首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: In the fruit fly Drosophila, the Inscuteable protein localises to the apical cell cortex in neuroblasts and directs both the apical-basal orientation of the mitotic spindle and the basal localisation of the protein determinants Numb and Prospero during mitosis. Asymmetric localisation of Inscuteable is initiated during neuroblast delamination by direct binding to Bazooka, an apically localised protein that contains protein-interaction motifs known as PDZ domains. How apically localised Inscuteable directs asymmetric cell divisions is unclear. RESULTS: A novel 70 kDa protein called Partner of Inscuteable (Pins) and a heterotrimeric G-protein alpha subunit were found to bind specifically to the functional domain of Inscuteable in vivo. The predicted sequence of Pins contained tetratrico-peptide repeats (TPRs) and motifs implicated in binding Galpha proteins. Pins colocalised with Inscuteable at the apical cell cortex in interphase and mitotic neuroblasts. Asymmetric localisation of Pins required both Inscuteable and Bazooka. In epithelial cells, which do not express inscuteable, Pins was not apically localised but could be recruited to the apical cortex by ectopic expression of Inscuteable. In pins mutants, these epithelial cells were not affected, but neuroblasts showed defects in the orientation of their mitotic spindle and the basal asymmetric localisation of Numb and Miranda during metaphase. Although localisation of Inscuteable in pins mutants was initiated correctly during neuroblast delamination, Inscuteable became homogeneously distributed in the cytoplasm during mitosis. CONCLUSIONS: Pins and Inscuteable are dependent on each other for asymmetric localisation in delaminated neuroblasts. The binding of Pins to Galpha protein offers the intriguing possibility that Inscuteable and Pins might orient asymmetric cell divisions by localising or locally modulating a heterotrimeric G-protein signalling cascade at the apical cell cortex.  相似文献   

2.
3.
The establishment and maintenance of polarity is of fundamental importance for the function of epithelial and neuronal cells. In Drosophila, the multi-PDZ domain protein Bazooka (Baz) is required for establishment of apico-basal polarity in epithelia and in neuroblasts, the stem cells of the central nervous system. In the latter, Baz anchors Inscuteable in the apical cytocortex, which is essential for asymmetric localization of cell fate determinants and for proper orientation of the mitotic spindle. Here we show that Baz directly binds to the Drosophila atypical isoform of protein kinase C and that both proteins are mutually dependent on each other for correct apical localization. Loss-of-function mutants of the Drosophila atypical isoform of PKC show loss of apico-basal polarity, multilayering of epithelia, mislocalization of Inscuteable and abnormal spindle orientation in neuroblasts. Together, these data provide strong evidence for the existence of an evolutionary conserved mechanism that controls apico-basal polarity in epithelia and neuronal stem cells. This study is the first functional analysis of an atypical protein kinase C isoform using a loss-of-function allele in a genetically tractable organism.  相似文献   

4.
The Drosophila Inscuteable protein acts as a key regulator of asymmetric cell division during the development of the nervous system [1] [2]. In neuroblasts, Inscuteable localizes into an apical cortical crescent during late interphase and most of mitosis. During mitosis, Inscuteable is required for the correct apical-basal orientation of the mitotic spindle and for the asymmetric segregation of the proteins Numb [3] [4] [5], Prospero [5] [6] [7] and Miranda [8] [9] into the basal daughter cell. When Inscuteable is ectopically expressed in epidermal cells, which normally orient their mitotic spindle parallel to the embryo surface, these cells reorient their mitotic spindle and divide perpendicularly to the surface [1]. Like the Inscuteable protein, the inscuteable RNA is asymmetrically localized [10]. We show here that inscuteable RNA localization is not required for Inscuteable protein localization. We found that a central 364 amino acid domain - the Inscuteable asymmetry domain - was necessary and sufficient for Inscuteable localization and function. Within this domain, a separate 100 amino acid region was required for asymmetric localization along the cortex, whereas a 158 amino acid region directed localization to the cell cortex. The same 158 amino acid fragment could localize asymmetrically when coexpressed with the full-length protein, however, and could bind to Inscuteable in vitro, suggesting that this domain may be involved in the self-association of Inscuteable in vivo.  相似文献   

