首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amat  M. A.  Braud  J. -P. 《Hydrobiologia》1990,(1):467-471
Cultivated Chondrus crispus was used in N-NH4 uptake experiments in the laboratory. An elevation of temperature increased the apparent rate of uptake, especially up to 11 °C. Uptake in the dark was found to be 83 % of that in the light. The apparent uptake decreased with increasing internal N pool; rates were 26.5, 22.2 and 20.2 µg N g dry wt–1 min–1 for internal N pools of 2.7, 3.5 and 4.6%, respectively. Apparent uptake increased with the substrate N concentration. The resulting curve has two components: an active uptake and a diffusion component at high (> 5000 µg N L–1) external N levels. Ks and V max were calculated by deducting the diffusion component from the uptake curve: these were of 497 µg N L –1 and 14.4 µg N g dry wt–1 min–1. respectively, and reflect a low substrate affinity. This could be the result of 10 years of continuous culture of C. crispus. Uptake was similarly followed in the culture tanks and showed comparable results; nighttime would be the most appropriate time to supply nutrients.  相似文献   

2.
3.
A new automated procedure for nanomolar nitrate analysis was applied to the study of uptake of low nitrate concentrations (< 100 ngat l–1) by phytoplankton. The precision of this analytical method (± 3 ngat l–1) made it possible to monitor the absorption of very low quantities of nitrate over short term periods by a low cell-density culture of the marine diatom Phaeodactylum tricornutum, where the levels of particulate nitrogen and chlorophyll were equivalent to those found in oligotrophic areas (0.5 µgat N l–1 and 0.4 µg l–1 respectively). By continuous monitoring of nitrate disappearance from the culture medium, we are able to describe accurately the transient uptake responses of the diatom after a spike addition of trace quantities of nitrate and thus to provide new information on the still largely unknown small-scale phenomenon of pulsed nitrate supply in the upper layer of stratified oceans and rapid uptake of these nitrate patches by phytoplankton.The results show that a N-limited culture of Phaeodactylum tricornutum is immediately capable of taking up trace quantities of nitrate (< 100 ngat l–1) at high rates (0.10–0.14 h–1) . These initial rates are one order of magnitude higher than the theoretical rates calculated from the Michaelis-Menten equation and are close to the level of V max (0.15 h–1) obtained when cells are exposed to saturating nitrate concentrations. This rapid initial uptake would be a considerable advantage in oligotrophic areas where nanomolar nitrate supply is thought to be episodic. The present results suggest that phytoplankton evolve adaptations to utilize the available nitrate at the spatial and temporal scales at which it occurs. On the other hand, we can consider this physiological adaptation as evidence of nitrate pulses in the field which would invalidate the steady-state approach to the oligotrophic ecosystems.  相似文献   

4.
The uptake of ammonium, nitrate and phosphate by laboratory-grown young sporophytes of Laminaria abyssalis was measured in a perturbed system (batch mode) at 18 °C and 35 ± 5 µE m–2 s–1 photon flux density. Uptake of all appeared to follow saturation-type nutrient uptake kinetics. The NO inf3 sup– (K s = 14.0 µM, V max = 5.0 µmol h–1 g–1 dry wt) and NH inf4 sup+ (K s = 4.6 µM, V max= 2.0 µmol h–1 g–1 dry wt) were taken up simultaneously, although NH inf4 sup+ was taken up more rapidly. Values of K 3 and V max for phosphate were, respectively, 2.21 µM and 0.83 µmol h–1 g–1 dry wt. Nitrate and phosphate were both consumed in similar rates (V max /Ks 0.37) at low concentrations. NH inf4 sup+ , thus, might be a more efficient form of N fertilizer if artificial enrichment of seawater is used.  相似文献   

5.
In situ uptake of inorganic carbon and nitrogen by the aquatic liverworts Jungermannia vulcanicola Steph. and Scapania undulata (L.) Dum. was measured in an acid stream, Kashiranashigawa, Japan. The uptake activities were similar in the both species. The activities were highest at the tip of shoots, and decreased gradually towards the base. Carbon uptake at the tip in the light was 10.4 × 10–4 for J. vulcanicola and 8.1 × 10–4 g C g dry wt–1 h–1 1 for S. undulata. Ammonium was effectively incorporated into the shoots, and the uptake activity at the tip was between 1.9 × 10–5 and 5.8 × 10–5 g N g dry wt–1 h–1. Nitrate uptake was smaller than ammonium uptake. The ratio of dark to light uptake in ammonium uptake experiments was larger than that in carbon uptake experiments. These results suggest that the liverworts use ammonium as a major nitrogen source, and that ammonium uptake was less dependent on light than carbon uptake.  相似文献   

