首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Sections of Rhodospirillum rubrum cells from cultures of different ages have been examined to obtain information on the development of chromatophores in this organism. Cells from the 12-hour cultures studied contain neither distinct invaginations of the cytoplasmic membrane nor distinct chromatophores. The first structures that can be related to chromatophore development occur peripherally in the cells, are relatively few in number, relatively high in density, and have an indistinct membrane. In cells from 26-hour cultures numerous distinct invaginations of the cytoplasmic membrane are present, and all layers of the cytoplasmic membrane are involved in the formation of each invagination. As the invaginations become more numerous, the ends of the invaginations become constricted to form one or more structures similar to the chromatophores previously described in this organism. Cells of R. rubrum, therefore, develop a structural continuum which initially consists of invaginations of the cytoplasmic membrane, and later of the chromatophores produced by and attached to these invaginations. The presence of this continuum, however, does not necessarily exclude the existence of discrete chromatophores within these cells. Several other structures previously reported in this organism are described in greater detail.  相似文献   

2.
SYNOPSIS. In the nearly mature macrogametes of Eimeria auburnensis, the cell membrane is a unit membrane, with underlying and overlying osmiophilic layers usually present. Cup-shaped micropores were occasionally seen. Smaller, V-shaped invaginations were also found in considerable numbers at the surface. At the deepest point, these invaginations were bounded only by a unit membrane. Immediately adjacent to this point, vesicles with homogenous electron-pale contents bounded by a similar unit membrane, were frequently seen. Pinocytosis evidently occurs at the site of these invaginations. Numerous folds of the host cell membrane bordering the vacuole in which the parasite lay extended about 0.1–0.7 μ into the vacuole. These “intravacuolar folds” varied in depth and number in different specimens. In some, the majority of folds had apparently become disconnected from the host cell membrane. A highly developed smooth endoplasmic reticulum occurred in the adjacent host cell cytoplasm. The intravacuolar folds may assist in transfer of nutrients, including membrane material, from the host cell to the parasite. The evidence indicates that in this species of Eimeria nutrients are taken into the parasite primarily as fluids by pinocytosis and possibly other processes.  相似文献   

3.
The ultrastructural features of cardiac muscle cells and their innervation were examined in the tarantula spider Eurypelma marxi Simon. The cells are transversely striated and have an A band length of about three microns. H zones are indistinct and M lines are absent. Thick and thin myofilament diameters are approximately 200 and 70 Å respectively. Eight to 12 thin filaments usually surround each thick one. Accumulations of thick and thin myofilaments occur perpendicular to the bulk of the myofilaments in some cells. The Z line is discontinuous and thick filaments may pass through the spaces in the Z line. Extensive systems of sarcoplasmic reticulum and transverse tubules are present; these form numerous dyadic junctions in both A and I band regions. Sarcolemmal invaginations form Z line tubules; lateral extensions of the plasma membrane portion of these invaginations form dyads. Nerve branches of the cardiac ganglion make multiple neuromuscular synapses with at least some of the cardiac muscle cells. Both large granular and small agranular vesicles are present in the presynaptic terminals. Intercalated discs similar to those present in other arthropod hearts occur between the ends of adjacent cardiac muscle cells.  相似文献   

4.
The Na+-coupled betaine symporter BetP regulates transport activity in response to hyperosmotic stress only in its trimeric state, suggesting a regulatory crosstalk between individual protomers. BetP shares the overall fold of two inverted structurally related five-transmembrane (TM) helix repeats with the sequence-unrelated Na+-coupled symporters LeuT, vSGLT, and Mhp1, which are neither trimeric nor regulated in transport activity. Conformational changes characteristic for this transporter fold involve the two first helices of each repeat, which form a four-TM-helix bundle. Here, we identify two ionic networks in BetP located on both sides of the membrane that might be responsible for BetP's unique regulatory behavior by restricting the conformational flexibility of the four-TM-helix bundle. The cytoplasmic ionic interaction network links both first helices of each repeat in one protomer to the osmosensing C-terminal domain of the adjacent protomer. Moreover, the periplasmic ionic interaction network conformationally locks the four-TM-helix bundle between the same neighbor protomers. By a combination of site-directed mutagenesis, cross-linking, and betaine uptake measurements, we demonstrate how conformational changes in individual bundle helices are transduced to the entire bundle by specific inter-helical interactions. We suggest that one purpose of bundle networking is to assist crosstalk between protomers during transport regulation by specifically modulating the transition from outward-facing to inward-facing state.  相似文献   