5.
Cell polarity is essential for generating cell diversity and for the proper function of most differentiated cell types. In many organisms, cell polarity is regulated by the atypical protein kinase C (aPKC), Bazooka (Baz/Par3), and Par6 proteins. Here, we show that Drosophila aPKC zygotic null mutants survive to mid-larval stages, where they exhibit defects in neuroblast and epithelial cell polarity. Mutant neuroblasts lack apical localization of Par6 and Lgl, and fail to exclude Miranda from the apical cortex; yet, they show normal apical crescents of Baz/Par3, Pins, Inscuteable, and Discs large and normal spindle orientation. Mutant imaginal disc epithelia have defects in apical/basal cell polarity and tissue morphology. In addition, we show that aPKC mutants show reduced cell proliferation in both neuroblasts and epithelia, the opposite of the lethal giant larvae (lgl) tumor suppressor phenotype, and that reduced aPKC levels strongly suppress most lgl cell polarity and overproliferation phenotypes.  相似文献   

6.
Asymmetric division of neural progenitors is a key mechanism by which neuronal diversity in the Drosophila central nervous system is generated. The distinct fates of the daughter cells derived from these divisions are achieved through preferential segregation of the cell fate determinants Prospero and Numb to one of the two daughters. This is achieved by coordinating apical and basal mitotic spindle orientation with the basal cortical localization of the cell fate determinants during mitosis. A complex of apically localized proteins, including Inscuteable (Insc), Partner of Inscuteable (Pins), Bazooka (Baz), DmPar-6, DaPKC, and G alpha i, is required to mediate and coordinate basal protein localization with mitotic spindle orientation. Pins, a molecule which directly interacts with Insc, is a key component required for the integrity of this complex; in the absence of Pins, other components become mislocalized or destabilized, and basal protein localization and mitotic spindle orientation are defective. Here we define the functional domains of Pins. We show that the C-terminal region containing the G alpha i binding GoLoco motifs is necessary and sufficient for targeting to the neuroblast cortex, which appears to be a prerequisite for apical localization of Pins. The N-terminal tetratricopeptide repeat-containing region of Pins is required for two processes; TPR repeats 1 to 3 plus the C-terminal region are required for apical localization but are insufficient to recruit Insc to the apical cortex, whereas TPR repeats 1 to 7 plus C-terminal Pins can perform both functions. Hence, the abilities of Pins to cortically localize, to apically localize, and to restore Insc apical localization are all separable, and all three capabilities are necessary to mediate asymmetric division. Moreover, the need for N-terminal Pins can be obviated by fusing a minimal Insc functional domain with the C-terminal region of Pins; this chimeric molecule is apically localized and can fulfill the functions of both Insc and Pins.  相似文献   

7.
Drosophila neuroblasts are stem cells that divide asymmetrically to produce another large neuroblast and a smaller ganglion mother cell (GMC). During neuroblast division, several cell fate determinants, such as Miranda, Prospero and Numb, are preferentially segregated into the GMC, ensuring its correct developmental fate. The accurate segregation of these determinants relies on proper orientation of the mitotic spindle within the dividing neuroblast, and on the correct positioning of the cleavage plane. In this study we have analyzed the role of centrosomes and astral microtubules in neuroblast spindle orientation and cytokinesis. We examined neuroblast division in asterless (asl) mutants, which, although devoid of functional centrosomes and astral microtubules, form well-focused anastral spindles that undergo anaphase and telophase. We show that asl neuroblasts assemble a normal cytokinetic ring around the central spindle midzone and undergo unequal cytokinesis. Thus, astral microtubules are not required for either signaling or positioning cytokinesis in Drosophila neuroblasts. Our results indicate that the cleavage plane is dictated by the positioning of the central spindle midzone within the cell, and suggest a model on how the central spindle attains an asymmetric position during neuroblast mitosis. We have also analyzed the localization of Miranda during mitotic division of asl neuroblasts. This protein accumulates in morphologically regular cortical crescents but these crescents are mislocalized with respect to the spindle orientation. This suggests that astral microtubules mediate proper spindle rotation during neuroblast division.  相似文献   

