首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have reported that multiple treatments with so-called 'non-hypercalcemic' analogs of 1 alpha,25(OH)(2) vitamin D(3) (1,25(OH)(2)D(3)) stimulate the specific activity of creatine kinase BB (CK) in ROS 17/2.8 osteoblast-like cells, and that pretreatment with these analogs upregulates responsiveness and sensitivity to 17 beta estradiol (E(2)) for the induction of CK. However, since the analogs showed toxicity in vivo, we have now studied the action of a demonstrably non-calcemic hybrid analog of vitamin D in ROS 17/2.8 cells, and prepubertal rats. The analog JKF was designed to separate its calcemic activity from other biological activities by combining a calcemic-lowering 1-hydroxymethyl group with a potentiating C, D-ring side chain modification including 24 difluoronation. Treatment with 1 pM JKF alone significantly stimulated CK specific activity at 4 h by 30+/-10%. However after three daily pretreatments, JKF upregulated the extent of induction by 30 nM E(2) by 33% at 1 pM and by 97% at 1 nM; the E(2) dose needed for a significant stimulation of CK activity was lowered to 30 pM. The action of the SERMS tamoxifen, tamoxifen methiodide and raloxifene, at 3 microM, was also upregulated by three daily pretreatments with 1 nM JKF; unexpectedly, this pretreatment prevented the inhibition of E(2) stimulation by the SERMS. Upregulation of E(2) action by 1 nM JKF was inhibited by 1 nM ZK159222, an inhibitor of the nuclear action of 1,25(OH)(2)D(3). In vivo, three daily injections of 0.05 ng/g body weight of JKF augmented the response of prepubertal female rat diaphysis and epiphysis to E(2). Therefore, demonstrably non-calcemic analogs of 1,25(OH)(2)D(3) may have potential for use in combination with estrogens or SERMS in the prevention and/or treatment of metabolic bone diseases such as postmenopausal osteoporosis.  相似文献   

2.
3.
J K Addo  N Swamy  R Ray 《Steroids》1999,64(4):273-282
In this article, we describe the development of a general synthetic strategy to functionalize the C-6 position of vitamin D3 and its biologically important metabolites, i.e. 25-hydroxyvitamin D3 (25-OH-D3) and 1alpha,25-dihydroxyvitamin D3 [1,25(OH)2D3]. We employed Mazur's cyclovitamin D method to synthesize vitamin D3 analogs with several functionalities at the C-6 position. In addition, we synthesized 6-(3-hydroxypropyl) and 6-[(2-bromoacetoxy)propyl] derivatives of 25-OH-D3 15 and 16, respectively, and 6-(3-hydroxypropyl) derivative of 1,25(OH)2D3 17. Competitive binding assays of 15-17 with human serum vitamin D-binding protein showed that all these analogs specifically bound to this protein, although with significantly lower affinity than the 25-OH-D3, the strongest natural binder, but with comparable affinity with 1,25(OH)2D3, the hormone. On the other hand, 6-[3-hydroxypropyl], 1alpha,25-dihydroxyvitamin D3 17 did not show any specific binding for recombinant nuclear vitamin D receptor. These results indicated that the region containing the C-6 position of the parent seco-steroid [1,25(OH)2D3] may be an important recognition marker towards vitamin D receptor binding. Information, delineated in this article, will be important for evaluating structure-activity relationship in synthetic analogs of vitamin D and its metabolites.  相似文献   

4.
1alpha,25-dihydroxy vitamin D3 has a major role in the regulation of the bone metabolism as it promotes the expression of key bone-related proteins in osteoblastic cells. In recent years it has become increasingly evident that in addition to its well-established genomic actions, 1alpha,25-dihydroxy vitamin D3 induces non-genomic responses by acting through a specific plasma membrane-associated receptor. Results from several groups suggest that the classical nuclear 1alpha,25-dihydroxy vitamin D3 receptor (VDR) is also responsible for these non-genomic actions of 1alpha,25-dihydroxy vitamin D3. Here, we have used siRNA to suppress the expression of VDR in osteoblastic cells and assessed the role of VDR in the non-genomic response to 1alpha,25-dihydroxy vitamin D3. We report that expression of the classic VDR in osteoblasts is required to generate a rapid 1alpha,25-dihydroxy vitamin D3-mediated increase in the intracellular Ca(2+) concentration, a hallmark of the non-genomic actions of 1alpha,25-dihydroxy vitamin D3 in these cells.  相似文献   