5.
The design of a protein folding approximation algorithm is not straightforward even when a simplified model is used. The folding problem is a combinatorial problem, where approximation and heuristic algorithms are usually used to find near optimal folds of proteins primary structures. Approximation algorithms provide guarantees on the distance to the optimal solution. The folding approximation approach proposed here depends on two-dimensional cellular automata to fold proteins presented in a well-studied simplified model called the hydrophobic–hydrophilic model. Cellular automata are discrete computational models that rely on local rules to produce some overall global behavior. One-third and one-fourth approximation algorithms choose a subset of the hydrophobic amino acids to form H–H contacts. Those algorithms start with finding a point to fold the protein sequence into two sides where one side ignores H’s at even positions and the other side ignores H’s at odd positions. In addition, blocks or groups of amino acids fold the same way according to a predefined normal form. We intend to improve approximation algorithms by considering all hydrophobic amino acids and folding based on the local neighborhood instead of using normal forms. The CA does not assume a fixed folding point. The proposed approach guarantees one half approximation minus the H–H endpoints. This lower bound guaranteed applies to short sequences only. This is proved as the core and the folds of the protein will have two identical sides for all short sequences.  相似文献   

6.
Dynamic imaging of mammalian neural tube closure   总被引:1,自引:0,他引:1  
Neurulation, the process of neural tube formation, is a complex morphogenetic event. In the mammalian embryo, an understanding of the dynamic nature of neurulation has been hampered due to its in utero development. Here we use laser point scanning confocal microscopy of a membrane expressed fluorescent protein to visualize the dynamic cell behaviors comprising neural tube closure in the cultured mouse embryo. In particular, we have focused on the final step wherein the neural folds approach one another and seal to form the closed neural tube. Our unexpected findings reveal a mechanism of closure in the midbrain different from the zipper-like process thought to occur more generally. Individual non-neural ectoderm cells on opposing sides of the neural folds undergo a dramatic change in shape to protrude from the epithelial layer and then form intermediate closure points to “button-up” the folds. Cells from the juxtaposed neural folds extend long and short flexible extensions and form bridges across the physical gap of the closing folds. Thus, the combination of live embryo culture with dynamic imaging provides intriguing insight into the cell biological processes that mold embryonic tissues in mammals.  相似文献   

7.
Inside-out thylakoid membrane vesicles can be isolated by aqueous polymer two-phase partition of Yeda press-fragmented spinach chloroplasts (Andersson, B. and Åkerlund, H.-E. (1978) Biochim. Biophys. Acta 503, 462–472). The mechanism for their formation has been investigated by studying the yield of inside-out vesicles after various treatments of the chloroplasts prior to fragmentation. No inside-out vesicles were isolated during phase partitioning if the chloroplasts had been destacked in a low-salt medium prior to the fragmentation. Only in those cases where the chloroplast lamellae had been stacked by cations or membrane-paired by acidic treatment did we get any yield of inside-out vesicles. Thus, the intrinsic properties of chloroplast thylakoids seem to be such that they seal into right-side out vesicles after disruption unless they are in an appressed state. This favours the following mechanism for the formation of inside-out thylakoids. After press treatment, a ruptured membrane still remains appressed with an adjacent membrane. Resealing of such an appressed membrane pair would result in an inside-out vesicle.If the compartmentation of chloroplast lamellae into appressed grana and unappressed stroma lamellae is preserved by cations before fragmentation, the inside-out vesicles are highly enriched in photosystem II. This indicates a granal origin which is consistent with the proposed model outlined. Inside-out vesicles possessing photosystem I and II properties in approximately equal proportions could be obtained by acid-induced membrane-pairing of chloroplasts which had been destacked and randomized prior to fragmentation. Since this new preparation of inside-out thylakoid vesicles also exposes components derived from the stroma lamellae it complements the previous preparation.It is suggested that fragmentation of paired membranes followed by phase partitioning should be a general method of obtaining inside-out vesicles from membranes of various biological sources.  相似文献   

