular uptake of Si are similar in Phaeodalylum and Platymonas, and different from those reported for the Si-requiring diatoms. Uptake follows hyperbolic saturation kinetics in both species, with half-saturation concentrations of 97.4 μM in Phaeodactylum and 80.9 μM in Platymonas, as compared to ca. 1–6 μM in diatoms that form siliceous frustules. Uptake by Phaeodactylum and Platymonas is not substrate-saturated until the dissolved Si concentration of the medium exceeds 200 μM. Concentrations this high do not occur in the surface layer of the ocean, and the kinetics suggest that both species deposit much less silica in nature than they can be induced to deposit in culture.  相似文献   

8.
The desmid Staurastrum luetkemuellerii Donat et Ruttner and the cyanobacterium Microcystis aeruginosa Kütz. showed pronounced differences in chemical composition and ability to maintain P fluxes. The cellular P:C ratio (Qp) and the surplus P:C ratio (Qsp) were higher in M. aeruginosa, indicating a lower yield of biomass C per unit of P. The subsistence quota (Qp) was 1.85 μg P·mg C?1in S. luetkemuellerii and 6.09 μg P·mg C?1in M. aeruginosa, whereas the respective Qp of P saturnted organisms (Qs) were 43 and 63 μg P·mg C?1. These stores could support four divisions in S. luetkemuellerii and three divisions in M. aeruginosa, which suggests that the former exhibited highest storage capacity (Qs/Q0). M. aeruginosa showed a tenfold higher activity of alkaline phosphatase than S. luetkemuellerii when P starved. The optimum N:P ratio (by weight) was 5 in S. luetkemuellerii and 7 in M. aeruginosa. The initial uptake of Pi pulses in the organisms was not inhibited by rapid (<1 h) internal feedback mechanisms and the short term uptake rote could be expressed solely as a function of ambient Pi. The maximum cellular C-based uptake rate (Vm) in P starved M. aeruginosa was up to 50 times higher than that of S. luetkemuellerii. It decreased with increasing growth rate (P status) in the former species and remained fairly constant in the latter. The corresponding cellular P-based value (Um= Vm/Qp) decreased with growth rate in both species and was about 10 times higher in P started M. aeruginosa than in S. luetkemuellerii. The average half saturation constant for uptake (Km) was equal for both species (22 μg P·L?1) and varied with the P status. S. luetkemuellerii exhibited shifts in the uptake rate of Pi that were characterized by increased affinity (Um/Km) at low Pi, concentrations (<4 μg P·L?1) compared to that at higher concentrations. The species thus was well adapted to uptake at low ambient Pi, but M. aeruginosa was superior in Pi uptake under steady state and transient conditions when the growth rate was lower than 0.75 d?1. Moreover, M. aeruginosa was favored by pulsed addition of Pi. M. aeruginosa relpased Pi at a higher rate than S. luetkemuellerii. Leakage of Pi from the cells caused C-shaped μ vs. Pi curves. Therefore, no unique Ks for growth could be estimated. The maximum growth rate (μm) (23° C) was 0.94 d?1for S. luetkemuellerii and 0.81 d?1for M. aeruginosa. The steady state concentration of Pi (P*) was lower in M. aeruginosa than in S. luetkemuellerii at medium growth rates. The concentration of Pi at which the uptake and release of Pi was equal (Pc was, however, lower in S. luetkemuellerii.  相似文献   

9.
Amphora coffeaeformis (Ag.) Kütz. var. perpusilla (Grun.) Cleve took up glucose by an inducible transport system. The system was induced by d -fructose, d -mannose, as well as glucose. Some d -pentoses also induced a glucose uptake system but it may not be the same one as that induced by hexose. d -fructose, d -mannose and 2-deoxy-d -glucose inhibited 2 mM glucose uptake at equimolar concentration, but d -pentoses did not. The uptake system decayed in ca. 5 h in the absence of glucose. The half-saturation constant for uptake, K8 was ca. 0.1 mM glucose with a maximum uptake rate, Vmax= 0.4 nmol/106 cells-min?1.  相似文献   

10.
The rate and extent of uptake of the fluorescent probe diS-C3(3) reporting on membrane potential inS. cerevisiae is affected by the strain under study, cell-growth phase, starvation and by the concentration of glucose both in the growth medium and in the monitored cell suspension under non-growth conditions. Killer toxin K1 brings about changes in membrane potential. In all types of cells tested,viz. in glucose-supplied stationary or exponential cells of the killer-sensitive strain S6/1 or a conventional strain RXII, or in glucose-free exponential cells of both strains, both active and heat-inactivated toxin slow down the potential-dependent uptake of diS-C3(3) into the cells. This may reflect “clogging” of pores in the cell wall that hinders, but does not prevent, probe passage to the plasma membrane and its equilibration. The clogging effect of heat-inactivated toxin is stronger than that exerted by active toxin. In susceptible cells,i.e. in exponential-phase glucose-supplied cells of the sensitive strain S6/1, this phase of probe uptake retardation is followed by an irreversible red shift in probe fluorescence maximumλ max indicating damage to membrane integrity and cell permeabilization. A similar fast red shift inλ max signifying lethal cell damage was found in heat-killed or nystatin-treated cells.  相似文献   