8.
Cell division often generates unequally sized daughter cells by off-center cleavages, which are due to either displacement of mitotic spindles or their asymmetry. Drosophila neuroblasts predominantly use the latter mechanism to divide into a large apical neuroblast and a small basal ganglion mother cell (GMC), where the neural fate determinants segregate. Apically localized components regulate both the spindle asymmetry and the localization of the determinants. Here, we show that asymmetric spindle formation depends on signaling mediated by the G beta subunit of heterotrimeric G proteins. G beta 13F distributes throughout the neuroblast cortex. Its lack induces a large symmetric spindle and causes division into nearly equal-sized cells with normal segregation of the determinants. In contrast, elevated G beta 13F activity generates a small spindle, suggesting that this factor suppresses spindle development. Depletion of the apical components also results in the formation of a small symmetric spindle at metaphase. Therefore, the apical components and G beta 13F affect the mitotic spindle shape oppositely. We propose that differential activation of G beta signaling biases spindle development within neuroblasts and thereby causes asymmetric spindles. Furthermore, the multiple equal cleavages of G beta mutant neuroblasts accompany neural defects; this finding suggests indispensable roles of eccentric division in assuring the stem cell properties of neuroblasts.  相似文献   

9.
The asymmetric division of Drosophila neuroblasts involves the basal localization of cell fate determinants and the generation of an asymmetric, apicobasally oriented mitotic spindle that leads to the formation of two daughter cells of unequal size. These features are thought to be controlled by an apically localized protein complex comprising of two signaling pathways: Bazooka/Drosophila atypical PKC/Inscuteable/DmPar6 and Partner of inscuteable (Pins)/Galphai; in addition, Gbeta13F is also required. However, the role of Galphai and the hierarchical relationship between the G protein subunits and apical components are not well defined. Here we describe the isolation of Galphai mutants and show that Galphai and Gbeta13F play distinct roles. Galphai is required for Pins to localize to the cortex, and the effects of loss of Galphai or pins are highly similar, supporting the idea that Pins/Galphai act together to mediate various aspects of neuroblast asymmetric division. In contrast, Gbeta13F appears to regulate the asymmetric localization/stability of all apical components, and Gbeta13F loss of function exhibits phenotypes resembling those seen when both apical pathways have been compromised, suggesting that it acts upstream of the apical pathways. Importantly, our results have also revealed a novel aspect of apical complex function, that is, the two apical pathways act redundantly to suppress the formation of basal astral microtubules in neuroblasts.  相似文献   

10.
Cell fate diversity can be achieved through the asymmetric segregation of cell fate determinants. In the Drosophila embryo, neuroblasts divide asymmetrically and in a stem cell fashion. The determinants Prospero and Numb localize in a basal crescent and are partitioned from neuroblasts to their daughters (GMCs). Here we show that nonmuscle myosin II regulates asymmetric cell division by an unexpected mechanism, excluding determinants from the apical cortex. Myosin II is activated by Rho kinase and restricted to the apical cortex by the tumor suppressor Lethal (2) giant larvae. During prophase and metaphase, myosin II prevents determinants from localizing apically. At anaphase and telophase, myosin II moves to the cleavage furrow and appears to "push" rather than carry determinants into the GMC. Therefore, the movement of myosin II to the contractile ring not only initiates cytokinesis but also completes the partitioning of cell fate determinants from the neuroblast to its daughter.  相似文献   