8.
The Origin and Fate of Annulate Lamellae in Maturing Sand Dollar Eggs   总被引:10,自引:10,他引:0       下载免费PDF全文
Electron micrograph evidence is presented that the nuclear envelope of the mature ovum of Dendraster excentricus is implicated in a proliferation of what appear as nuclear envelope replicas in the cytoplasm. The proliferation is associated with intranuclear vesicles which apparently coalesce to form comparatively simple replicas of the nuclear envelope closely applied to the inside of the nuclear envelope. The envelope itself may become disorganized at the time when fully formed annulate lamellae appear on the cytoplasmic side and parallel with it. The concept of interconvertibility of general cytoplasmic vesicles with most of the membrane systems of the cytoplasm is presented. The structure of the annuli in the annulate lamellae is shown to include small spheres or vesicles of variable size embedded in a dense matrix. Dense particles which are about 150 A in diameter are often found closely associated with annulate lamellae in the cytoplasm. Similar structures in other echinoderm eggs are basophilic. In this species, unlike other published examples, the association apparently takes place in the cytoplasm only after the lamellae have separated from the nucleus. If 150 A particles are synthesized by annulate lamellae, as their close physical relationship suggests, then in this species at least the necessary synthetic mechanisms and specificity must reside in the structure of annulate lamellae.  相似文献   

9.
The spatial relationships observed during microsporogenesis and pollen development in Sorghum bicolor indicate that a strong polarization exists in the anther locule and within individual microspores and pollen grains. During all developmental stages, each sporogenous cell and its derivatives lie continuously adjacent to the tapetum. The microspores and pollen grains form depressions in the tapetal orbicular wall. When the single pore of each microspore is initiated, as a gap in the primexine, it too lies adjacent to the tapetum and remains tightly appressed there until pollen maturity. A sequence of polar phenomena in microspores and pollen grains centers on an axis through the pore and perpendicular to the tapetal surface. These events include migrations of the microspore and vegetative nuclei, initial placement of the generative cell opposite the pore and its later migration, and a polar engorgement process whereby the pore end of the pollen grain (adjacent to the tapetum) fills with starch grains first. The tapetal cytoplasm completely degenerates at precisely the time of pollen engorgement, and its degradation products are believed to be available for pollen uptake at this time. The continuous association of the sporogenous cells or their cellular derivatives and their pores with the tapetum is thought to play an indispensible role in pollen development in sorghum and probably in all other grasses as well. The consistent position of the pore adjacent to the tapetum should be considered another common feature of microsporogenesis in the Gramineae. The characteristic exine pattern forms over the operculum and annulus of the pore, but the lamellae, which underlie the annulus, form a highly modified multilayered nexine. Membrane-like cores are observed in these lamellae and are believed to be involved in the initiation of sporopollenin deposition, but they are obliterated by pollen maturity. Neither the cores nor the lamellae are found in other parts of the pore or in the nonapertured wall.  相似文献   

10.
A morphological basis for transcellular potassium transport in the midgut of the mature fifth instar larvae of Hyalophora cecropia has been established through studies with the light and electron microscopes. The single-layered epithelium consists of two distinct cell types, the columnar cell and the goblet cell. No regenerative cells are present. Both columnar and goblet cells rest on a well developed basement lamina. The basal portion of the columnar cell is incompletely divided into compartments by deep infoldings of the plasma membrane, whereas the apical end consists of numerous cytoplasmic projections, each of which is covered with a fine fuzzy or filamentous material. The cytoplasm of this cell contains large amounts of rough endoplasmic reticulum, microtubules, and mitochondria. In the basal region of the cell the mitochondria are oriented parallel to the long axes of the folded plasma-lemma, but in the intermediate and apical portions they are randomly scattered within the cytoplasmic matrix. Compared to the columnar cell, the goblet cell has relatively little endoplasmic reticulum. On the other hand, the plications of the plasma membrane of the goblet cell greatly exceed those of the columnar cell. One can distinguish at least four characteristic types of folding: (a) basal podocytelike extensions, (b) lateral evaginations, (c) apical microvilli, and (d) specialized cytoplasmic projections which line the goblet chamber. Apically, the projections are large and branch to form villus-like units, whereas in the major portion of the cavity each projection appears to contain an elongate mitochondrion. Junctional complexes of similar kind and position appear between neighboring columnar cells and between adjacent columnar and goblet cells as follows: a zonula adherens is found near the luminal surface and is followed by one or more zonulae occludentes. The morphological data obtained in this study and the physiological information on ion transport through the midgut epithelium have encouraged us to suggest that the goblet cell may be the principal unit of active potassium transport from the hemolymph to the lumen of the midgut. We have postulated that ion accumulation by mitochondria in close association with plicated plasma membranes may play a role in the active movement of potassium across the midgut.  相似文献   

