首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the DBA/2 --> unirradiated (C57BL/6 x DBA/2)F(1) model of chronic graft-vs-host disease (cGVHD), donor CD4(+) T cells play a critical role in breaking host B cell tolerance, while donor CD8(+) T cells are rapidly removed and the remaining cells fall into anergy. Previously we have demonstrated that in vivo ligation of GITR (glucocorticoid-induced TNF receptor-related gene) can activate donor CD8(+) T cells, subsequently converting the disease pattern from cGVHD to an acute form. In this study, we investigated the effect of an agonistic mAb against CD40 on cGVHD. Treatment of anti-CD40 mAb inhibited the production of anti-DNA IgG1 autoantibody and the development of glomerulonephritis. The inhibition of cGVHD occurred because anti-CD40 mAb prevented donor CD8(+) T cell anergy such that subsequently activated donor CD8(+) T cells deleted host CD4(+) T cells and host B cells involved in autoantibody production. Additionally, functionally activated donor CD8(+) T cells induced full engraftment of donor hematopoietic cells and exhibited an increased graft-vs-leukemia effect. However, induction of acute GVHD by donor CD8(+) T cells seemed to be not so apparent. Further CTL analysis indicated that there were lower levels of donor CTL activity against host cells in mice that received anti-CD40 mAb, compared with mice that received anti-GITR mAb. Taken together, our results suggest that a different intensity of donor CTL activity is required for removal of host hematopoietic cells, including leukemia vs induction of acute GVHD.  相似文献   

2.
The regulation of T cell expansion by TNFR family members plays an important role in determining the magnitude of the immune response to pathogens. As several members of the TNFR family, including glucocorticoid-induced TNFR-related protein (GITR), are found on both regulatory and effector T cells, there is much interest in understanding how their effects on these opposing arms of the immune system affect disease outcome. Whereas much work has focused on the role of GITR on regulatory T cells, little is known about its intrinsic role on effector T cells in an infectious disease context. In this study, we demonstrate that GITR signaling on CD8 T cells leads to TNFR-associated factor (TRAF) 2/5-dependent, TRAF1-independent NF-κB induction, resulting in increased Bcl-x(L). In vivo, GITR on CD8 T cells has a profound effect on CD8 T cell expansion, via effects on T cell survival. Moreover, GITR is required on CD8 T cells for enhancement of influenza-specific CD8 T cell expansion upon administration of agonistic anti-GITR Ab, DTA-1. Remarkably, CD8 T cell-intrinsic GITR is essential for mouse survival during severe, but dispensable during mild respiratory influenza infection. These studies highlight the importance of GITR as a CD8 T cell costimulator during acute viral infection, and argue that despite the similarity among several TNFR family members in inducing T lymphocyte survival, they clearly have nonredundant functions in protection from severe infection.  相似文献   

3.
The glucocorticoid-induced TNF receptor (GITR), which is a member of the TNF receptor family, is expressed preferentially at high levels on CD25+CD4+ regulatory T cells and plays a key role in the peripheral tolerance that is mediated by these cells. GITR is also expressed on conventional CD4+ and CD8+ T cells, and its expression is enhanced rapidly after activation. In this report we show that the GITR provides a potent costimulatory signal to both CD25+ and CD25- CD4+ T cells. GITR-mediated stimulation induced by anti-GITR mAb DTA-1 or GITR ligand transfectants efficiently augmented the proliferation of both CD25-CD4+ and CD25+CD4+ T cells under the limited dose of anti-CD3 stimulation. The augmentation of T cell activation was further confirmed by the enhanced cell cycle progression; early induction of the activation Ags, CD69 and CD25; cytokine production, such as IL-2, IFN-gamma, IL-4, and IL-10; anti-CD3-induced redirected cytotoxicity; and intracellular signaling, assessed by translocation of NF-kappaB components. GITR costimulation showed a potent ability to produce high amounts of IL-10, which resulted in counter-regulation of the enhanced proliferative responses. Our results highlight evidence that GITR acts as a potent and unique costimulator for an early CD4+ T cell activation.  相似文献   

