首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
In adult rat liver, amounts of the urea cycle enzymes are regulated by diet, glucocorticoids, and cAMP. Rat hepatocytes cultured in chemically defined medium were used to precisely define the roles of glucocorticoids and cAMP in regulation of these enzymes at the pretranslational level. With the exception of ornithine transcarbamylase mRNA, cultured rat hepatocytes retain the capacity to express mRNAs for the urea cycle enzymes at the same level observed for liver of intact rats. In the absence of added hormones, mRNAs for argininosuccinate synthetase and argininosuccinate lyase remained at or above normal in vivo levels, while mRNAs for the other three enzymes declined to very low levels. Messenger RNAs for carbamyl phosphate synthetase I, argininosuccinate synthetase, argininosuccinate lyase, and arginase increased in response to either dexamethasone or 8-(4-chlorophenylthio) cAMP (CPT-cAMP). Half-maximal responses occurred at 2-3 nM dexamethasone and at 2-7 microM CPT-cAMP. Cycloheximide abolished the response to dexamethasone but not to CPT-cAMP, suggesting that dexamethasone induced expression of an intermediate gene product required for induction of these mRNAs. The effects of a combination of both hormones were additive for argininosuccinate lyase mRNA and synergistic for carbamyl phosphate synthetase I, argininosuccinate synthetase, and arginase mRNAs. Messenger RNA for ornithine transcarbamylase showed little or no response to any condition tested. Depending on the particular mRNA and hormonal condition tested, increases in mRNA levels ranged from 1.4- to 70-fold above control values.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Arginine is an intermediate of the urea cycle in the liver. It is synthesized by the first four enzymes of the cycle, carbamylphosphate synthetase I, ornithine transcarbamylase, argininosuccinate synthetase, and argininosuccinate lyase, and is hydrolyzed to urea and ornithine by arginase I, forming the cycle. In endotoxemia shock, inducible nitric oxide (NO) synthase (iNOS) is induced in hepatocytes and arginine is utilized for NO production. Regulation of the genes for iNOS and the urea cycle enzymes was studied using lipopolysaccharide (LPS)-treated rat livers. When rats were injected intraperitoneally with LPS, iNOS mRNA was markedly induced. Cationic amino acid transporter-2 and C/EBPbeta mRNAs were also highly increased. In contrast, mRNAs for all the urea cycle enzymes except ornithine transcarbamylase were gradually decreased and reached 16-28% of controls at 12 h. However, all these enzymes remained unchanged at protein level up to 24 h. In light of these results, we suggest that synthesis of urea cycle enzymes is downregulated and that the protein synthetic capacity is directed to synthesis of proteins required for defense against endotoxemia.  相似文献   

3.
The response of all urea cycle enzymes, i.e. carbamyl phosphate synthetase, ornithine transcarbamylase, argininosuccinate synthetase, argininosuccinase and arginase, has been determined in the liver of protein-depleted young rats which were forcibly fed individual essential l-amino acids along with or without caloric sources. The feeding of individual amino acids produced different effects on the level of each of the enzymes, and generally the response of carbamyl phosphate synthetase, argininosuccinate synthetase, argininosuccinase and arginase was greater than that of ornithine transcarbamylase. Of all the essential amino acids tested tryptophan was most effective on the elevation of these enzymes. Several amino acids, phenylalanine, leucine, threonine and methionine had also somewhat effect on the increase of some enzyme activities, but other amino acids had little or no effect on the response of these enzymes. On the contrary, histidine and lysine caused appreciable decrease of arginase activity. These enzyme activities in rats fed tryptophan alone were extremely higher than those of animals fed it along with caloric sources. The response level of the enzymes was essentially dependent on the tryptophan content in diets under the proper conditions. Tryptophan feeding did not produce any increase in both levels of urine and plasma urea despite the elevation of all urea cycle enzyme activities occured.  相似文献   

4.
Mitochondrial urea cycle enzymes in rats treated with sodium benzoate   总被引:1,自引:0,他引:1  
Since sodium benzoate, which is widely used to treat hyperammonemia its effect on mitochondrial urea cycle enzymes was investigated. its effect on mitochondrial urea cycle enzymes was investigated. Sodium benzoate was administered to urease treated hyperammonemic rats and controls. In both groups no interference with the activity of carbamylphosphate synthetase, ornithine carbamyltransferase and N-acetylglutamate synthetase in the liver could be observed at concentrations of benzoate in plasma found in hyperammonemic patients. Careful monitoring of plasma levels reduces benzoate toxicity as shown in a patient with argininosuccinic aciduria.  相似文献   