6.
Ammonium uptake in alpine streams in the High Tatra Mountains (Slovakia)   总被引:1,自引:1,他引:0  
Uptake of NH inf4 sup+ -N by streambed biota of mountain brooks was studied in the alpine zone of the High Tatra Mountains. Experiments were performed involving in situ dosing of ammonium directly to the acidified stream and incubations of ammonium and streambed bryophytes in enclosures within a range of pH from 4.45 to 8.10.NH inf4 sup+ -N uptake length decreased with decreasing stream discharge, while comparable values of discharge-normalized uptake lengths were found during two in situ experiments.Maximum uptake rates of NH inf4 sup+ -N obtained during the incubation of bryophytes (6 to 11 mg m–2 h–1) were comparable with results of two in situ experiments (8 and 12 mg m–2 h–1). The average NH inf4 sup+ -N uptake rates observed during incubations lasting 3 to 5 hours (4.3 mg m–2 h–1) were not related to the pH of stream water. Nitrification of about 50% of the NH inf4 sup+ -N added was observed in non-acidified streams, but was negligible in acidified streams. Significant photoinhibition of nitrification was observed in non-acidified streams during enclosure experiments.  相似文献   

7.
The turnover times of glucose, averaged for 0–10 m in the upper waters of Lake Kinneret and measured by the addition of single or multiple concentrations of substrate, ranged from 23 to 188 hours and 1 to 87 hours respectively. Potential uptake rates (estimated as Vmax) ranged from 0.095 to 1.94 µg glucose l–1h–1, while measured uptake rates varied from 0.09 to 1.1 µg glucose l–1h–1. Concentrations of dissolved carbohydrates and glucose averaged 0.71 mg glucose equivalents l–1 and 39 µg glucose l–1 respectively. No evident relationships between glucose cycling and any fractions of dissolved organic matter, phytoplankton biomass or primary productivity were found. Turnover times were generally most rapid immediately after the decline of the spring Peridinium bloom. The respiration percentage of incorporated glucose ranged from 25% to 61% with highest values during the summer months. Respiration may be influenced by the nature of the indigenous bacterial population as well as by temperature. Daily heterotrophic glucose carbon uptake was about 9% of the photosynthetic incorporation and could provide a bacterial yield of about 7 × 104 ml–1d–1.  相似文献   

8.
It is generally assumed that plant assimilation constitutes the major sink for anthropogenic Nitrate NO 3 deposited in temperate forests because plant growth is usually limited by nitrogen (N) availability. Nevertheless, plants are known to vary widely in their capacity for NO 3 uptake and assimilation, and few studies have directly measured these parameters for overstory trees. Using a combination of field and greenhouse experiments, we studied the N nutrition of Acer saccharum Marsh. in four northern hardwood forests receiving experimental NO 3 additions equivalent to 30 kg N ha–1 year–1. We measured leaf and fine-root nitrate reductase activity (NRA) of overstory trees using an in vivo assay and used 15N to determine the kinetic parameters of NO 3 uptake by excised fine roots. In two greenhouse experiments, we measured leaf and root NRA in A. saccharum seedlings fertilized with 0–3.5 g NO 3 –N m–2 and determined the kinetic parameters of NO 3 and NH 4 + uptake in excised roots of seedlings. In both overstory trees and seedlings, rates of leaf and fine root NRA were substantially lower than previously reported rates for most woody plants and showed no response to NO 3 fertilization (range = non-detectable to 33 nmol NO 2 g–1 h–1). Maximal rates of NO 3 uptake in overstory trees also were low, ranging from 0.2 to 1.0 mol g–1 h–1. In seedlings, the mean V max for NO 3 uptake in fine roots (1 mol g–1 h–1) was approximately 30 times lower than the V max for NH 4 + uptake (33 mol g–1 h–1). Our results suggest that A. saccharum satisfies its N demand through rapid NH 4 + uptake and may have a limited capacity to serve as a direct sink for atmospheric additions of NO 3 .  相似文献   