4.
Treatment of tumor-bearing mice with a stimulatory Ab to glucocorticoid-induced TNFR family-related receptor (GITR) has previously been shown to elicit protective T cell responses against poorly immunogenic tumors. However, the role of GITR stimulation on CD8 T cells and the nature of tumor rejection Ags have yet to be determined. In this study, we show that a stimulatory mAb to GITR (clone DTA-1) acts directly on CD8 T cells, but not on CD4(+)CD25(+) regulatory T (T(reg)) cells, in B16 tumor-bearing mice to induce concomitant immunity against secondary B16 tumors, as well as protective memory following surgical excision of the primary tumor. Melanoma growth itself induced GITR expression on tumor-specific CD8 T cells, providing a mechanism whereby these cells may respond to stimulatory anti-GITR. Unexpectedly, in contrast to T(reg) cell depletion therapy with anti-CD4, GITR stimulation induced very weak CD8 T cell responses to melanocyte differentiation Ags expressed by the tumor, and did not induce autoimmune vitiligo. Accordingly, GITR-stimulated hosts that were primed with B16 melanoma rejected B16, but not the unrelated JBRH melanoma, indicating that tumor rejection Ags are tumor-specific rather than shared. In support of this, we show that GITR stimulation induces CD8 T cell responses to a tumor-specific Ag, and that these responses are of higher functional avidity compared with those induced by T(reg) cell depletion. We conclude that stimulation of GITR on effector CD8 T cells results in high-avidity T cell responses to tumor-specific Ags, thereby inducing potent antitumor immunity in the absence of autoimmunity.  相似文献   

5.
Glucocorticoid-induced TNF receptor family related protein (GITR) is present on many different cell types. Previous studies have shown that in vivo administration of an anti-GITR agonist mAb (DTA-1) inhibits regulatory T cells (Treg)-dependent suppression and enhances T cell responses. In this study, we show that administration of DTA-1 induces >85% tumor rejection in mice challenged with B16 melanoma. Rejection requires CD4+, CD8+, and NK1.1+ cells and is dependent on IFN-gamma and Fas ligand and independent of perforin. Depletion of Treg via anti-CD25 treatment does not induce B16 rejection, whereas 100% of the mice depleted of CD25+ cells and treated with DTA-1 reject tumors, indicating a predominant role of GITR on effector T cell costimulation rather than on Treg modulation. T cells isolated from DTA-1-treated mice challenged with B16 are specific against B16 and several melanoma differentiation Ags. These mice develop memory against B16, and a small proportion of them develop mild hypopigmentation. Consistent with previous studies showing that GITR stimulation increases Treg proliferation in vitro, we found in our model that GITR stimulation expanded the absolute number of FoxP3+ cells in vivo. Thus, we conclude that overall, GITR stimulation overcomes self-tolerance/ignorance and enhances T cell-mediated antitumor activity with minimal autoimmunity.  相似文献   

6.
Tim-3, a member of the T cell Ig mucin (TIM) family regulates effector Th1 responses. We examined Tim-3 and its ligand expression as well as the effects of anti-Tim-3 mAb treatment in a murine model of acute graft-vs-host disease (aGVHD). In mice with aGVHD, Tim-3 expression was markedly up-regulated on splenic and hepatic CD4+ and CD8+ T cells, dendritic cells (DCs), and macrophages, and this was especially dramatic in hepatic CD8+ T cells. Both donor- and host-derived CD8+ T cells induced similar levels of Tim-3. Tim-3 ligand expression was also up-regulated in splenic T cells, DCs, and macrophages, but not in the hepatic lymphocytes. The administration of anti-Tim-3 mAbs accelerated aGVHD, as demonstrated by body weight loss, reduction in total splenocyte number, and infiltration of lymphocytes in the liver. IFN-gamma expression by splenic and hepatic CD4+ and CD8+ T cells was significantly augmented by anti-Tim-3 mAb treatment. In addition, the cytotoxicity against host alloantigen by donor CD8+ T cells was enhanced. These results demonstrate that the anti-Tim-3 treatment in aGVHD augmented the activation of effector T cells expressing IFN-gamma or exerting cytotoxicity. Our results suggest that Tim-3 may play a crucial role in the regulation of CD8+ T cells responsible for the maintenance of hepatic homeostasis and tolerance.  相似文献   