5.
A Herzfeld  S M Raper 《Enzyme》1976,21(5):471-480
The activities of 12 enzymes, many related to ornithine metabolism, were measured in rat submaxillary gland, submaxillary gland tumors and pancreas. In submaxillary gland, the activities of arginase, ornithine aminotransferase, pyrroline-5-carboxylate reductase and glutamine synthetase were high, but no ornithine transcarbamylase or proline oxidase could be detected. In the fetal submaxillary gland, arginase was at almost adult levels while ornithine aminotransferase reached 50% of its adult value postnatally. Submaxillary tumors deviated from their cognate tissue by lower levels of amino acid metabolizing enzymes and by high concentrations of thymidine kinase. In pancreas, none of the pyrroline-5-carboxylate metabolizing enzymes were as high as in either liver or submaxillary gland. The outstanding activities were those of gamma-glutamyl transpeptidase and glutamate dehydrogenase. Although arginase activities in submaxillary gland and pancreas were quantitatively similar, they differed qualitatively: submaxillary gland contained the same variant as liver while the pancreatic isozymes resembled those of other nonhepatic tissues.  相似文献   

6.
Effects of hypophysectomy and subsequent growth hormone administration on mitochondrial enzymes of the urea cycle were investigated in rat liver. Hypophysectomy increased the activities of the two mitochondrial enzymes, carbamyl phosphate synthetase and ornithine transcarbamylase but not of the cytosolic enzyme, argininosuccinate synthetase. The activity of mitochondrial phosphate dependent glutaminase was not affected. Administration of bovine growth hormone (100 μg/100 g body weight) for two weeks decreased the activities of carbamyl phosphate synthetase and ornithine transcarbamylase almost to the normal level. These results suggest a specific effect of growth hormone on mitochondrial enzymes of the urea cycle and serve to explain the increased urea formation in hypopituitarism.  相似文献   

7.
Arginine is a precursor for the synthesis of urea, polyamines, creatine phosphate, nitric oxide and proteins. It is synthesized from ornithine by argininosuccinate synthetase and argininosuccinate lyase and is degraded by arginase, which consists of a liver-type (arginase I) and a non-hepatic type (arginase II). Recently, cDNAs for human and rat arginase II have been isolated. In this study, immunocytochemical analysis showed that human arginase II expressed in COS-7 cells was localized in the mitochondria. Arginase II mRNA was abundant in the rat small intestine and kidney. In the kidney, argininosuccinate synthetase and lyase were immunostained in the cortex, intensely in proximal tubules and much less intensely in distal tubules. In contrast, arginase II was stained intensely in the outer stripes of the outer medulla, presumably in the proximal straight tubules, and in a subpopulation of the proximal tubules in the cortex. Immunostaining of serial sections of the kidney showed that argininosuccinate synthetase and arginase II were collocalized in a subpopulation of proximal tubules in the cortex, whereas only the synthetase, but not arginase II, was present in another subpopulation of proximal tubules. In the liver, all the enzymes of the urea cycle, i.e. carbamylphosphate synthetase I, ornithine transcarbamylase, argininosuccinate synthetase and lyase and arginase I, showed similar zonation patterns with staining more intense in periportal hepatocytes than in pericentral hepatocytes, although zonation of ornithine transcarbamylase was much less prominent. The implications of these results are discussed.  相似文献   