9.
Qu  Wenchuan  Morrison  R. J.  West  R. J. 《Hydrobiologia》2003,492(1-3):119-127
Rates of inorganic nutrient and oxygen fluxes, and gross community primary productivity were investigated using incubated cores in July, August and September 2001, in a seagrass meadow of Lake Illawarra, a barrier estuary in New South Wales, Australia. The results indicated that rates of gross primary productivity were high, varying from C = 0.62 to 1.89 g m–2 d–1; low P/R ratios of 0.28–0.48 define the system as heterotrophic and indicate that more carbon is respired than is produced. In order to determine the effect of macroalgae on O2 and nutrient fluxes, measurements were also conducted on cores from which the macroalgae had been removed. The results showed that the O2 fluxes during light incubations were significantly lower in the cores without macroalgae (P<0.01), indicating that macroalgae could be a significant contributor to the primary production in the lake. In general, nutrient fluxes showed a typical diurnal variation with an efflux from sediments in the dark and a reduced efflux (or uptake) in the light. Dissolved inorganic nitrogen (NO2 + NO3 +NH4 +) net fluxes were directed from the sediments towards the water column and dominated by the NH4 + fluxes (>80%). NO2 + NO3 and o-P fluxes were always very low during the sampling period. The increasing tendency of net nutrient effluxes, especially NH4 + from July to September, is consistent with the increase of the water temperature and seagrass biomasses. However, in September, significantly lower light, dark and net NH4 + effluxes were found in the cores with macroalgae (SA-sediments) compared with the cores without macroalgae (S-sediments). These results support the hypothesis that actively-growing dense macroalgal mats (i.e., algal blooms in September) may act as a filter reducing the flux of nutrients to the water column.  相似文献   

10.
The ingestion of two size classes of natural particulate matter (PM) and the uptake of the associated nitrogen by four species of scleractinian corals was measured using the stable isotopic tracer 15N. PM collected in sediment traps was split into <63 and >105 µm size fractions and labeled with (15N-NH4)2SO4. Siderastrea radians, Montastrea franksi, Diploria strigosa, and Madracis mirabilis were incubated in flow chambers with the labeled PM in suspension (<63 µm), or deposited onto coral surfaces (>105 µm). Ingestion was detected for all four species (98–600 µg Dry wt. cm–2 h–1), but only for D. strigosa was any difference detected between suspended and deposited PM. Only the three mounding species, S. radians, M. franksi, and D. strigosa showed uptake of suspended and deposited particulate nitrogen (PN); whereas, the branched coral M. mirabilis had no measurable PN uptake. Only coral host tissues were enriched with 15N, with no tracer detected in the symbiotic zooxanthellae. Uptake rates ranged from as low as 0.80 µg PN cm–2 h–1 in S. radians to as high as 13 µg PN cm–2 h–1 in M. franksi. M. franksi had significantly higher uptake rates than S. radians (ANOVA, p<0.05), while D. strigosa had a statistically similar uptake rate compared to both species. These results are the first to compare scleractinian ingestion of nitrogen associated with suspended and deposited particulate matter, and demonstrate that the use of PM as a nitrogen source varies with species and colony morphology.  相似文献   

11.
Observations of near-bottom populations of Karenia brevis suggest that these cells may derive nutrients from the sediment–water interface. Cells undergoing a metabolic-mediated migration may be in close proximity to enhanced concentrations of nutrients associated with the sediment during at least a fraction of their diel cycle. In this study, the growth, uptake and assimilation rates of ammonium, nitrate, and urea by K. brevis were examined on a diel basis to better understand the potential role of these nutrients in the near-bottom ecology of this species. Three strains of K. brevis, C6, C3, and CCMP 2229, were grown under 12:12 light dark cycle under 30 μmol photons m−2 s−1 delivered to the surface plain of batch cultures. Nitrogen uptake was evaluated using 15N tracer techniques and trichloroacetic acid extraction was used to evaluate the quantity of nitrogen (N) assimilated into cell protein. Growth rates ranged from a low of 0.12 divisions day−1 for C6 and C3 grown on nitrate to a high of 0.18 divisions day−1 for C3 grown on urea. Diurnal maximum uptake rates, ρmax, varied from 0.41 pmol-N cell−1 h−1 for CCMP 2229 grown on nitrate, to 1.29 pmol-N cell−1 h−1 for CCMP 2229 grown on urea. Average nocturnal uptake rates were 29% of diurnal rates for nitrate, 103% of diurnal uptake rates for ammonium and 56% of diurnal uptake rates for urea. Uptake kinetic parameters varied between substrates, between strains and between day and night measurements. Highest maximum uptake rates were found for urea for strains CCMP2229 and C3 and for ammonium for strain C6. Rates of asmilation into protein also varied day and night, but overall were highest for urea. The comparison of maximal uptake rates as well as assimilation efficiencies indicate that ammonium and urea are utilized (taken up and assimilated) more than twice was fast as nitrate on a diel basis.  相似文献   