7.
Protective immunity in paracoccidioidomycosis (PCM) is believed to be mediated by cellular immunity, but the role of T cell subsets has never been investigated. The aim of this study was to characterize the function of CD4+ and CD8+ T cells in the immunity developed by susceptible, intermediate and resistant mice after P. brasiliensis infection. In susceptible mice, depletion of CD4+ T cells did not alter disease severity and anergy of cellular immunity but diminished antibody production. Anti-CD8 treatment led to increased fungal loads, but restored DTH reactivity. In resistant mice, both CD4+ and CD8+ T cells control fungal burdens and cytokines although only the former regulate DTH reactions and antibody production. In the intermediate strain, deficiency of whole T and CD8+ T cells but not of CD4+ T or B cells led to increased mortality rates. Thus, in pulmonary PCM: (a) irrespective of the host susceptibility pattern, fungal loads are mainly controlled by CD8+ T cells, whereas antibody production and DTH reactions are regulated by CD4+ T cells; (c) CD4+ T cells play a protective role in the resistant and intermediate mouse strains, whereas in susceptible mice they are deleted or anergic; (d) genetic resistance to PCM is associated with concomitant CD4+ and CD8+ T cell immunity secreting type 1 and type 2 cytokines.  相似文献   

8.
Glucocorticoid-induced TNF receptor family related protein (GITR) is a member of the TNFR superfamily. Previous studies have shown that in vivo administration of a GITR agonistic Ab (DTA-1) is able to overcome tolerance and induce tumor rejection in several murine syngeneic tumor models. However, little is known about the in vivo targets and the mechanisms of how this tolerance is overcome in a tumor-bearing host, nor is much known about how the immune network is regulated to achieve this antitumor response. In this study, we demonstrate that the in vivo ligation of GITR on CD4(+) effector T cells renders them refractory to suppression by regulatory T (T(reg)) cells in the CT26 tumor-bearing mouse. GITR engagement on T(reg) cells does not appear to directly abrogate their suppressive function; rather, it increases the expansion of T(reg) cells and promotes IL-10 production, a cytokine important for their suppressive function. Moreover, CD4(+) effector T cells play a crucial role in mediating DTA-1-induced immune activation and expansion of CD8(+), NK, and B cells in the tumor-draining lymph nodes. This includes increased CD69 expression on all of these subsets. In addition, NK and tumor-specific CD8(+) T cells are generated that are cytolytic, which show increased intracellular IFN-gamma production and CD107a mobilization, the latter a hallmark of cytolytic activities that lead to tumor killing.  相似文献   

9.
Anergy is an important mechanism of maintaining peripheral immune tolerance. T cells rendered anergic are refractory to further stimulation and are characterized by defective proliferation and IL-2 production. We used a model of in vivo anergy induction in murine CD8+ T cells to analyze the initial signaling events in anergic T cells. Tolerant T cells displayed reduced phospholipase Cgamma activation and calcium mobilization, indicating a defect in calcium signaling. This correlated with a block in nuclear localization of NFAT1 in anergic cells. However, we found that stimulation of anergic, but not naive T cells induced nuclear translocation of NFAT2. This suggested that NFAT2 is activated preferentially by reduced calcium signaling, and we confirmed this hypothesis by stimulating naive T cells under conditions of calcium limitation or partial calcineurin inhibition. Thus, our work provides new insight into how T cell stimulation conditions might dictate specific NFAT isoform activation and implicates NFAT2 involvement in the expression of anergy-related genes.  相似文献   

10.
Glucocorticoid-induced TNF receptor (GITR) is known to provide costimulatory signals to CD4+CD25- and CD4+CD25+ T cells during immune responses in vivo. However, the functional roles of GITR expressed on NKT cells have not been well characterized. In this study, we have explored the functions of GITR as a costimulatory factor on NKT cells. GITR was found to be constitutively expressed on NKT cells and its expression was enhanced by TCR signals. GITR engagement using DTA-1, an agonistic mAb against GITR, in the presence of TCR signals, augmented IL-2 production, the expression of activation markers, cell cycle progression, and the nuclear translocations of NF-kappaB p50 and p65. Furthermore, GITR engagement enhanced the production of IL-4, IL-10, IL-13, and IFN-gamma by NKT cells and the expression level of phosphorylated p65 in NKT cells in the presence of TCR engagement, indicating that GITR provides costimulatory signals to NKT cells. The costimulatory effects of GITR on NKT cells were comparable to those of CD28 in terms of cytokine production. Moreover, the coinjection of DTA-1 and alpha-galactosylceramide into B6 mice induced more IL-4 and IFN-gamma production than the coinjection of control mAbs and alpha-galactosylceramide. In addition, the adoptive transfer of DTA-1-pretreated NKT cells into CD1d(-/-) mice attenuated hypersensitivity pneumonitis more than control IgG pretreated NKT cells in these mice. These findings demonstrate that GITR engagement on NKT cells modulates immune responses in hypersensitivity pneumonitis in vivo. Taken together, our findings suggest that GITR engagement costimulates NKT cells and contributes to the regulation of immune-associated disease processes in vivo.  相似文献   