11.
Ammoniun, nitrate and nitrite update by Fucus spiralis L. from the Massachusetts coast was examined. Uptake of all appeared to follow saturation type nutrient uptake kinetics, with uptake often restricted at ambient nutrient concentrations. Although only relatively large difference in K8 values could be easily distinguished, K8 values for NO3? and NH4+ were generally similar and low compared with NO2?. There was also some suggestion that K8 was reduced at lower temperatures. At 15 C. Vmax for light and dark uptake for both NH4+ and NO3?, and light uptake of N02? were similar, suggesting comparable potential use at higher concentrations. Ammonium and NO3?uptake decreased at lower temperatures giving Qro values of 1.8 and 1.6, respectively, between 5 and 15°C. Nitrate and NH4+ were taken up together and high levels of NH4+ did not inhibit NO3? uptake. Light did not affect uptake of either but did stimulate NO2? uptake. Ammonium and NO3? uptake were highest in apical frond and whole young plants, and lowest in slower growing, older frond and stipe. On a relative basis. NO3?, NH4+ and NO2? were estimated to have contributed ca. 59, 39 and 2% respectively, to the yearly N uptake by apical frond. During winter, NO3? would provide ca. twice the N to F. spiralis as would, NH4+. From summer to early fall, when NO3? levels are lower, NO3? and NH4+ would be used in comparable amounts.  相似文献   

12.
Laminaria longicrucis De la Pylaie took up exogenous nitrate under both summer and winter conditions. During July and August no NO3- was detected in the ambient water or in algal tissues although it was present in both in February. Discs (2.3 cm diam.) of thin blade tissue were incubated with NO3- at four temperatures, with and without illumination. Similar values Jor NO3- uptake were found for both summer and winter collected plants when measured in light at 0 C. An apparent K of 4–6 μM was recorded for both types of plants; the Vmax ranged from 7 to 10 μmol h-1 g-1 dry wt measured in ca. 1800 μW cm-2 of cool-white fluorescent light. Uptake rates at 5 C were 66%, and at 0 C 30% of those for controls run at 15 C. The alga scavenged NO3- from solutions <0.5 μM. Ammonia did not inhibit NO3- uptake. Antibiotic pretreatment reduced NO3- uptake by a maximum of 12%. Nitrite uptake was inhibited in proportion to the concentration of NO3- in the medium.  相似文献   

13.
Copper toxicity to Skeletonema costatum (Grev.) Cleve has been studied in batch cultures of chemically defined culture media. The alga is relatively insensitive to cupric ion activity, demonstrating no effect on growth up to (Cu2+) = 10?8.5 M. Cultures inoculated from stationary phase stocks exhibit a prolongation of the lag phase with increasing copper concentrations near and above the point of precipitation of the copper. The toxicity of copper is a function of the silicic acid concentration in the medium. This effect is observed in a range of Si(OH)4 concentrations (10?5 M to 10?4 M) above known values for the saturation of silicon uptake kinetics, thus suggesting an influence of copper on silicate metabolism.  相似文献   

14.
The ammonium analogue, methylamine, is taken up rapidly from dilute solution by Macrocystis pyrifera (L.) C. A. Agardh. 14C-methylamine was used to characterize the transport system, with respect to dependence on external concentration, temperature, pH and substrate specificity. The results suggest that methylamine enters the algal tissue via a specific mediated transport system. Uptake of methylamine showed no consistent relation to the N content of the plant tissue, but was highly dependent on the portion of plant sampled and severely affected by cutting the tissue. The strong inhibition of methylamine uptake by ammonium and lesser inhibition by other alkylamines suggests that the uptake system functions as an “ammonium permease”. Uptake of 14C-methylamine can be used as a highly sensitive measure of NH4+ uptake activity and should be a useful tool for studying NH4+ uptake in the laboratory and field.  相似文献   

