首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The DNA transfer stage of conjugation requires the products of the F sex factor genes traMYDIZ and the cis-acting site oriT. Previous interpretation of genetic and protein analyses suggested that traD, traI, and traZ mapped as contiguous genes at the distal end of the transfer operon and saturated this portion of the F transfer region (which ends with an IS3 element). Using antibodies prepared against the purified TraD and TraI proteins, we analyzed the products encoded by a collection of chimeric plasmids constructed with various segments of traDIZ DNA. We found the traI gene to be located 1 kilobase to the right of the position suggested on previous maps. This creates an unsaturated space between traD and traI where unidentified tra genes may be located and leaves insufficient space between traI and IS3 for coding the 94-kilodalton protein previously thought to be the product of traZ. We found that the 94-kilodalton protein arose from a translational restart and corresponds to the carboxy terminus of traI; we named it TraI*. The precise physical location of the traZ gene and the identity of its product are unknown. The oriT nicking activity known as TraZ may stem from unassigned regions between traD and traI and between traI and IS3, but a more interesting possibility is that it is actually a function of traI. On our revised map, the position of a previously detected RNA polymerase-binding site corresponds to a site at the amino terminus of traI rather than a location 1 kilobase into the coding region of the gene. Furthermore, the physical and genetic comparison of the F traD and traI genes with those of the closely related F-like conjugative plasmids R1 and R100 is greatly simplified. The translational organization we found for traI, together with its identity as the structural gene for DNA helicase I, suggests a possible functional link to several other genes from which translational restart polypeptides are expressed. These include the primases of the conjugative plasmids ColI and R16, the primase-helicase of bacteriophage T7, and the cisA product (nickase) of phage phi X174.  相似文献   

2.
We developed an in vitro system to reproduce a site- and strand-specific nicking at the oriT region of plasmid R100. The nicking reaction was dependent on the purified TraY protein and on the lysate, which was prepared from cells overproducing the TraI protein. This supports the idea that the protein products of two genes, traY and traI, constitute an endonuclease that introduces a specific nick in vivo in the oriT region of the conjugative plasmids related to R100. The products were the "complex" DNA molecules with a protein covalently linked with the 5'-end of the nick. The nick was introduced in the strand, which is supposed to be transferred to recipient cells during conjugation, and was located at the site 59 base pairs upstream of the TraY protein binding site, sbyA.  相似文献   

3.
DNA helicase I, the traI gene product of the Escherichia coli F factor, was shown to be associated with endonuclease activity specific for the transfer origin of the F plasmid, oriT. In the presence of Mg2+, the purified enzyme forms a complex, stable in the presence of sodium dodecylsulfate (SDS) with a negatively superhelical chimeric plasmid containing oriT. The enzyme nicks and, after this, apparently binds to the 5' nick terminus when this complex is heated in the presence of SDS and/or EDTA or treated with proteinase K. Dideoxy sequencing locates the nick site in the F DNA strand transferred during bacterial conjugation after nucleotide 138 clockwise of the mid-point of the BglII site at 66.7 kb of the F genetic map. A sequencing stop after nucleotide 137 of this strand (where oriT-nicking seems to occur in vivo) is possibly an artefact caused by helicase I protein attached to the 5' terminal nucleotide. Deletion in the amino-terminal part of the traI polypeptide abolishes the oriT-nicking activity while leaving the strand-separating activity intact. These results confirm the prediction from genetic studies that helicase I is bifunctional with site-specific endonuclease and strand-separating activities.  相似文献   

4.
Deletion analysis of the F plasmid oriT locus.   总被引:8,自引:2,他引:6       下载免费PDF全文
Functional domains of the Escherichia coli F plasmid oriT locus were identified by deletion analysis. DNA sequences required for nicking or transfer were revealed by cloning deleted segments of oriT into otherwise nonmobilizable pUC8 vectors and testing for their ability to promote transfer or to be nicked when tra operon functions were provided in trans. Removal of DNA sequences to the right of the central A + T-rich region (i.e., from the direction of traM) did not affect the susceptibility of oriT to nicking functions; however, transfer efficiency for oriT segments deleted from the right was progressively reduced over an 80- to 100-bp interval. Deletions extending toward the oriT nick site from the left did not affect the frequency of transfer if deletion endpoints lay at least 22 bp away from the nick site. Deletions or insertions in the central, A + T-rich region caused periodic variation in transfer efficiency, indicating that phase relationships between nicking and transfer domains of oriT must be preserved for full oriT function. These data show that the F oriT locus is extensive, with domains that individually contribute to transfer, nicking, and overall structure.  相似文献   