11.
Tuxworth R  Chia W 《Molecular cell》2003,11(2):288-289
Drosophila neuroblasts divide to produce daughters of distinct fate by asymmetrically localizing cell fate determinants and segregating them preferentially to one daughter. An intact F-actin cytoskeleton was known to be required, and now a myosin VI (Jaguar) has been shown to be necessary for basal targeting of cell fate determinants in neuroblasts.  相似文献   

12.
Asymmetric cell division is a conserved mechanism to generate cellular diversity during animal development and a key process in cancer and stem cell biology. Despite the increasing number of proteins characterized, the complex network of proteins interactions established during asymmetric cell division is still poorly understood. This suggests that additional components must be contributing to orchestrate all the events underlying this tightly modulated process. The PDZ protein Canoe (Cno) and its mammalian counterparts AF-6 and Afadin are critical to regulate intracellular signaling and to organize cell junctions throughout development. Here, we show that Cno functions as a new effector of the apical proteins Inscuteable (Insc)-Partner of Inscuteable (Pins)-Galphai during the asymmetric division of Drosophila neuroblasts (NBs). Cno localizes apically in metaphase NBs and coimmunoprecipitates with Pins in vivo. Furthermore, Cno functionally interacts with the apical proteins Insc, Galphai, and Mushroom body defect (Mud) to generate correct neuronal lineages. Failures in muscle and heart lineages are also detected in cno mutant embryos. Our results strongly support a new function for Cno regulating key processes during asymmetric NB division: the localization of cell-fate determinants, the orientation of the mitotic spindle, and the generation of unequal-sized daughter cells.  相似文献   

13.
Drosophila melanogaster neuroblasts (NBs) undergo asymmetric divisions during which cell-fate determinants localize asymmetrically, mitotic spindles orient along the apical-basal axis, and unequal-sized daughter cells appear. We identified here the first Drosophila mutant in the Ggamma1 subunit of heterotrimeric G protein, which produces Ggamma1 lacking its membrane anchor site and exhibits phenotypes identical to those of Gbeta13F, including abnormal spindle asymmetry and spindle orientation in NB divisions. This mutant fails to bind Gbeta13F to the membrane, indicating an essential role of cortical Ggamma1-Gbeta13F signaling in asymmetric divisions. In Ggamma1 and Gbeta13F mutant NBs, Pins-Galphai, which normally localize in the apical cortex, no longer distribute asymmetrically. However, the other apical components, Bazooka-atypical PKC-Par6-Inscuteable, still remain polarized and responsible for asymmetric Miranda localization, suggesting their dominant role in localizing cell-fate determinants. Further analysis of Gbetagamma and other mutants indicates a predominant role of Partner of Inscuteable-Galphai in spindle orientation. We thus suggest that the two apical signaling pathways have overlapping but different roles in asymmetric NB division.  相似文献   

14.
A crucial first step in asymmetric cell division is to establish an axis of cell polarity along which the mitotic spindle aligns. Drosophila melanogaster neural stem cells, called neuroblasts (NBs), divide asymmetrically through intrinsic polarity cues, which regulate spindle orientation and cortical polarity. In this paper, we show that the Ras-like small guanosine triphosphatase Rap1 signals through the Ral guanine nucleotide exchange factor Rgl and the PDZ protein Canoe (Cno; AF-6/Afadin in vertebrates) to modulate the NB division axis and its apicobasal cortical polarity. Rap1 is slightly enriched at the apical pole of metaphase/anaphase NBs and was found in a complex with atypical protein kinase C and Par6 in vivo. Loss of function and gain of function of Rap1, Rgl, and Ral proteins disrupt the mitotic axis orientation, the localization of Cno and Mushroom body defect, and the localization of cell fate determinants. We propose that the Rap1-Rgl-Ral signaling network is a novel mechanism that cooperates with other intrinsic polarity cues to modulate asymmetric NB division.  相似文献   