11.
Using a mouse model system, we demonstrate that anergic CD8+ T cells can persist and retain some functional capabilities in vivo, even after the induction of tolerance. In TCR Vbeta5 transgenic mice, mature CD8+Vbeta5+ T cells transit through a CD8lowVbeta5low deletional intermediate during tolerance induction. CD8low cells are characterized by an activated phenotype, are functionally compromised in vitro, and are slated for deletion in vivo. We now demonstrate that CD8low cells derive from a proliferative compartment, but do not divide in vivo. CD8low cells persist in vivo with a t1/2 of 3-5 days, in contrast to their in vitro t1/2 of 0.5-1 day. During this unexpectedly long in vivo life span, CD8low cells are capable of producing IFN-gamma in vivo despite their inability to proliferate or to kill target cells in vitro. CD8low cells also accumulate at sites of inflammation, where they produce IFN-gamma. Therefore, rather than withdrawing from the pool of functional CD8+ T cells, anergic CD8low cells retain a potential regulatory role despite losing their capacity to proliferate. The ability of anergic cells to persist and function in vivo adds another level of complexity to the process of tolerance induction in the lymphoid periphery.  相似文献   

12.
CD4(+)CD25(+) regulatory T cells in normal animals are engaged in the maintenance of immunological self-tolerance and prevention of autoimmune disease. However, accumulating evidence suggests that a fraction of the peripheral CD4(+)CD25(-) T cell population also possesses regulatory activity in vivo. Recently, it has been shown glucocorticoid-induced TNFR family-related gene (GITR) is predominantly expressed on CD4(+)CD25(+) regulatory T cells. In this study, we show evidence that CD4(+)GITR(+) T cells, regardless of the CD25 expression, regulate the mucosal immune responses and intestinal inflammation. SCID mice restored with the CD4(+)GITR(-) T cell population developed wasting disease and severe chronic colitis. Cotransfer of CD4(+)GITR(+) population prevented the development of CD4(+)CD45RB(high) T cell-transferred colitis. Administration of anti-GITR mAb-induced chronic colitis in mice restored both CD45RB(high) and CD45RB(low) CD4(+) T cells. Interestingly, both CD4(+)CD25(+) and CD4(+)CD25(-) GITR(+) T cells prevented wasting disease and colitis. Furthermore, in vitro studies revealed that CD4(+)CD25(-)GITR(+) T cells as well as CD4(+)CD25(+)GITR(+) T cells expressed CTLA-4 intracellularly, showed anergic, suppressed T cell proliferation, and produced IL-10 and TGF-beta. These data suggest that GITR can be used as a specific marker for regulatory T cells controlling mucosal inflammation and also as a target for treatment of inflammatory bowel disease.  相似文献   

13.
CD8+T cells can become anergic following activation, though the cellular mechanism, as compared to CD4+ T cells, remains poorly understood. Here, we examined the effects of different antigen-dose, peptide ligands, and engagement of costimulatory molecules on the induction of CD8+ T cell anergy. We observed that increasing strengths of signals delivered to CD8+ T cells by varying the antigen-dose and the nature of peptide ligands induced increasing degrees of non-responsiveness to secondary stimulation. Furthermore, higher levels of LFA-3 engagement of CD2 rendered CD8+ T cells unresponsive to secondary antigenic re-challenge. This pattern of secondary responsiveness lasted up to 2 weeks following primary stimulation and was not correlated with prior cell division history. These results indicate that the strength of prior stimuli, which is determined by the sum of signals from both TCR and costimulatory molecules, determines the activation threshold and magnitude of CD8+ T cell responses.  相似文献   