5.
The DNA sequence of the F plasmid origin of conjugal DNA transfer, oriT , has been determined. The origin lies in an intercistronic region which contains several inverted repeat sequences and a long AT-rich tract. Introduction of a nick into one of the DNA strands in the oriT region precedes the initiation of conjugal DNA replication, and the position of the strand-specific nicks acquired by a lambda oriT genome upon propagation in Flac-carrying cells has been determined. The nicks were not uniquely positioned, rather there was a cluster of three major and up to 20 minor sites: the biological significance of this observation is not yet fully clear. Nine independent point mutations which inactivate oriT function have been sequenced and found to alter one or other of two nucleotide positions which lie 14 and 19 bp to one side of the rightmost (as drawn) major nick site. These key nucleotides may lie in a recognition sequence for the oriT endonuclease, since mutations at these sites prevent nicking at oriT .  相似文献   

6.
DNA helicase I, encoded on the Escherichia coli F plasmid, catalyzes a site- and strand-specific nicking reaction within the F plasmid origin of transfer (oriT) to initiate conjugative DNA strand transfer. The product of the nicking reaction contains a single phosphodiester bond interruption as determined by single-nucleotide resolution mapping of both sides of the nick site. This analysis has demonstrated that the nick is located at precisely the same site previously shown to be nicked in vivo (T. L. Thompson, M. B. Centola, and R. C. Deonier, J. Mol. Biol. 207:505-512, 1989). In addition, studies with two oriT point mutants have confirmed the specificity of the in vitro reaction. Characterization of the nicked DNA product has revealed a modified 5' end and a 3' OH available for extension by E. coli DNA polymerase I. Precipitation of nicked DNA with cold KCl in the presence of sodium dodecyl sulfate suggests the existence of protein covalently attached to the nicked DNA molecule. The covalent nature of this interaction has been directly demonstrated by transfer of radiolabeled phosphate from DNA to protein. On the basis of these results, we propose that helicase I becomes covalently bound to the 5' end of the nicked DNA strand as part of the reaction mechanism for phosphodiester bond cleavage. A model is presented to suggest how helicase I could nick the F plasmid at oriT and subsequently unwind the duplex DNA to provide single-stranded DNA for strand transfer during bacterial conjugation.  相似文献   

7.
Stern JC  Schildbach JF 《Biochemistry》2001,40(38):11586-11595
The TraI protein has two essential roles in transfer of conjugative plasmid F Factor. As part of a complex of DNA-binding proteins, TraI introduces a site- and strand-specific nick at the plasmid origin of transfer (oriT), cutting the DNA strand that is transferred to the recipient cell. TraI also acts as a helicase, presumably unwinding the plasmid strands prior to transfer. As an essential feature of its nicking activity, TraI is capable of binding and cleaving single-stranded DNA oligonucleotides containing an oriT sequence. The specificity of TraI DNA recognition was examined by measuring the binding of oriT oligonucleotide variants to TraI36, a 36-kD amino-terminal domain of TraI that retains the sequence-specific nucleolytic activity. TraI36 recognition is highly sequence-specific for an 11-base region of oriT, with single base changes reducing affinity by as much as 8000-fold. The binding data correlate with plasmid mobilization efficiencies: plasmids containing sequences bound with lower affinities by TraI36 are transferred between cells at reduced frequencies. In addition to the requirement for high affinity binding to oriT, efficient in vitro nicking and in vivo plasmid mobilization requires a pyrimidine immediately 5' of the nick site. The high sequence specificity of TraI single-stranded DNA recognition suggests that despite its recognition of single-stranded DNA, TraI is capable of playing a major regulatory role in initiation and/or termination of plasmid transfer.  相似文献   

8.
The broad-host-range, multicopy plasmid R1162 is efficiently mobilized during conjugation by the self-transmissible plasmid R751. The relaxosome, a complex of plasmid DNA and R1162-encoded proteins, forms at the origin of transfer ( oriT ) and is required for mobilization. Transfer is initiated by strand- and site-specific nicking of the DNA within this structure. We show by probing with potassium permanganate that oriT DNA is locally melted within the relaxosome, in the region from the inverted repeat to the site that is nicked. Mutations in this region of oriT , and in genes encoding the protein components of the relaxosome, affect both nicking and melting of the DNA. The nicking protein in the relaxosome is MobA, which also ligates the transferred linear, single strand at the termination of a round of transfer. We propose that there is an underlying similarity in the substrates for these two MobA-dependent, DNA-processing reactions. We also show that MobA has an additional role in transfer, beyond the nicking and resealing of oriT DNA.  相似文献   