5.
6.
7.
8.
9.
1alpha,25-Dihydroxy-Vitamin-D3 (1alpha,25(OH)2-Vitamin D3) stimulates in skeletal muscle cells Ca2+ release from inner stores and influx through both voltage-dependent and store-operated Ca2+ (SOC, CCE) channels. We investigated the involvement of TRPC proteins and Vitamin D receptor (VDR) in CCE induced by 1alpha,25(OH)2D3 in chick muscle cells. Two fragments were amplified by RT-PCR, exhibiting approximately 80% sequence homology with mammalian TRPC3/6/7. Northern and Western blots employing a TRPC3-probe and anti-TRPC3 antibodies, respectively, confirmed endogenous expression of a TRPC3-like protein of 140 kDa. Spectrofluorimetric measurements in Fura-2 loaded cells showed reduced CCE and Mn2+ entry in response to either thapsigargin or 1alpha,25(OH)2D3 upon transfection with anti-TRPC3/6/7 antisense oligodeoxynucleotides (ODNs). Transfection with anti-VDR antisense ODNs diminished 1alpha,25(OH)2D3-dependent Ca2+ and Mn2+ influx. Co-immunoprecipitation of TRPC3-like protein and VDR under non-denaturating conditions was observed. We propose that endogenous TRPC3-like proteins and the VDR participate in the modulation of CCE by 1alpha,25(OH)2D3 in muscle cells, which could be mediated by an interaction between these proteins.  相似文献   

10.
Expression levels of adhesion molecules on HMC-1 mast cells were examined prior to and following administration of 1alpha, 25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)]. While most receptors (including ICAM-1) remained unchanged by the treatment, solely ICAM-3 expression was promoted in a dose- and time-dependent fashion, peaking at 50 nM of 1,25(OH)(2)D(3) and 72 h, illustrating that like other myeloid cells, human mast cells are 1,25(OH)(2)D(3) responsive, yet in a highly selective manner. Flow cytometric results were confirmed by ELISA, by semiquantitative RT-PCR, and functionally by showing enhanced anti-ICAM-3 mediated homotypic aggregation of 1,25(OH)(2)D(3) pretreated cells. Since cellular responsiveness is conferred by the vitamin D(3) receptor (VDR), we examined human mast cells for its expression. VDR was constitutively present in both HMC-1 and skin mast cells by RT-PCR technique and in nuclear extracts of HMC-1 cells by Western blot analysis. Our data thus suggest that human mast cells are direct targets of 1, 25(OH)(2)D(3) action.  相似文献   

11.
A series of 16-en-22-oxa-derivatives of vitamin D3 based on the structure of maxacalcitol (2) were prepared. Maxacalcitol is currently used topically for the treatment of psoriasis and is recognized as the most successful antedrug of natural vitamin D(3) because it retains the original antiproliferative activity of calcitriol without increased calcemic activity. We introduced 16-olefinic functionality to accelerate the oxidative metabolism of the drug in liver, presumed to be essential for the reduction of calcemic activity, and modified the side-chain moiety by placing the 22-oxygen on the more labile allylic carbon center. Novel 22-oxa analogs (7a-i), carrying either the 24-alkynyl bond or 24-hydroxy functionality in addition to the 16-double bond were synthesized and their pharmacokinetics were evaluated.  相似文献   

12.
In cultured chick skeletal muscle cells loaded with Fura-2, the tyrosine kinase inhibitors herbimycin A and genistein abolished both the fast inositol 1,4,5-trisphosphatedependent Ca(2+) release from internal stores and extracellular Ca(2+) influx induced by 1alpha, 25(OH)(2)-vitamin D(3) (1alpha,25(OH)(2)D(3)). Daidzein, an inactive analog of genistein, was without effects. Tyrosine phosphatase inhibition by orthovanadate increased cytosolic Ca(2+). Anti-phosphotyrosine immunoblot analysis revealed that 1alpha, 25(OH)(2)D(3) rapidly (0.5-10 min) stimulates in a concentrationdependent fashion (0.1-10 nm) tyrosine phosphorylation of several myoblast proteins, among which the major targets of the hormone could be immunochemically identified as phospholipase Cgamma (127 kDa), which mediates intracellular store Ca(2+) mobilization and external Ca(2+) influx, and the growth-related proteins mitogen-activated protein (MAP) kinase (42/44 kDa) and c-myc (65 kDa). Genistein suppressed the increase in phosphorylation and concomitant elevation of MAPK activity elicited by the sterol. Both genistein and the MAPK kinase (MEK) inhibitor PD98059 abolished stimulation of DNA synthesis by 1alpha,25(OH)(2)D(3). The sterol-induced increase in tyrosine phosphorylation of c-myc, a finding not reported before for cell growth regulators, was totally suppressed by the specific Src inhibitor PP1. These results demonstrate that tyrosine phosphorylation is a previously unrecognized mechanism involved in 1alpha,25(OH)(2)D(3) regulation of Ca(2+) homeostasis in hormone target cells. In addition, the data involve tyrosine kinase cascades in the mitogenic effects of 1alpha, 25(OH)(2)D(3) on skeletal muscle cells.  相似文献   