14.
T cell tolerance is a critical element of tumor escape. However, the mechanism of tumor-associated T cell tolerance remains unresolved. Using an experimental system utilizing the adoptive transfer of transgenic T cells into naive recipients, we found that the population of Gr-1+ immature myeloid cells (ImC) from tumor-bearing mice was able to induce CD8+ T cell tolerance. These ImC accumulate in large numbers in spleens, lymph nodes, and tumor tissues of tumor-bearing mice and are comprised of precursors of myeloid cells. Neither ImC from control mice nor progeny of tumor-derived ImC, including tumor-derived CD11c+ dendritic cells, were able to render T cells nonresponsive. ImC are able to take up soluble protein in vivo, process it, and present antigenic epitopes on their surface and induce Ag-specific T cell anergy. Thus, this is a first demonstration that in tumor-bearing mice CD8+ T cell tolerance is induced primarily by ImC that may have direct implications for cancer immunotherapy.  相似文献   

15.
Anergic T cells have immunoregulatory activity and can survive for extended periods in vivo. It is unclear how anergic T cells escape from deletion, because both anergy and apoptosis can occur after TCR ligation. Stimulation of human CD4+ T cell clones reactive to influenza hemagglutinin peptides can occur in the absence of APCs when MHC class II-expressing, activated T cells present peptide to each other. This T:T peptide presentation can induce CD95-mediated apoptosis, while the cells that do not die are anergic. We found that the death after peptide or anti-CD3 treatment of a panel of CD4+ T cell clones is blocked by IFN-beta secreted by fibroblasts and also by IFN-alpha. This increases cell recovery after stimulation, which is not due to T cell proliferation. This mechanism for apoptosis inhibition rapidly stops protein kinase C-delta translocation from the cytoplasm to the nucleus, which is an early event in the death process. A central observation was that CD4+ T cells that are rescued from apoptosis after T:T presentation of peptide by IFN-alphabeta remain profoundly anergic to rechallenge with Ag-pulsed APCs. However, anergized cells retain the ability to respond to IL-2, showing that they are nonresponsive but functional. The prevention of peptide-induced apoptosis in activated T cells by IFN-alphabeta is a novel mechanism that may enable the survival and maintenance of anergic T cell populations after TCR engagement. This has important implications for the persistence of anergic T cells with the potential for immunoregulatory function in vivo.  相似文献   

16.
GRAIL (gene related to anergy in lymphocytes) is an ubiquitin-protein isopeptide ligase (E3) ubiquitin ligase necessary for the induction of CD4(+) T cell anergy in vivo. We have extended our previous studies to characterize the expression pattern of GRAIL in other murine CD4(+) T cell types with a described anergic phenotype. These studies revealed that GRAIL expression is increased in naturally occurring (thymically derived) CD4(+) CD25(+) T regulatory cells (mRNA levels 10-fold higher than naive CD25(-) T cells). Further investigation demonstrated that CD25(+) Foxp3(+) antigen-specific T cells were induced after a "tolerizing-administration" of antigen and that GRAIL expression correlated with the CD25(+) Foxp3(+) antigen-specific subset. Lastly, using retroviral transduction, we demonstrated that forced expression of GRAIL in a T cell line was sufficient for conversion of these cells to a regulatory phenotype in the absence of detectable Foxp3. These data demonstrate that GRAIL is differentially expressed in naturally occurring and peripherally induced CD25(+) T regulatory cells and that the expression of GRAIL is linked to their functional regulatory activity.  相似文献   

17.
T cell-to-T cell Ag presentation is increasingly attracting attention. In this study, we demonstrated that active CD4+ T (aT) cells with uptake of OVA-pulsed dendritic cell-derived exosome (EXO(OVA)) express exosomal peptide/MHC class I and costimulatory molecules. These EXO(OVA)-uptaken (targeted) CD4+ aT cells can stimulate CD8+ T cell proliferation and differentiation into central memory CD8+ CTLs and induce more efficient in vivo antitumor immunity and long-term CD8+ T cell memory responses than OVA-pulsed dendritic cells. They can also counteract CD4+25+ regulatory T cell-mediated suppression of in vitro CD8+ T cell proliferation and in vivo CD8+ CTL responses and antitumor immunity. We further elucidate that the EXO(OVA)-uptaken (targeted)CD4+ aT cell's stimulatory effect is mediated via its IL-2 secretion and acquired exosomal CD80 costimulation and is specifically delivered to CD8+ T cells in vivo via acquired exosomal peptide/MHC class I complexes. Therefore, EXO-targeted active CD4+ T cell vaccine may represent a novel and highly effective vaccine strategy for inducing immune responses against not only tumors, but also other infectious diseases.  相似文献   