9.
Conjugative DNA transfer of IncI1 plasmid R64 is initiated by the introduction of a site- and strand-specific nick into the origin of transfer (oriT). In R64 oriT, 17-bp (repeat A and B) and 8-bp inverted-repeat sequences with mismatches are located 8 bp away from the nick site. The nicking is mediated by R64 NikA and NikB proteins. To analyze the functional organization of the R64 oriT region, various deletion, insertion, and substitution mutations were introduced into a 92-bp minimal R64 oriT sequence and their effects on oriT function were investigated. This detailed analysis confirms our previous prediction that the R64 oriT region consists of an oriT core sequence and additional sequences necessary for full oriT activity. The oriT core sequence consists of the repeat A sequence, which is recognized by R64 NikA protein, and the nick region sequence, which is conserved among various origins of transfer and is most probably recognized by NikB protein. The oriT core sequence is sufficient for NikAB-mediated oriT-specific nicking. Furthermore, it was shown that the repeat A sequence is essential for localization to a precise position relative to the nick site for oriT function. This seems to be required for the formation of a functional ternary complex consisting of NikA and NikB proteins and oriT DNA. The repeat B sequence and 8-bp inverted repeat sequences are suggested to be required for the termination of DNA transfer.  相似文献   

10.
Formation of relaxosomes is the first step in the initiation of transfer DNA replication during bacterial conjugation. This nucleoprotein complex contains all components capable of introducing a site- and strand-specific nick at a cognate transfer origin (oriT) on supercoiled plasmid DNA, thus providing the substrate for generation of the strand to be transferred. Characterization of the terminal nucleotides at the oriT nick site revealed that relaxation occurs by hydrolysis of a single phosphodiester bond between a 2'-deoxyguanosyl and a 2'-deoxycytidyl residue. The relaxation nick site and a 19-base pair invert repeat sequence that is recognized by asymmetric binding of the RP4 TraJ protein are interspaced by 8 base pairs. The nicking reaction results in covalent attachment of the RP4 TraI protein to the 5'-terminal 2'-deoxycytidyl residue of the cleaved strand. The arrangement of the TraJ binding site and the relaxation nick site on the same side of the DNA double helix suggests that protein-protein interactions between TraJ and TraI are a prerequisite for oriT specific nicking. In accordance with the current model of transfer DNA replication, the 3' end remains accessible for primer extension by DNA polymerase I, enabling replacement strand synthesis in the donor cell by a rolling circle-type mechanism.  相似文献   

11.
We have used purified RSF1010 mobilization proteins to reproduce in vitro a strand-specific nicking at the plasmid origin of transfer, oriT. In the presence of Mg2+, the proteins MobA (78-kDa form of RSF1010 DNA primase), MobB, and MobC and supercoiled or linear duplex oriT DNA form large amounts of a cleavage complex, which is characterized by its sensitivity to protein-denaturant treatment. Upon addition of SDS to such a complex, a single strand break is generated in the DNA, and MobA is found linked to the 5' nick terminus, presumably covalently. The double-strand nicking activity of MobA requires, in addition to Mg2+, the presence of MobC and is stimulated by the presence of MobB. The nick site has been shown by DNA sequencing to lie at the position cleaved in vivo during transfer, between nucleotides 3138/3139 in the r strand of RSF1010. We have found that MobA will also cleave DNA at sites other than oriT if the DNA is present in single-stranded form. Breakage in this case occurs in the absence of denaturing conditions, and after prolonged incubation, reclosure can be demonstrated.  相似文献   

12.
The isolation of plasmid-protein relaxation complexes from bacteria is indicative of the plasmid nicking-closing equilibrium in vivo that serves to ready the plasmids for conjugal transfer. In pC221 and pC223, the components required for in vivo site- and strand-specific nicking at oriT are MobC and MobA. In order to investigate the minimal requirements for nicking in the absence of host-encoded factors, the reactions were reconstituted in vitro. Purified MobA and MobC, in the presence of Mg2+ or Mn2+, were found to nick at oriT with a concomitant phosphorylation-resistant modification at the 5' end of nic. The position of nic is consistent with that determined in vivo. MobA, MobC, and Mg2+ or Mn2+ therefore represent the minimal requirements for nicking activity. Cross-complementation analyses showed that the MobC proteins possess binding specificity for oriT DNA of either plasmid and are able to complement each other in the nicking reaction. Conversely, nicking by the MobA proteins is plasmid specific. This suggests the MobA proteins may encode the nicking specificity determinant.  相似文献   