12.
Kinetics of nitrate uptake by freshwater algae   总被引:2,自引:2,他引:0  
The kinetics of nitrate (NO3 ) uptake, the maximum uptake velocity (Vm) and the half-saturation constant (Ks), were determined for 18 species of batch-cultured freshwater algae grown without nitrogen limitation. Values of Ks ranged from 0.25 to 6.94 µM l–1 Chlorella pyrenoidosa Chick, and Navicula pelliculosa (Breb.) Hilse, respectively. Values of Vm ranged from 0.51 to 5.07 µM l–1 h–1 for Anabaena A7214 and Nitzschia W-32 O'Kelley, respectively. The mean positive values of Ks for Chlorophyta, Cyanophyta and Chrysophyta were 1.89, 3.67 and 4.07 µM l–1, respectively. The mean values of Vm for the same phyla were 1.61, 1.02 and 2.97 µM l–1 h–1 105 cells–1, respectively. The ranges of these kinetic parameters encompass values of kinetic parameters for marine and freshwater species in batch culture, for freshwater algae grown in N-limited chemostats and for natural populations of freshwater phytoplankton. Thus, in spite of variability between species, uptake parameters for both marine and freshwater algae are identical.  相似文献   

13.
Denitrification was studied in anoxic batch cultures of a simulated fish processing wastewater at 37 r C and pH 7.5, using a denitrifying enrichment culture from fishery wastewater. Different initial nitrate to biomass ratios (So/Xo) were used: nitrate and biomass varied from 7.5 to 94.7 mg NO3-N l–1, and from 20 to 4300 mg volatile suspended solids l–1, respectively. The specific maximum denitrification rate (r m) and the cell yield (Y X / S) depended on the So/Xo ratio under anoxic conditions: r m increased from 1.2 to 1584 mg NO3-N g–1 VSS h–1 and Y X / S decreased from 42 to 0.03 mg VSS mg–1 NO3-N when So/Xo varied from 5.5 10– 3 to 9.3 mg NO3-N/mg VSS. Nomenclature CNO3 – N nitrate concentration, mg NO3-N l–1 K S saturation constant, mg NO3-N l–1 r m specific maximum denitrification rate, mg NO3-N g–1 VSS h–1 So initial substrate concentration, mg l–1 t time, h TOC total organic carbon VSS volatile suspended solids x biomass concentration, g VSS l–1 Xo initial biomass concentration, g VSS l–1 Y X/S substrate to biomass cell yield, mg VSS/mg N Greek symbols: m maximum specific growth rate of the anoxic microbial population, 1 h–1  相似文献   

14.
When an initial cell loading of about 30–40 µg chlorophyll (Chl)·g–1 gel and alginate suspension of 3% (w/v) were used for immobilization of Chlamydomonas reinhardtii, the resulting cell beads showed optimum nitrite uptake rate, at 30° C and pH 7.5, of 14 µmol NO inf2 sup– ·mg–1 Chl·h–1, the photosynthetic and respiratory activities being about 120 µmol O2 produced·mg–1 Chl·h–1, and 40 µmol O2 consumed ·mg–1 Chl·h–1, respectively. The nitrite uptake activity required CO2 in the culture and persisted after 8 days of cells immobilization, or in the presence of 0.2 mm ammonium in the medium. Our data indicate that alginate-entrapped C, reinhardtii cells may provide a stable and functional system for removing nitrogenous contaminants from waste-waters.Correspondence to: C. Vílchez  相似文献   

15.
Gulati  R. D.  Ejsmont-Karabin  J.  Rooth  J.  Siewertsen  K. 《Hydrobiologia》1989,(1):347-354
Phosphorus (PO4-P) and nitrogen (NH4-N) excretion rates of Euchlanis dilatata lucksiana, a rotifer, isolated from Lake Loosdrecht (The Netherlands) and cultured in the lake water at 18–19 °C, were measured in the laboratory.In a series of experiments, the effects of experiment duration on the P and N excretion rates were examined. The rates measured in the first half-hour were about 2 times higher for P and 2–4 times for N than the rates in the subsequent three successive hours which were quite comparable.Eight experiments were carried out in triplicate, 4 each for P and N excretion measurements, using animals of two size ranges: 60–125 µm and > 125 µm. The specific excretion rates varied from 0.06 to 0.18 µg P.mg–1 DW.h–1 and 0.21 to 0.76 µg N.mg–1 DW.h–1. Generally an inverse relationship was observed between the specific excretion rates and the mean individual weight. The excretion rates of Euchlanis measured by us are lower than those reported for several other rotifer species, most of which are much smaller than Euchlanis.Extrapolating the excretion rates of Euchlanis to the other rotifer species in Lake Loosdrecht, and accounting for their density, size and temperature, rotifer excretion appears to be a significant, potential nutrient (N,P) source for phytoplankton growth in the lake. The excretion rates for the rotifers appear to be about two thirds of the total zooplankton excretion, even though the computed rotifer mean biomass is about one-third of the total zooplankton biomass.  相似文献   