11.
The proturan hindgut consists of two regions, with different ultrastructure. The anterior region is organized into three primary longitudinal folds alternating with three smaller, secondary ones. In Acerentomon each primary fold in a cross section contains one or two cells showing all the structures which are involved in water reabsorption. The cells of the secondary folds do not seem engaged in a similar function. In Eosentomon the primary folds present a more complicated organization. Each of them consists of one central cell concerned with reabsorption and two lateral ones. Beneath these cells, on both sides of the fold there is a longitudinal muscle fiber. The posterior region of the hindgut does not seem capable of modifying the gut contents.  相似文献   

12.
Mesosome Structure in Chromobacterium violaceum   总被引:4,自引:0,他引:4       下载免费PDF全文
Exponentially growing cells of the gram-negative bacterium Chromobacterium violaceum demonstrate invaginations of the cytoplasmic membrane with a high frequency. These invaginations conform to the ultrastructural appearance of mesosomes of gram-positive bacteria. As many as four mesosomes are observed per cell, each of which may increase the total membrane surface of the cell by 30%. Washing of cells in dilute tris(hydroxymethyl)aminomethane buffer effects a distension of the mesosome "neck" and/or cytoplasmic membrane clarifying the association of the mesosome to the cytoplasmic membrane. Plasmolysis effects an eversion of the mesosome into the plasmolysis vacuole.  相似文献   

13.
Chains of vesicles are prominent near the plasma membranes of both the neurons and satellite cells of osmium-fixed toad spinal ganglia. In permanganate-fixed specimens, however, such vesicles are absent, and in their place are continuous invaginations of the plasma membranes of these cells. The discrepancy suggests that the serried vesicles seen in osmium-fixed preparations arise through disintegration of plasma membrane invaginations, and do not represent active pinocytosis, as has been suggested previously. A second difference between ganglia fixed by these two methods is that rows of small, disconnected cytoplasmic globules occur in the sheaths of permanganate-fixed ganglia, but not in osmium-fixed samples. It is suggested that these globules arise from the breakdown of thin sheets of satellite cell cytoplasm which occur as continuous lamellae in osmium-fixed specimens. Possible mechanisms of these membrane reorganizations, and the relevance of these findings to other tissues, are discussed.  相似文献   

14.
Chlorella fusca, strain 211-15, cells degreened in a nitrogen-deficient mineral growth medium in the light for 4–6 weeks were regreened for up to 24 hrs in a nitrogen rich medium that leads to synchronous cell division at 24–26 hrs. Structural changes in the plastid membranes during the regreening period were observed by thin section and freeze-fracture electron microscopy. Nitrogen-deficient plastids were found to have non-appressed lamellae, prolamellar body-like membrane aggregations, and only 2 types of freeze-fracture face. At this time no photosynthetic oxygen evolution could be demonstrated. After 6 hrs regreening the plastid lamellae had fused to form bands of appressed lamellae and the four types of freeze-fracture face, described previously, were visible. At this time photosynthetic oxygen evolution could be demonstrated. After 24 hrs regreening the plastids had an appearance typical of normally grown Chlorella and had commenced to divide. Supporting evidence for these developmental stages is presented from isolated chloroplast particle fractions. An unusual type of cell wall proliferation was observed in the nitrogen-deficient Chlorella cells that resulted in the laying down of several walls, each with a trilaminar component.  相似文献   