13.
Vitamin D metabolites stimulate creatine kinase BB activity in organs of vitamin D-deficient rats. In epiphyses of long bones, creatine kinase BB activity increases 2.6-fold 24 h after injection of 24R,25-dihydroxycholecalciferol but not of 1 alpha,25-dihydroxycholecalciferol. Contrariwise, 1 alpha,25-dihydroxycholecalciferol, but not 24R,25-dihydroxycholecalciferol, increases creatine kinase BB activity in diaphyses and in kidney. Neither metabolite affects creatine kinase activity in duodenal mucosa.  相似文献   

14.
1alpha,25(OH)(2)D(3) regulates rat growth plate chondrocytes via nuclear vitamin D receptor (1,25-nVDR) and membrane VDR (1,25-mVDR) mechanisms. To assess the relationship between the receptors, we examined the membrane response to 1alpha,25(OH)(2)D(3) in costochondral cartilage cells from wild type VDR(+/+) and VDR(-/-) mice, the latter lacking the 1,25-nVDR and exhibiting type II rickets and alopecia. Methods were developed for isolation and culture of cells from the resting zone (RC) and growth zone (GC, prehypertrophic and upper hypertrophic zones) of the costochondral cartilages from wild type and homozygous knockout mice. 1alpha,25(OH)(2)D(3) had no effect on [(3)H]-thymidine incorporation in VDR(-/-) GC cells, but it increased [(3)H]-thymidine incorporation in VDR(+/+) cells. Proteoglycan production was increased in cultures of both VDR(-/-) and VDR(+/+) cells, based on [(35)S]-sulfate incorporation. These effects were partially blocked by chelerythrine, which is a specific inhibitor of protein kinase C (PKC), indicating that PKC-signaling was involved. 1alpha,25(OH)(2)D(3) caused a 10-fold increase in PKC specific activity in VDR(-/-), and VDR(+/+) GC cells as early as 1 min, supporting this hypothesis. In contrast, 1alpha,25(OH)(2)D(3) had no effect on PKC activity in RC cells isolated from VDR(-/-) or VDR(+/+) mice and neither 1beta,25(OH)(2)D(3) nor 24R,25(OH)(2)D(3) affected PKC in GC cells from these mice. Phospholipase C (PLC) activity was also increased within 1 min in GC chondrocyte cultures treated with 1alpha,25(OH)(2)D(3). As noted previously for rat growth plate chondrocytes, 1alpha,25(OH)(2)D(3) mediated its increases in PKC and PLC activities in the VDR(-/-) GC cells through activation of phospholipase A(2) (PLA(2)). These responses to 1alpha,25(OH)(2)D(3) were blocked by antibodies to 1,25-MARRS, which is a [(3)H]-1,25(OH)(2)D(3) binding protein identified in chick enterocytes. 24R,25(OH)(2)D(3) regulated PKC in VDR(-/-) and VDR(+/+) RC cells. Wild type RC cells responded to 24R,25(OH)(2)D(3) with an increase in PKC, whereas treatment of RC cells from mice lacking a functional 1,25-nVDR caused a time-dependent decrease in PKC between 6 and 9 min. 24R,25(OH)(2)D(3) dependent PKC was mediated by phospholipase D, but not by PLC, as noted previously for rat RC cells treated with 24R,25(OH)(2)D(3). These results provide definitive evidence that there are two distinct receptors to 1alpha,25(OH)(2)D(3). 1alpha,25(OH)(2)D(3)-dependent regulation of DNA synthesis in GC cells requires the 1,25-nVDR, although other physiological responses to the vitamin D metabolite, such as proteoglycan sulfation, involve regulation via the 1,25-mVDR.  相似文献   