15.
Silicic acid transport was studied in the photosynthetic diatom Navicula pelliculosa (Bréb.) Hilse using [68Ge] germanic acid (68Ge(OH)4) as a tracer of silicic acid (Si(OH)4). The initial uptake rate of Si(OH)4 was dependent on cell number, pH, temperature, light and was promoted by certain monovalent cations in the medium. Na+ was more effective than K+, whereas Li+ and NH+4 were ineffective at promoting uptake. Uncouplers and inhibitors of oxidative phosphorylation and of photophosphorylation reduced uptake by 40–99% of control values. Uptake was also especially sensitive to the sulfhydryl blocking agents at 10?5 M and to the ionophorous compound valinomycin (10?7 M) which inhibited uptake by 82%. The Si(OH)4 transport system displayed Michaelis-Menten-type saturation kinetics with kinetic parameters of KS= 4.4 p. mol Si(OH)4· 1?1, Vmax= 334 pmol Si(OH)4· 106 cells?1· min?1. Calculations of the acid soluble silicic acid pool size based on 60 s uptake at 20 μM Si(OH)4 suggested that intracellular levels of Si could reach 20 mM and as much as 5 mM could exist as free silicic acid, representing maintenance of a 250-fold concentration gradient compared with the medium. Efflux from preloaded cells was dependent on temperature and the Si(OH)4 concentration of the external medium. In the presence of 100 μMM “cold” Si(OH)4, approximately 30% of the Si(OH)4 in preloaded cells was exchanged in 20 min. The initial uptake rate of Si(OH)4 in logarithmic phase cells was constant, but the uptake rate increased in a linear fashion for 6 h in stationary phase cells. These results suggest that the first step in silica mineralization by diatoms is the active transmembrane transport of Si(OH)4 by an energy dependent, saturable, membrane-carrier mechanism which requires the monovalent cations Na+ and K+ and is sensitive to sulfhydryl blocking agents. Silicic acid transport activity also appears to be regulated during different growth stages of the diatom.  相似文献   

16.
Summary Chum salmon (Oncorhynchus keta) stanniocalcin was purified, partially identified and tested for bioactivity in an assay on the intestinal calcium uptake in a marine teleost (Gadus morhua). Basic ethanol extraction, ion exchange chromatography, gel filtration and reverse-phase high-performance liquid chromatography resulted in the isolation of a homogenous glycoprotein that appears as a 46-kDa product under non-reducing conditions and as a 23-kDa product under reducing conditions after sodium dodecylsulphate-polyacrylamide gel electrophoresis. The glycoprotein is likely to be a homodimer composed of two subunits of 23 kDa each. Further characterization indicates homology to Australian eel, sockeye salmon, coho salmon and rainbow trout stanniocalcin, and the glycoprotein is thus concluded to be stanniocalcin. Stanniocalcin-like immunoreactivity was demonstrated in the corpuscles of Stannius of the Atlantic cod, with a specific antiserum raised against purified chum salmon stanniocalcin. The physiological importance and the biological activity of chum salmon stanniocalcin was tested by evaluating its effect on intestinal calcium uptake by the Atlantic cod in vitro. The intestine was perfused, both vascularly and through the intestinal lumen, and the calcium mucosa-to-serosa flux was measured using 45Ca2+ as a tracer. Stanniocalcin decreased the intestinal calcium uptake in a dose-related manner by 13.5% and 22.4% at doses of 2.2 and 10.9 nM stanniocalcin, respectively. The results establish the intestine as a target organ for stanniocalcin in marine teleosts.Abbreviations BIS balanced intestinal solution - CS corpuscles of Stannius - dpm disintegrations per minute - FW freshwater - J in Ca influx of calcium across the intestinal mucosa - MW molecular weight - NRS normal rabbit serum - PBS phosphate buffered saline - PBST phosphate buffered saline containing 0.05% Tween-20 - PITC phenyl isothiocyanate - rp-HPLC reverse phase - SW seawater - STC phenyl isothiocyanate - rp-HPLC reverse phase - SW seawater - STC stanniocalcin - TFA Trifluoroacetic acid - Tris Tris(hydroxymethyl) aminomethan - V volume per fraction  相似文献   