15.
Structural classification of families of membrane proteins by bioinformatics techniques has become a critical aspect of membrane protein research. We have proposed hydropathy profile alignment to identify structural homology between families of membrane proteins. Here, we demonstrate experimentally that two families of secondary transporters, the ESS and 2HCT families, indeed share similar folds. Members of the two families show highly similar hydropathy profiles but cannot be shown to be homologous by sequence similarity. A structural model was predicted for the ESS family transporters based upon an existing model of the 2HCT family transporters. In the model, the transporters fold into two domains containing five transmembrane segments and a reentrant or pore-loop each. The two pore-loops enter the membrane embedded part of the proteins from opposite sides of the membrane. The model was verified by accessibility studies of cysteine residues in single-Cys mutants of the Na+-glutamate transporter GltS of Escherichia coli, a member of the ESS family. Cysteine residues positioned in predicted periplasmic loops were accessible from the periplasm by a bulky, membrane-impermeable thiol reagent, while cysteine residues in cytoplasmic loops were not. Furthermore, two cysteine residues in the predicted pore-loop entering the membrane from the cytoplasmic side were shown to be accessible for small, membrane-impermeable thiol reagents from the periplasm, as was demonstrated before for the Na+-citrate transporter CitS of Klebsiella pneumoniae, a member of the 2HCT family. The data strongly suggests that GltS of the ESS family and CitS of the 2HCT family share the same fold as was predicted by comparing the averaged hydropathy profiles of the two families.  相似文献   

16.
The striated muscles of Derocheilocaris typica consist of mononucleated cells, each containing one filament bundle. Large muscles consist of two or more cells adjacent to each other. The mitochondria line up along the filament bundle on one side. The nucleus is situated in the mitochondrial row and has a small cytoplasmic area around it filled with glycogen. The sarcomeres are between 3 and 6 μm long. The Z-line and H band are present. Six thin filaments surround one thick filament. All muscles belong to the phasic type. The tubular system emanates from the ends of the muscle cell and penetrates the whole cell. The tubules are formed as cisterns, which also open at the cell membrane at the level of the I bands. They have sarcoplasmic cisterns on both sides forming a continuous triad system. Partially transformed epidermal cells mediate muscle insertions on the cuticle. Tendons are formed with the transformed epidermal cells being supplemented by fibroblasts forming collagen fibers. Dorsal and ventral abdominal muscles are innervated from the dorso-lateral nerve arising from the nerve chain. Each muscle cell receives one axon, which forms one synapse on the mitochondrial-free side of the muscles. Axons form terminal spines, which make axo-axonal synapses.  相似文献   

17.
THE PHOTOSYNTHETIC APPARATUS OF RHODOSPIRILLUM MOLISCHIANUM   总被引:6,自引:1,他引:5       下载免费PDF全文
By varying the light intensity and temperature during growth it is possible to obtain cultures of Rhodospirillum molischianum in which the specific bacteriochlorophyll contents differ by as much as fivefold. We used such cultures to compare the changes in the electron microscopic appearance of the cells with the changes in the amount and bacteriochlorophyll content of chromatophore material isolated from cell extracts. The cells contained a variable number of internal membranes which are invaginations of the cell membrane. The shape, size, number, and arrangement of the infoldings varied as the specific bacteriochlorophyll content of the cells changed. In cells with little bacteriochlorophyll, the invaginations were mostly tubular. In cells with larger amounts of bacteriochlorophyll, the invaginations were disc-shaped and the discs were appressed together in stacks of 2 to 10 discs each. Variations in the number of discs per stack could be accounted for by a simple statistical model. The average area per disc increased with increasing bacteriochlorophyll content. Quantitative estimations of the relative volumes occupied by membranes in cells with four different bacteriochlorophyll contents showed that the amount of internal membrane alone had no direct relationship with the bacteriochlorophyll content of the cells; however, the total amount of membrane (cell membrane plus internal membrane) was directly proportional to the bacteriochlorophyll content. The specific bacteriochlorophyll content of isolated chromatophore material was proportional to the bacteriochlorophyll content of whole cells; the total amount of chromatophore material was independent of the bacteriochlorophyll content of whole cells. Several possible explanations of this paradoxical discrepancy between the electron microscope observations and the analytical results are discussed.  相似文献   