15.
16.
17.
During asymmetric cell division, the mitotic spindle must be properly oriented to ensure the asymmetric segregation of cell fate determinants into only one of the two daughter cells. In Drosophila neuroblasts, spindle orientation requires heterotrimeric G proteins and the G alpha binding partner Pins, but how the Pins-G alphai complex interacts with the mitotic spindle is unclear. Here, we show that Pins binds directly to the microtubule binding protein Mud, the Drosophila homolog of NuMA. Like NuMA, Mud can bind to microtubules and enhance microtubule polymerization. In the absence of Mud, mitotic spindles in Drosophila neuroblasts fail to align with the polarity axis. This can lead to symmetric segregation of the cell fate determinants Brat and Prospero, resulting in the mis-specification of daughter cell fates and tumor-like over proliferation in the Drosophila nervous system. Our data suggest a model in which asymmetrically localized Pins-G alphai complexes regulate spindle orientation by directly binding to Mud.  相似文献   

18.
Drosophila neural stem cells, larval brain neuroblasts (NBs), align their mitotic spindles along the apical/basal axis during asymmetric cell division (ACD) to maintain the balance of self-renewal and differentiation. Here, we identified a protein complex composed of the tumor suppressor anastral spindle 2 (Ana2), a dynein light-chain protein Cut up (Ctp), and Mushroom body defect (Mud), which regulates mitotic spindle orientation. We isolated two ana2 alleles that displayed spindle misorientation and NB overgrowth phenotypes in larval brains. The centriolar protein Ana2 anchors Ctp to centrioles during ACD. The centriolar localization of Ctp is important for spindle orientation. Ana2 and Ctp localize Mud to the centrosomes and cell cortex and facilitate/maintain the association of Mud with Pins at the apical cortex. Our findings reveal that the centrosomal proteins Ana2 and Ctp regulate Mud function to?orient the mitotic spindle during NB asymmetric division.  相似文献   

19.
Asymmetric cell divisions generate cell fate diversity during both invertebrate and vertebrate development. Drosophila neural progenitors or neuroblasts (NBs) each divide asymmetrically to produce a larger neuroblast and a smaller ganglion mother cell (GMC). The asymmetric localisation of neural cell fate determinants and their adapter proteins to the neuroblast cortex during mitosis facilitates their preferential segregation to the GMC upon cytokinesis. In this study we report a novel role for the anaphase-promoting complex/cyclosome (APC/C) during this process. Attenuation of APC/C activity disrupts the asymmetric localisation of the adapter protein Miranda and its associated cargo proteins Staufen, Prospero and Brat, but not other components of the asymmetric division machinery. We demonstrate that Miranda is ubiquitylated via its C-terminal domain; removal of this domain disrupts Miranda localisation and replacement of this domain with a ubiquitin moiety restores normal asymmetric Miranda localisation. Our results demonstrate that APC/C activity and ubiquitylation of Miranda are required for the asymmetric localisation of Miranda and its cargo proteins to the NB cortex.  相似文献   

20.
Asymmetric cell division generates cell diversity during development and regulates stem-cell self-renewal in Drosophila and mammals. In Drosophila, neuroblasts align their spindle with a cortical Partner of Inscuteable (Pins)-G alpha i crescent to divide asymmetrically, but the link between cortical polarity and the mitotic spindle is poorly understood. Here, we show that Pins directly binds, and coimmunoprecipitates with, the NuMA-related Mushroom body defect (Mud) protein. Pins recruits Mud to the neuroblast apical cortex, and Mud is also strongly localized to centrosome/spindle poles, in a similar way to NuMA. In mud mutants, cortical polarity is normal, but the metaphase spindle frequently fails to align with the cortical polarity axis. When spindle orientation is orthogonal to cell polarity, symmetric division occurs. We propose that Mud is a functional orthologue of mammalian NuMA and Caenorhabditis elegans Lin-5, and that Mud coordinates spindle orientation with cortical polarity to promote asymmetric cell division.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号