16.
Nitrogen flux from sediment of a shallow lake and subsequent utilization by water hyacinth (Eichhornia crassipes [Mart] Solms) present in the water column were evaluated using an outdoor microcosm sediment-water column. Sediment N was enriched with 15N to quantitatively determine the movement of NH4-N from the sediment to the overlying water column. During the first 30 days. 48% of the total N uptake by water hyacinth was derived from sediment 15NH4-N. This had decreased to 14% after 183 days. Mass balance of N indicates that about 25% sediment NH4-N was released into the overlying water, but only 17% was assimilated by water hyacinth. NH4-N levels in the water column were very low, with very little or no concentration gradients. NH4-N levels in the interstitial water of the sediment were in the range of 30–35 mg L–1 for the lower depths (> 35 cm), while in the surface 5 cm of depth NH4-N levels decreased to 3.2 mg L–1. Simulated results also showed similar trends for the interstitial NH4-N concentration of the sediment. The overall estimated NH4-N flux from the sediment to the overlying water was 4.8 µg cm–2 day–1, and the soluble organic N flux was 5.8 µg N cm–2 day–1. Total N flux was 10.6 µg N cm–2 day–1.  相似文献   

17.
Summary Optimal growth conditions for Zymomonas mobilis have been established using continuous cultivation methods. Optimal substrate utilization efficiency occurs with 2.5 g l–1 yeast extract, 2.0 g l–1 ammonium sulfate and 6.0 g l–1 magnesium sulfate in the media. Catabolic activity is at its maximum with glucose uptake rates of 16–18 g l–1 h–1 and ethanol production rates of 8–9 g l–1 h–1, Qg values of 22–26 and Qp values between 11 and 13, which results in 40 g l–1 h–1 ethanol yields using a 100 g l–1 substrate feed. Any increase in these parameters goes on cost of substrate utilization efficiency. Calcium pantothenate can not substitute yeast extract.Abbreviations G Glucose (%) - Pant Calcium pantothenate (mg l–1) - D Dilution rate (h–1) - NH4 Ammonium sulfate (%) - Mg Magnesium sulfate (%) - S1 Residual glucose in the fermenter (g l–1) - S0 Glucose feed (g l–1) - Eth Ethanol concentration (g l–1) - GUR Glucose uptake rate (g l–1 h–1) - Qg Specific glucose uptake rate (g g–1 h–1) - Qp Specific ethanol production rate (g g–1 h–1) - EPR Ethanol production rate (g l–1 h–1) - Yg Yield coefficient for glucose (g g–1) - Yp Conversion efficiency (%) - C Biomass concentration (g l–1) Present address: (Until June 1982) Institut für Mikrobiologie, TH Darmstadt, 6100 Darmstdt, Federal Republic of Germany  相似文献   

18.
Data on phosphate excretion rates of zooplankton are based on measurements using the pelagic crustacean zooplankton of Lake Vechten and laboratory-cultured Daphnia galeata. In case of Daphnia sp we measured the effects of feeding on P-rich algae and P-poor algae (Scenedesmus) as food on the P-excretion rates at 20°C. The excretion rates of the natural zooplankton community, irrespective of the influence of the factors mentioned, varied by an order of magnitude: 0.025–0.275µg PO4-Pmg–1C in zooplankton (C zp ) h–1. The temperature accounted for about half the observed variation in excretion rates. The mean excretion rates in the lake, computed for 20°C, varied between 0.141 and 0.260 µg Pmg–1C zp h–1. Based on data of zooplankton biomass in the lake the P-regeneration rates by zooplankton covered between 22 and 239% of the P-demand of phytoplankton during the different months of the study period.In D. galeata, whereas the C/P ratios of the Scenedesmus used as food differed by a factor 5 in the experiments, the excretion rates differed by factor 3 only. Despite the higher P-excretion rates (0.258± 0.022 µg PO4-P mg–1 C h–1) of the daphnids fed with P-rich food than those fed with P-poor food (0.105 ± 0.047 µg PO4-P mg–1 C hp–1), both the categories of the animals were apparently conserving P. A survey of the literature on zooplankton excretion shows that in Daphnia the excretion rates vary by a factor 30, irrespective of the species and size of animals and method of estimation and temperature used.About two-thirds of this variation can be explained by size and temperature. A major problem of comparability of studies on P-regeneration by zooplankton relates to the existing techniques of P determination, which necessitates concentrating the animals several times above the in situ concentration (crowding) and prolonged experimental duration (starving), both of which manifest in marked changes that probably lead to underestimation of the real rates.  相似文献   