8.
The measurement of argininosuccinate lyase (ASase) and arginase, both in liver and erythrocytes, was developed by using a commercial amino acid analyzer. The method is based upon the use of two different substrates, argininosuccinate and arginine for ASase and arginase, respectively, and the measurement of only one final metabolite: ornithine. The use of ornithine as a marker of biological activity of ASase is related to the fact that in the urea cycle, the specific activity of arginase is much higher than that of ASase; thus, during in vitro determinations, arginine, which is the product of ASase, is rapidly converted to ornithine. The sensitivity of the methods is very high since we were able to detect both activities using very diluted rat liver homogenates (0.10 mg protein/ml) or few microliters of human blood. In rat liver the Vmax for ASase and arginase were respectively 0.54 and 140 mumol/h/mg protein; the apparent Km values 1.25 and 13.5 mM. In human erythrocytes the Vmax for the same enzymes were 7.2 and 170 nmol/h/mg Hb and the apparent Km values were 0.66 and 9.5 mM. In 10 healthy volunteers the specific activity of ASase and arginase determined in blood were respectively 8.60 +/- 0.46 and 124.1 +/- 14.5 nmol/h/mg Hb. The results obtained from 2 patients suffering from argininosuccinic aciduria were also reported. In these latter cases while ASase was not detectable in blood, arginase activity was at the lowest end of the confidence limits determined in healthy volunteers.  相似文献   

9.
Abstract— The distribution of argininosuccinate synthetase, argininosuccinase and arginase, and the synthesis of urea in cerebullum. cerebral cortex and brain stem have been studied. Cerebral cortex had high levels of argininosuccinate synthetase and argininosuccinase. and a high ability to synthesize urea from aspartic acid and citrulline. Of the three regions, cerebullum had the highest arginase activity. The activities of the enzymes transamidinase and ornithine aminotransferase in the metabolism of arginine and ornithine in pathways other than urea formation have been studied in the three regions of the rat brain. The activity of creatine phosphokinase in all regions was the same: carbamylphosphatase activity was highest in cerebullum. Cerebral cortex had a high activity of aspartic acid transcarba-mylase. The brain stem, among the three regions, had the lowest activities of glutamine synthetase and glutaminase. The activities of these enzymes in the different regions are discussed in relation to urea production and the utilization of the urea cycle intermediates.
Intraperitoneal injection of high amounts of citrulline brought about a rise in the glutamine synthetase activity of cerebellum and brain stem and a rise in ornithine aminotransferase in cerebral cortex and liver. These results are discussed in relation to the mechanism of action of citrulline in alleviating the toxicity in hyperammonaemic states.  相似文献   

10.
The ornithine-urea cycle has been investigated in Fasciola gigantica. Agrinase had very high activity compared to the other enzymes. Carbamoyl phosphate synthetase and ornithine carbamoyltransferase had very low activity. A moderate enzymatic activity was recorded for argininosuccinate synthetase and argininosuccinate lyase. The low levels of F. gigantica urea cycle enzymes except to the arginase suggest the urea cycle is operative but its role is of a minor important. The high level of arginase activity may benefit for the hydrolysis of the exogenous arginine to ornithine and urea. Two arginases Arg I and Arg II were separated by DEAE-Sepharose column. Further purification was restricted to Arg II with highest activity. The molecular weight of Arg II, as determined by gel filtration and SDS-PAGE, was 92,000. The enzyme was capable to hydrolyze l-arginine and to less extent l-canavanine at arginase:canavanase ratio (>10). The enzyme exhibited a maximal activity at pH 9.5 and Km of 6 mM. The optimum temperature of F. gigantica Arg II was 40 degrees C and the enzyme was stable up to 30 degrees C and retained 80% of its activity after incubation at 40 degrees C for 15 min and lost all of its activity at 50 degrees C. The order of effectiveness of amino acids as inhibitors of enzyme was found to be lysine>isoleucine>ornithine>valine>leucine>proline with 67%, 43%, 31%, 25%, 23% and 15% inhibition, respectively. The enzyme was activated with Mn2+, where the other metals Fe2+, Ca2+, Hg2+, Ni2+, Co2+ and Mg2+ had inhibitory effects.  相似文献   

11.
The activities of ornithine transcarbamylase, arginine synthetase and arginase in the liver of rats receiving basal diets containing 25% casein supplemented respectively with arginine, aspartic acid, glutamic acid, glycine, a mixture of arginine, aspartic acid and glutamic acid, egg albumin, casein, wheat gluten and gelatin have been determined.