13.
Transfer of plasmid DNA during bacterial conjugation begins at a specific site: the origin of transfer (oriT). The oriT region of the broad host range plasmid RK2 is located on a 250 bp fragment. Deletions involving either end of this region reduce transfer function, indicating that an extended sequence is required for optimal oriT activity. The single-strand nick induced by the RK2 DNA-protein relaxation complex is located adjacent to the 19 bp inverted repeat within the minimal oriT sequence. These results provide strong evidence that the plasmid relaxation event induced in vitro represents the nicking reaction that initiates DNA transfer at oriT during conjugation.  相似文献   

14.
The frequency of conjugal mobilization of plasmid R1162 is decreased approximately 50-fold if donor cells lack MobC, one of the plasmid-encoded proteins making up the relaxosome at the origin of transfer ( oriT  ). The absence of MobC has several different effects on oriT DNA. Site- and strand-specific nicking by MobA protein is severely reduced, accounting for the lower frequency of mobilization. The localized DNA strand separation required for this nicking is less affected, but becomes more sensitive to the level of active DNA gyrase in the cell. In addition, strand separation is not efficiently extended through the region containing the nick site. These effects suggest a model in which MobC acts as a molecular wedge for the relaxosome-induced melting of oriT DNA. The effect of MobC on strand separation may be partially complemented by the helical distortion induced by supercoiling. However, MobC extends the melted region through the nick site, thus providing the single-stranded substrate required for cleavage by MobA.  相似文献   

15.
A site- and strand-specific nick, introduced in the F plasmid origin of transfer, initiates conjugal DNA transfer during bacterial conjugation. Recently, molecular genetic studies have suggested that DNA helicase I, which is known to be encoded on the F plasmid, may be involved in this nicking reaction (Traxler, B. A., and Minkley, E. G., Jr. (1988) J. Mol. Biol. 204, 205-209). We have demonstrated this site- and strand-specific nicking event using purified helicase I in an in vitro reaction. The nicking reaction requires a superhelical DNA substrate containing the F plasmid origin of transfer, Mg2+ and helicase I. The reaction is protein concentration-dependent but, under the conditions used, only 50-70% of the input DNA substrate is converted to the nicked species. Genetic data (Everett, R., and Willetts, N. (1980) J. Mol. Biol. 136, 129-150) have also suggested the involvement of a second F-encoded protein, the TraY protein, in the oriT nicking reaction. Unexpectedly, the in vitro nicking reaction does not require the product of the F plasmid traY gene. The implications of this result are discussed. The phosphodiester bond interrupted by helicase I has been shown to correspond exactly to the site nicked in vivo suggesting that helicase I is the site- and strand-specific nicking enzyme that initiates conjugal DNA transfer. Thus, helicase I is a bifunctional protein which catalyzes site- and strand-strand specific nicking of the F plasmid in addition to the previously characterized duplex DNA unwinding (helicase) reaction.  相似文献   

16.
Formation of delta tra F' plasmids: specific recombination at oriT   总被引:6,自引:0,他引:6  
Delta tra F' plasmids can be isolated from matings between Hfr donors and recA- recipients, with selection for transfer of proximal chromosomal genes. Previous experiments indicate that F DNA from the neighborhood of the transfer origin up to the proximal junction with the chromosomal DNA is present on these plasmids, together with chromosomal segments, some of which belong to distinct size classes. We have sequenced across the novel joints contained in five delta tra FproA+ plasmids and in five delta tra FpurE+ plasmids, and we have compared these with the F sequence near oriT and with a chromosomal site near purE. The previously reported specificity in formation of some of these classes is confirmed at the nucleotide sequence level. The F DNA in nine of these novel joints extended beyond the nicking sites identified by others in lambda oriT+ bacteriophages up to a position between two sequenced oriT- mutations. Small plasmids containing these novel joints are mobilized in trans by pOX38 at frequencies less than 5 X 10(-7) times the mobilization frequencies for similar plasmids that contain oriT. The relations of these findings to the location of the nicking site at oriT are discussed.  相似文献   

17.
The product of the Escherichia coli F plasmid traI gene is required for DNA transfer via bacterial conjugation. This bifunctional protein catalyzes the unwinding of duplex DNA and is a sequence-specific DNA transesterase. The latter activity provides the site- and strand-specific nick required to initiate DNA transfer. To address the role of the TraI helicase activity in conjugative DNA transfer traI mutants were constructed and their function in DNA transfer was evaluated using genetic and biochemical methods. A traI deletion/insertion mutant was transfer-defective as expected. A traI C-terminal deletion that removed the helicase-associated motifs was also transfer-defective despite the fact that the region of traI encoding the transesterase activity was intact. Biochemical studies demonstrated that the N-terminal domain was sufficient to catalyze oriT-dependent transesterase activity. Thus, a functional transesterase was not sufficient to support DNA transfer. Finally, a point mutant, TraI-K998M, that lacked detectable helicase activity was characterized. This protein catalyzed oriT-dependent transesterase activity in vitro and in vivo but failed to complement a traI deletion strain in conjugative DNA transfer assays. Thus, both the transesterase and helicase activities of TraI are essential for DNA strand transfer.  相似文献   