18.
Maternal immunological tolerance of the semiallogeneic fetus involves several overlapping mechanisms to balance maternal immunity and fetal development. Anti-paternal CD8+ T cells are suppressed during pregnancy in some but not all mouse models. Since semen has been shown to mediate immune modulation, we tested whether exposure to paternal Ag during insemination activated or tolerized anti-paternal CD8+ T cells. The uterine lumen of mated female mice contained male MHC I+ cells that stimulated effector, but not naive, CD8+ T cells ex vivo. Maternal MHC class I+ myeloid cells fluxed into the uterine lumen in response to mating and cross-presented male H-Y Ag to effector, but not naive, CD8+ T cells ex vivo. However, neither unprimed nor previously primed TCR-transgenic CD8+ T cells specific for either paternal MHC I or H-Y Ag proliferated in vivo after mating. These T cells subsequently responded normally to i.p. challenge, implicating ignorance rather than anergy as the main reason for the lack of response. CD8+ T cells responded to either peptide Ag or male cells delivered intravaginally in ovariectomized mice, but this response was inhibited by systemic estradiol (inducing an estrus-like state). Subcutaneous Ag induced responses in both cases. Allogeneic dendritic cells did not induce responses intravaginally even in ovariectomized mice in the absence of estradiol. These results suggest that inhibition of antiallogeneic responses is restricted both locally to the reproductive tract and temporally to the estrous phase of the menstrual cycle, potentially decreasing the risk of maternal immunization against paternal Ags during insemination.  相似文献   

19.
Inoculation of Lewis rats with live or attenuated (irradiated or paraformaldehyde-fixed) CD4+ encephalitogenic T cells (S1 line) protects the recipients from transferred experimental autoimmune encephalomyelitis (tEAE) induced by S1 cells. A CD8+ T lymphocyte population specifically activated against the EAE-inducing S1 cells can be readily isolated from the lymphoid organs of pretreated animals. We show, in the present study, that encephalitogenic T cell lines derived from Lewis rats differ in their ability to induce resistance against tEAE in vivo and to stimulate CD8+ cell proliferation in vitro. We also demonstrate that the S19 line of encephalitogenic T cells, in combination with myelin basic protein (MBP), can stimulate CD8+ cell proliferation in vitro. The CD8+ cells generated in this way strongly suppress MBP-specific T cell proliferation in vitro. This combined effect of T cells and MBP was also evident in vivo. Neither S19 cells nor MBP alone induced resistance against S19-mediated tEAE, rather coinjection of these cells and MBP was required. Our results suggest that resistance to EAE is mediated by distinct populations of encephalitogenic T cells that activate Ts cells through different mechanisms. In some instances, both autoreactive T cells and their relevant autoantigen(s) may be needed to activate Ts cells in vivo.  相似文献   

20.
CD28 is well characterized as a costimulatory molecule in T cell activation. Recent evidences indicate that TNFR superfamily members, including glucocorticoid-induced TNFR-related protein (GITR), act as costimulatory molecules. In this study, the relationship between GITR and CD28 has been investigated in murine CD8(+) T cells. When suboptimal doses of anti-CD3 Ab were used, the absence of GITR lowered CD28-induced activation in these cells whereas the lack of CD28 did not affect the response of CD8(+) T cells to GITR costimulus. In fact, costimulation of CD28 in anti-CD3-activated GITR(-/-) CD8(+) T cells resulted in an impaired increase of proliferation, impaired protection from apoptosis, and an impaired rise of activation molecules such as IL-2R, IL-2, and IFN-gamma. Most notably, CD28-costimulated GITR(-/-) CD8(+) T cells revealed lower NF-kappaB activation. As a consequence, up-regulation of Bcl-x(L), one of the major target proteins of CD28-dependent NF-kappaB activation, was defective in costimulated GITR(-/-) CD8(+) T cells. What contributed to the response to CD28 ligation in CD8(+) T cells was the early up-regulation of GITR ligand on the same cells, the effect of which was blocked by the addition of a recombinant GITR-Fc protein. Our results indicate that GITR influences CD8(+) T cell response to CD28 costimulation, lowering the threshold of CD8(+) T cell activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号