17.
Two planktonic algal species, Staurastrum chaetoceras (Schr.) G. M. Smith and Cosmarium abbreviatum Rac. var. planctonicum W. et G. S. West, from trophically different alkaline lakes, were compared in their response to a single saturating addition of phosphate (P) in a P-limited growth situation. Storage abilities were determined using the luxury coefficient R = Qmax/Q0. Maximum cellular P quotas differed, depending on whether cells were harvested during exponential growth at μmax (Qmax, R being 26.7 and 9.1 for C. abbreviatum and S. chaetoceras, respectively) or harvested after a saturating pulse at P-limited growth conditions (Q′max, R being 53.5 and 20.2 for C. abbreviatum and S. chaetoceras, respectively). At stringent P-limited conditions, maximum initial uptake rates were higher in S. chaetoceras than in C. abbreviatum (0.094 and 0.073 pmol P·cell?1·h?1, respectively), but long-term (net) uptake rates (over ~20 min) were higher in C. abbreviatum than in S. chaetoceras (0.048 and 0.019 pmol P·cell?1·h?1, respectively). Before growth resumed after the onset of a large P addition (150 μmol·L?1), a lag phase was observed for both species. This period lasted 2–3 days for S. chaetoceras and 3–4 days for C. abbreviatum, corresponding with the time to reach Qmax. Subsequent growth rates (over ~10 days) were 0.010 h?1 and 0.006 h?1 for S. chaetoceras and C. abbreviatum, respectively, being only 20%–30% of maximum growth rates. In conclusion, S. chaetoceras, with a relatively high initial P-uptake rate, short lag phase, and high initial growth rate, is well adapted to a P pulse of short duration. Conversely, C. abbreviatum, with a high long-term uptake rate and high storage capacity, appears competitively superior when exposed to an infrequent but lasting pulse. These characteristics provide information about possible strategies of algal species to profit from temporarily high P concentrations.  相似文献   

18.
The characteristics of phosphate uptake in synchronized populations of Euglena gracilis Klebs (Z) were studied. The cells were grown autotrophically in batch culture and synchronized with a cycle of 14:10 LD. Incorporation of P was nonlinear with time for the first 2 h of incubation over a wide range of P concentrations and completely inhibited by darkness. The kinetics of P uptake as a function of P concentration were triphasic between 0 and 100 μM PO4, obeying Michaelis-Menten kinetics over the 0–3 μM PO4 range-only. Uptake velocity increased linearly with, concentration above 3 μM PO4. The kinetics of P uptake varied with stage in the cell cycle. The half-saturation constant for uptake at the lower concentrations oscillated between 0.7 and 2.8 μM PO4, reaching a peak immediately before the onset of cell division (beginning of the dark period). Vmax was largest in the middle of the light period, as was the slope of the linear portion of the kinetic pattern. Further analysis of the kinetics suggests that changes in this slope are responsible for the oscillation in Ks values calculated for the lower concentrations. This analysis assumes 2 uptake mechanisms, one which saturates at low concentrations of phosphate, and one which is nonsaturable over the entire concentration range examined.  相似文献   

19.
Changes of cellular activities during batch cultures with Azospirillum lipoferum strain Br 17 (ATCC 29 709) were observed within the growth cycle, at optimal pO2 (0.002–0.003 atm). The relative growth rate for cells growing with N2 as sole nitrogen source during log phase was =0.13 h-1 and the doubling time was 5.3 h. Nitrogenase activity was not accompanied by hydrogen evolution at any growth stage, and a very active uptake hydrogenase was demonstrated. The hydrogenase activity increased towards the end of the growth period when glucose became limiting and N2 fixation reached its maximal specific activity. Oxygen consumption and oxygen tolerance at the various growth stages, increased simultaneously with the uptake hydrogenase activity indicating a possible role of this enzyme in an oxygen protection mechanism of A. lipoferum nitrogenase. The efficiency of nitrogen fixation expressed as mg total nitrogen fixed in cells and supernatant per g glucose consumed, was 20 at the early log phase and increased to 48 at the late log phase. About 25% of the total fixed nitrogen was recovered in the culture supernatant.Abbreviations DOT Dissolved oxygen tension - PHB Poly--hydroxybutyric acid - O.D. Optical density (560 nm) - A.T.C.C. American type culture collection - NTA Nitrilotriacetic acid Graduate student of the Universidade Federal Rural do Rio de Janeiro, Brazil  相似文献   

20.
The uptake of nitrate, nitrite and ammonium by Codium fragile subsp. tomentosoides (van Goor) Silva was measured at different combinations of temperature (6–30 C) and irradiance (0–140 μEin.m-2. s-1). Uptake of all three forms of N was greater at 12–24 C than at 6 and 30 C. Although uptake was stimulated by light, saturation occurred at relatively low irradiance (7–28 μEin m-2 s-1, depending on the N source and temperature). The Michaelis-Menten uptake constants (Vmax K)varied with temperature. Vmax was greatest at intermediate temperatures and K was lowest at lower temperatures. The Vmaxfor NH4+ was higher and the K, for NH4+was lower than those for NO3-- and NO2--. Codium was capable of simultaneously taking up all three forms of inorganic N although the presence of NH4+ reduced the uptake of both NO3-- and NO2--. The results of this study indicate that part of the ecological success of Codium in a N-limited environment may be due to its N uptake capabilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号