18.
To determine the three-dimensional structure of the lumenal membrane of transitional epithelium, a study was made of sectioned, negatively stained, and freeze-etched specimens from intact epithelium and membrane fractions from rabbit urinary bladder. Particulate membrane components are confined to plaque regions within which the unit membrane is asymmetric, having a thicker outer leaflet. Transversely fractured freeze-etched plaques display a thick (~80 A), particulate lumenal leaflet and a thin (~40 A) cytoplasmic one. Four different faces of the two leaflets can be distinguished: two complementary, split, inner membrane faces exposed by freeze-cleaving the bilayer and two external (lumenal and cytoplasmic) membrane surfaces revealed by deep-etching. On the split, inner face of the lumenal leaflet appear polygonal plaques of hexagonally arranged particles. These fit into holes observed on the complementary, split, innerface of the cytoplasmic leaflet. The particles, which have a center-to-center spacing of ~160 A, also seem to protrude from the external surface of the lumenal leaflet, where their subunits (~50 A in diameter) are revealed by freeze-etching and negative staining. The plaques are separated from each other by smooth-surfaced regions, which cleave like simple lipid bilayers. Since the array of plaque particles covers only ~73% of the membrane surface area, whereas 27% is taken up by particle-free interplaque regions, the presence of particles cannot in itself entirely account for the permeability barrier of the lumenal membrane. Although no particles are observed protruding from the cytoplasmic surface of the membrane, cytoplasmic filaments are attached to it by short, cross-bridge-like filaments that seem to contact the particles within the membrane. These long cytoplasmic filaments cross-link adjacent plaques. Therefore, we suggest that at least one function of the particles is to serve as anchoring sites for cytoplasmic filaments, which limit the expansion of the lumenal membrane during distention of the bladder, thereby preventing it from rupturing. The particle-free interplaque regions probably function as hinge areas between the stiff plaques, allowing the membrane to fold up when the bladder is contracted.  相似文献   

19.
Summary We report on an unusual phenomenon which occurs in some characean algae as a normal plasma membrane activity and also in association with charasome formation. The phenomenon of formation of coated invaginations of the plasma membrane was observed in twoChara and 6Nitella species. These invaginations are coated on their cytoplasmic surface, are 50–60 nm in diameter and rarely exceed 60 nm in length. They are abundant in the young cells ofChara andNitella and also occur in mature cells, but at a lower frequency.N. translucent is an exception in that coated invaginations were few in the young cells and absent in mature cells. Coated vesicles (50–60 nm diameter) were closely associated with these invaginations. Our observations suggest the vesicles may be derived from the invaginations by endocytosis.A close relationship was noted between the development of charasomes (plasmalemma modifications) and coated invaginations. Numerous coated invaginations are seen along the membranes of young charasomes; these invaginations appear to be associated with growth of the charasomes. Coated vesicles were not associated with the coated invaginations of the charasome membrane. The tubular network of cytoplasm and wall space seen in the mature charasome may be formed by fusion of coated invaginations of the developing charasomes, leaving cytoplasmic strands between the fused portions. Coated invaginations were not present along charasomes of the mature cells.  相似文献   

20.
Annulated membranes in the form of single and short lamellae are present adjacent to and parallel to the nuclear envelope in oogonia and early oocyte (synaptene) stages of the dragonfly, Libellula pulchella. These solitary and short annulate lamellae are usually continuous with long, part rough- and part smooth-surfaced cisternae which extend into more distal areas of the oogonial ooplasm. These particular annulate lamellae then either disappear or decrease in number to be replaced by a much more extensive system of annulate lamellae in the cortical ooplasm of previtellogenic oocytes. The differentiation of extensive stacks of annulate lamellae is consistently observed to be restricted to large cytoplasmic areas of considerable electron density. These cytoplasmic regions consist of material which stains basophilic and contains RNA but differs structurally from the large number of ribosomes which surround the dense masses. The cytoplasmic dense masses, in terms of their formation and staining reactions, are comparable to the "yolk nuclei" or "Balbiani bodies" described in insect oocytes in earlier studies. The results of the present study thus provide evidence that the appearance of cortical ooplasmic stacks of annulate lamellae in the dragonfly oocyte is specifically limited to cytoplasmic areas of high electron density which contain RNA but which do not have a ribosomal morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号