These urea cycle enzymes in rats receiving diets supplemented with the various nitrogen sources were generally increased, but the increments were due to the increase of the ingested amount of nitrogen, and not the specific effect of the individual amino acids or proteins. The excretion of urinary urea in general was increased proportionally with the elevations of these enzyme activities, independent of the nature of the dietary nitrogen.  相似文献   

12.
Urea comprises 7·7 per cent of the total nitrogen excretion of Nezara viridula. The bug is capable of oxidizing uric acid to allantoin, which is also excreted, but the uricolytic pathway is not active beyond this point. Of the enzymes of the ornithine cycle, arginase and ornithine transcarbamalase are active, but there is no evidence for the arginine synthetase system. Carbamyl phosphate synthetase has a low activity detectable only by the use of radioactive substrates. Confirmation of the operation of only part of the ornithine cycle is seen in the incorporation of bicarbonate carbon into citrulline, but not into arginine or urea, by homogenates of bug tissue. It is concluded that urea in the excreta is derived from excess arginine in the diet by the action of the enzyme arginase. Free arginine is present in the cell sap of the bean pods on which the bugs feed in amounts sufficient to account for the urea excreted.  相似文献   

13.
Function of arginase in lactating mammary gland   总被引:5,自引:3,他引:2  
The potential for a considerable formation of ornithine exists in lactating mammary gland because of its arginase content. Late in lactation arginase reaches an activity in the gland higher than that present in any rat tissue except liver. Occurrence of the urea cycle can be excluded since two enzymes for the further reaction of ornithine in the cycle, carbamoyl phosphate synthetase I and ornithine carbamoyltransferase, are both absent from this tissue. Instead, carbamoyl phosphate synthetase II appears early in lactation, associated with accumulation of aspartate carbamoyltransferase and DNA, consistent with the proposed role of these enzymes in pyrimidine synthesis. The facts require another physiological role for arginase apart from its known function in the urea cycle. Significant activity of ornithine aminotransferase develops in mammary gland in close parallel with the arginase. By this reaction, ornithine can be converted into glutamic semialdehyde and subsequently into proline. The enzymic composition of the lactating mammary gland is therefore appropriate for the major conversion of arginine into proline that is known to occur in the intact gland.  相似文献   

14.
The role of dietary arginine in affecting nitrogen utilisation and excretion was studied in juvenile European sea bass (Dicentrarchus labrax) fed for 72 days with diets differing in protein sources (plant protein-based (PM) and fish-meal-based (FM)). Fish growth performance and nitrogen utilisation revealed that dietary Arg surplus was beneficial only in PM diets. Dietary Arg level significantly affected postprandial plasma urea concentrations. Hepatic arginase activity increased (P<0.05) in response to dietary Arg surplus in fish fed plant protein diets; conversely ornithine transcarbamylase activity was very low and inversely related to arginine intake. No hepatic carbamoyl phosphate synthetase III activity was detected. Dietary arginine levels did not affect glutamate dehydrogenase activity. A strong linear relationship was found between liver arginase activity and daily urea-N excretion. Dietary Arg excess reduced the proportion of total ammonia nitrogen excreted and increased the contribution of urea-N over the total N excretion irrespective of dietary protein source. Plasma and excretion data combined with enzyme activities suggest that dietary Arg degradation via hepatic arginase is a major pathway for ureagenesis and that ornithine-urea cycle is not completely functional in juvenile sea bass liver.  相似文献   

15.
Sporosarcina ureae BS 860, a motile, sporeforming coccus, possesses the enzymes required for a functioning urea (ornithine) cycle. This is only the second known example of urea cycle activity in a prokaryote. Specific activities are reported for ornithine carbamoyltransferase, argininosuccinase, arginase, and urease. Although argininosuccinate synthetase activity could not be detected directly in crude cell extracts, indirect evidence from radiocarbon tracing data for arginine synthesis from the substrate, l-[1-14C]-ornithine, strongly suggest the presence of this or other similar enzyme activity. Furthermore, good growth in defined media containing either 1.0% glutamine, ornithine, or citrulline as sole carbon sources suggests argininosuccinate synthetase activity is necessary for arginine synthesis. The effect of varying pH on arginase and urease activities indicate that these two enzymes may function within the context of the urea cycle to generate ammonia for amino acid synthesis, as well as for raising the pH of the growth micro-environment.  相似文献   

16.
Sub-cellular localization of different ornithine-urea cycle enzymes was studied in the liver and kidney of a freshwater air-breathing teleost. Carbamyl phosphate synthetase, ornithine transcarbamylase, and arginase were found to be localized inside the mitochondria, and argininosuccinate synthetase and argininosuccinate lyase were found in the soluble fraction. Mitochondrial localization of arginase, a feature known in marine elasmobranchs and toadfishes, indicates the evolutionary position of H. fossilis to be different from that of present day freshwater teleosts.  相似文献   