19.
Summary Seasonal and diurnal variations in sediment-water fluxes of O2, NO 3 , and NH 4 + as well as rates of nitrification, denitrification, and nitrate ammonification were determined in two different coastal lagoons of southern France: The seagrass (Zostera noltii) dominated tidal Bassin d'Arcachon and the dystrophic Etang du Prévost. Overall, denitrification rates in both Bassin d'Arcachon (<0.4 mmol m–2 d–1) and Etang du Prévost (<1 mmol m–2 d–1) were low. This was mainly caused by a combination of low NO 3 concentrations in the water column and a low nitrification activity within the sediment. In both Bassin d'Arcachon and Etang du Prévost, rates of nitrate ammonification were quantitatively as important as denitrification.Denitrification played a minor role as a nitrogen sink in both systems. In the tidal influenced Bassin d'Arcachon, Z. noltii was quantitatively more important than denitrification as a nitrogen sink due to the high assimilation rates of the plants. Throughout the year, Z. noltii stabilized the mudflats of the bay by its well- developed root matrix and controlled the nitrogen cycle due to its high uptake rates. In contrast, the lack of rooted macrophytes, and dominance of floating macroalgae, made nitrogen cycling in Etang du Prévost more unstable and unpredictable. Inhibition of nitrification and denitrification during the dystrophic crisis in the summer time increased the inorganic nitrogen flux from the sediment to the water column and thus increased the degree of benthic-pelagic coupling within this bay. During winter, however, benthic microalgae colonizing the sediment surface changed the sediment in the lagoon from being a nitrogen source to the over lying water to being a sink due to their high assimilation rates. It is likely, however, that this assimilated nitrogen is liberated to the water column at the onset of summer thereby fueling the extensive growth of the floating macroalgae, Ulva sp. The combination of a high nitrogen coupling between sediment and water column, little water exchange and low denitrification rates resulted in an unstable system with fast growing algal species such as phytoplankton and floating algae.  相似文献   

20.
Gisela Mäck  Rudolf Tischner 《Planta》1990,182(2):169-173
The pericarp of the dormant sugarbeet fruit acts as a storage reservoir for nitrate, ammonium and -amino-N. These N-reserves enable an autonomous development of the seedling for 8–10 d after imbibition. The nitrate content of the seed (1% of the whole fruit) probably induces nitrate-reductase activity in the embryo enclosed in the pericarp. Nitrate that leaks out of the pericarp is reabsorbed by the emerging radicle. Seedlings germinated from seeds (pericarp was removed) without external N-supply are able to take up nitrate immediately upon exposure via a low-capacity uptake system (vmax = 0.8 mol NO 3 - ·(g root FW)–1·h–1; Ks = 0.12 mM). We assume that this uptake system is induced by the seed nitrate (10 nmol/seed) during germination. Induction of a high-capacity nitrate-uptake system (vmax = 3.4 mol NO 3 - ·(g root FW)–1·h–1; Ks = 0.08 mM) by externally supplied nitrate occurs after a 20-min lag and requires protein synthesis. Seedlings germinated from whole fruits absorb nitrate via a highcapacity uptake mechanism induced by the pericarp nitrate (748 nmol/pericarp) during germination. The uptake rates of the high-capacity system depend only on the actual nitrate concentration of the uptake medium and not on prior nitrate pretreatments. Nitrate deprivation results in a decline of the nitrate-uptake capacity (t1/2 of vmax = 5 d) probably caused by the decay of carrier molecules. Small differences in Ks but significant differences in vmax indicate that the low- and high-capacity nitrate-uptake systems differ only in the number of identical carrier molecules.Abbreviations NR nitrate reductase - pFPA para-fluorophenylalanine This work was supported by a grant from Bundesministerium für Forschung und Technologie and by Kleinwanzlebener Saatzucht AG, Einbeck.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号