18.
Integrative and conjugative elements (ICEs), also known as conjugative transposons, are mobile genetic elements that can transfer from one bacterial cell to another by conjugation. ICEBs1 is integrated into the trnS-leu2 gene of Bacillus subtilis and is regulated by the SOS response and the RapI-PhrI cell-cell peptide signaling system. When B. subtilis senses DNA damage or high concentrations of potential mating partners that lack the element, ICEBs1 excises from the chromosome and can transfer to recipients. Bacterial conjugation usually requires a DNA relaxase that nicks an origin of transfer (oriT) on the conjugative element and initiates the 5'-to-3' transfer of one strand of the element into recipient cells. The ICEBs1 ydcR (nicK) gene product is homologous to the pT181 family of plasmid DNA relaxases. We found that transfer of ICEBs1 requires nicK and identified a cis-acting oriT that is also required for transfer. Expression of nicK leads to nicking of ICEBs1 between a GC-rich inverted repeat in oriT, and NicK was the only ICEBs1 gene product needed for nicking. NicK likely mediates conjugation of ICEBs1 by nicking at oriT and facilitating the translocation of a single strand of ICEBs1 DNA through a transmembrane conjugation pore.  相似文献   

19.
The traY gene product (TraYp) from the Escherichia coli F factor has previously been purified and shown to bind a DNA fragment containing the F plasmid oriT region (E. E. Lahue and S. W. Matson, J. Bacteriol. 172:1385-1391, 1990). To determine the precise nucleotide sequence bound by TraYp, DNase I footprinting was performed. The TraYp-binding site is near, but not coincident with, the site that is nicked to initiate conjugative DNA transfer. In addition, a second TraYp binding site, which is coincident with the mRNA start site at the traYI promoter, is described. The Kd for each binding site was determined by a gel mobility shift assay. TraYp exhibits a fivefold higher affinity for the oriT binding site compared with the traYI promoter binding site. Hydrodynamic studies were performed to show that TraYp is a monomer in solution under the conditions used in DNA binding assays. Early genetic experiments implicated the traY gene product in the site- and strand-specific endonuclease activity that nicks at oriT (R. Everett and N. Willetts, J. Mol. Biol. 136:129-150, 1980; S. McIntire and N. Willetts, Mol. Gen. Genet. 178:165-172, 1980). As this activity has recently been ascribed to helicase I, it was of interest to see whether TraYp had any effect on this reaction. Addition of TraYp to nicking reactions catalyzed by helicase I showed no effect on the rate or efficiency of oriT nicking. Roles for TraYp in conjugative DNA transfer and a possible mode of binding to DNA are discussed.  相似文献   

20.
The nicking of the origin of transfer (oriT) is an essential initial step in the conjugative mobilization of plasmid DNA. In the case of staphylococcal plasmid pC221, nicking by the plasmid-specific MobA relaxase is facilitated by the DNA-binding accessory protein MobC; however, the role of MobC in this process is currently unknown. In this study, the site of MobC binding was determined by DNase I footprinting. MobC interacts with oriT DNA at two directly repeated 9 bp sequences, mcb1 and mcb2, upstream of the oriT nic site, and additionally at a third, degenerate repeat within the mobC gene, mcb3. The binding activity of the conserved sequences was confirmed indirectly by competitive electrophoretic mobility shift assays and directly by Surface Plasmon Resonance studies. Mutation at mcb2 abolished detectable nicking activity, suggesting that binding of this site by MobC is a prerequisite for nicking by MobA. Sequential site-directed mutagenesis of each binding site in pC221 has demonstrated that all three are required for mobilization. The MobA relaxase, while unable to bind to oriT DNA alone, was found to associate with a MobC-oriT complex and alter the MobC binding profile in a region between mcb2 and the nic site. Mutagenesis of oriT in this region defines a 7 bp sequence, sra, which was essential for nicking by MobA. Exchange of four divergent bases between the sra of pC221 and the related plasmid pC223 was sufficient to swap their substrate identity in a MobA-specific nicking assay. Based on these observations we propose a model of layered specificity in the assembly of pC221-family relaxosomes, whereby a common MobC:mcb complex presents the oriT substrate, which is then nicked only by the cognate MobA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号