17.
18.
Urea synthesis via the hepatic ornithine urea cycle (OUC) has been well described in elasmobranchs, but it is unknown whether OUC enzymes are also present in extrahepatic tissues. Muscle and liver urea, trimethylamine oxide (TMAO), and other organic osmolytes, as well as selected OUC enzymes (carbamoyl phosphate synthetase III, ornithine transcarbamoylase, arginase, and the accessory enzyme glutamine synthetase), were measured in adult little skates (Raja erinacea) exposed to 100% or 75% seawater for 5 d. Activities of all four OUC enzymes were detected in the muscle. There were no changes in muscle OUC activities in skates exposed to 75% seawater; however, arginase activity was significantly lower in the liver, compared to controls. Urea, TMAO, and several other osmolytes were significantly lower in the muscle of little skates exposed to 75% seawater, whereas only glycerophosphorylcholine was significantly lower in the liver. Urea excretion rates were twofold higher in skates exposed to 75% seawater. Taken together, these data suggest that a functional OUC may be present in the skeletal muscle tissues of R. erinacea. As well, enhanced urea excretion rates and the downregulation of the anchor OUC enzyme, arginase, in the liver may be critical in regulating tissue urea content under dilute-seawater stress.  相似文献   

19.
Channeling of urea cycle intermediates in situ in permeabilized hepatocytes   总被引:2,自引:0,他引:2  
Preferential use of endogenously generated intermediates by the enzymes of the urea cycle was observed using isolated rat hepatocytes made permeable to low molecular weight compounds with alpha-toxin. The permeabilized cells synthesized [14C]urea from added NH4Cl, [14C]HCO3-, ornithine, and aspartate, using succinate as a respiratory substrate; with all substrates saturating, about 4 nmol of urea were formed per min/mg dry weight of cells. Urea usually accounted for about 40-50% of the total (NH3 + ornithine)-dependent counts, arginine for less than 10%, and citrulline for about 30%. Very tight channeling of arginine between argininosuccinate lyase and arginase was shown by the fact that the addition of a 200-fold excess of unlabeled arginine to the incubations did not decrease the percentage of counts found in urea or increase that found in arginine, even though a substantial amount of the added arginine was hydrolyzed inside the cells. The channeling of argininosuccinate between its synthetase and lyase was demonstrated by similar observations; unlabeled argininosuccinate added in 200-fold excess decreased the percentage of counts in urea by only 25%. Channeling of citrulline from its site of synthesis by ornithine transcarbamylase in the mitochondrial matrix to argininosuccinate synthetase in the cytoplasmic space was also shown. These results strongly suggest that the three "soluble" cytoplasmic enzymes of the urea cycle are grouped around the mitochondria and are spatially organized within the cell in such a way that intermediates can be efficiently transferred between them.  相似文献   

20.
The induction pattern of urea cycle enzymes and the rate of urea-N excretion were studied with relation to ammonia load in the perfused liver of a freshwater ammoniotelic teleost, Heteropneustes fossilis, when infused with different concentrations of ammonium chloride for 60 min. Both urea-N excretion and uptake of ammonia by the perfused liver were found to be a saturable process. The Vmax of urea-N excretion (0.45 μmol/g liver/min) was obtained at ammonium chloride addition of 1.18 μmol/g liver/min. The maximum induction of carbamyl phosphate synthetase (ammonia dependent), 200%, and of ornithine transcarbamylase, 120%, was seen by the addition of 0.58 μmol/g liver/min, and for argininosuccinate synthetase and argininosuccinate lyase of 150% and 115%, respectively, by the addition of 2.8 μmol/g liver/min of ammonium chloride. However, arginase activity did not alter in any of the concentrations of ammonium chloride added. An increase of ammonia load of 3–5 μmol/g wet wt from the physiological level in the perfused liver was sufficient to initiate and to cause maximum induction of most of the urea cycle enzymes activitty. These results further confirm the capacity of transition from ammoniotelism to ureotelism in this unique freshwater air-breathing teleost to tolerate a very high ambient ammonia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号