15.
16.
1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)), the active metabolite of vitamin D, mediates many of its effects through the intranuclear vitamin D receptor (VDR, NR1I1), that belongs to the large superfamily of nuclear receptors. Vitamin D receptor can directly regulate gene expression by binding to vitamin D response elements (VDREs) located in promoter or enhancer regions of various genes. Although numerous synthetic analogs of 1alpha,25(OH)(2)D(3) have been analysed for VDR binding and transactivation of VDRE-driven gene expression, the biologic activity of many naturally occurring metabolites has not yet been analyzed in detail. We therefore studied the transactivation properties of 1alpha,24R, 25-trihydroxyvitamin D(3) (1alpha,24R,25(OH)(3)D(3)), 1alpha, 25-dihydroxy-3-epi-vitamin D(3) (1alpha,25(OH)(2)-3-epi-D(3)), 1alpha,23S,25-trihydroxyvitamin D(3) (1alpha,23S,25(OH)(3)D(3)), and 1alpha-hydroxy-23-carboxy-24,25,26,27-tetranorvitamin D(3) (1alpha(OH)-24,25,26,27-tetranor-23-COOH-D(3); calcitroic acid) using the human G-361 melanoma cell line. Cells were cotransfected with a VDR expression plasmid and luciferase reporter gene constructs driven by two copies of the VDRE of either the mouse osteopontin promoter or the 1alpha,25(OH)(2)D(3) 24-hydroxylase (CYP24) promoter. Treatment with 1alpha,25(OH)(2)D(3) or the metabolites 1alpha,24R,25(OH)(3)D(3), 1alpha,25(OH)(2)-3-epi-D(3), and 1alpha,23S,25(OH)(3)D(3) resulted in transactivation of both constructs in a time- and dose-dependent manner, and a postitive regulatory effect was observed even for calcitroic acid in the presence of overexpressed VDR. The metabolites that were active in the reporter gene assay also induced expression of CYP24 mRNA in the human keratinocyte cell line HaCaT, although with less potency than the parent hormone. A ligand-binding assay based on nuclear extracts from COS-1 cells overexpressing human VDR demonstrated that the metabolites, although active in the reporter gene assay, were much less effective in displacing [(3)H]-labeled 1alpha,25(OH)(2)D(3) from VDR than the parent hormone. Thus, we report that several natural metabolites of 1alpha,25(OH)(2)D(3) retain significant biologic activity mediated through VDR despite their apparent low affinity for VDR.  相似文献   

17.
We employed a genetic approach to determine whether deficiency of 1,25-dihydroxyvitamin D (1,25(OH)2D) and deficiency of the vitamin D receptor (VDR) produce the same alterations in skeletal and calcium homeostasis and whether calcium can subserve the skeletal functions of 1,25(OH)2D and the VDR. Mice with targeted deletion of the 25-hydroxyvitamin D 1alpha-hydroxylase (1alpha(OH)ase-/-) gene, the VDR gene, and both genes were exposed to 1) a high calcium intake, which maintained fertility but left mice hypocalcemic; 2) this intake plus three times weekly injections of 1,25(OH)2D3, which normalized calcium in the 1alpha(OH)ase-/- mice only; or 3) a "rescue" diet, which normalized calcium in all mutants. These regimens induced different phenotypic changes, thereby disclosing selective modulation by calcium and the vitamin D system. Parathyroid gland size and the development of the cartilaginous growth plate were each regulated by calcium and by 1,25(OH)2D3 but independent of the VDR. Parathyroid hormone secretion and mineralization of bone reflected ambient calcium levels rather than the 1,25(OH)2D/VDR system. In contrast, increased calcium absorption and optimal osteoblastogenesis and osteoclastogenesis were modulated by the 1,25(OH)2D/VDR system. These studies indicate that the calcium ion and the 1,25(OH)2D/VDR system exert discrete effects on skeletal and calcium homeostasis, which may occur coordinately or independently.  相似文献   

18.
19.
20.
The active metabolite of vitamin D, 1alpha,25-dihydroxyvitamin D(3), suppresses autoimmune disease in several animal models including experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis. The molecular mechanism of this immunosuppression is at present unknown. While 1alpha,25-dihydroxyvitamin D(3) is believed to function through a single vitamin D receptor, there are reports of other vitamin D receptors as well as a "nongenomic" mode of action. We have prepared the EAE model possessing the vitamin D receptor null mutation and determined if 1alpha,25-dihydroxyvitamin D(3) can suppress this disease in the absence of a functional vitamin D receptor. Vitamin D receptor null mice develop EAE although the incidence rate is one-half that of wild-type controls. The administration of 1alpha,25-dihydroxyvitamin D(3) had no significant effect on the incidence of EAE in the vitamin D receptor null mice, while it completely blocked EAE in the wild-type mice. We conclude that 1alpha,25-dihydroxyvitamin D(3) functions to suppress EAE through the well-known VDR and not through an undiscovered receptor or through a "nongenomic" mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号