首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cytochrome P-450 is a group of enzymes involved in the biotransformation of many substances, including drugs. These enzymes possess a heme group (1) that when it is properly modified induces several important physicochemical changes that affect their enzymatic activity. In this work, the five structurally modified heme derivatives 2–6 and the native heme 1 were docked on CYP2B4, (an isoform of P450), in order to determine whether such modifications alter their binding form and binding affinity for CYP2B4 apoprotein. In addition, docking calculations were used to evaluate the affinity of CYP2B4 apoprotein-heme complexes for aniline (A) and N-methyl-aniline (NMA). Results showing the CYP2B4 heme 4- and heme 6-apoprotein complexes to be most energetically stable indicate that either hindrance effects or electronic properties are the most important factors with respect to the binding of heme derivatives at the heme-binding site. Furthermore, although all heme-apoprotein complexes demonstrated high affinity for both A and NMA, the CYP2B4 apoprotein-5 complex had higher affinity for A, and the heme 6 complex had higher affinity for NMA. Finally, surface electronic properties (SEP) were calculated in order to explain why certain arginine residues of CYP2B4 apoprotein interact with polarizable functionalities, such as ester groups or sp 2 carbons, present in some heme derivates. The main physicochemical parameter involved in the recognition process of the heme derivatives, the CYP2B4 apoprotein and A or NMA, are reported. Figure Scheme of steps to be followed for obtaining five new CYP2B4 apoprotein-heme complexes by docking  相似文献   

2.
Kumar S 《Bioinformation》2011,7(7):360-365
Cytochromes P450 (CYPs) are a super family of heme-containing enzymes well-known for their monooxgenase reaction. There are 57 CYP isoenzymes found in human which exhibit specific physiological functions. Thirteen members of this super family are classified as "orphan" CYP because of their unknown enzymatic functions. CYP4V2 is found to be a potential drug target for Bietti crystalline corneoretinal dystrophy (BCD). However, three-dimensional structure, the active site topology and substrate binding modes of CYP4V2 remain unclear. In this study, the three-dimensional model of CYP4V2 was constructed using the homology modeling method. Four possible fatty acid substrates namely, caprylic, lauric, myrisitc and palmitic acids were optimized and evaluated for drug likeness using Lipinski's rule of five. Further, these substrates were docked into active sites of CYP4V2 and several key residues responsible for substrate binding were identified. These findings will be helpful for the structure-based drug design and detailed characterization of the biological roles of CYP4V2.  相似文献   

3.
Homology models of cytochrome P450 24A1 (CYP24A1) were constructed using three human P450 structures, CYP2C8, CYP2C9 and CYP3A4 as templates for the model building. Using molecular operating environment (MOE) software the lowest energy CYP24A1 model was then assessed for stereochemical quality and side chain environment. Further active site optimisation of the CYP24A1 model built using the CYP3A4 template was performed by molecular dynamics to generate a final CYP24A1 model. The natural substrate, 1,25-dihydroxyvitamin D(3) (calcitriol) and the CYP24 inhibitor (R)-N-(2-(1H-imidazol-1-yl)-2-phenylethyl)-4'-chlorobiphenyl-4-carboxamide ((R)-VID-400) were docked into the model allowing further validation of the active site architecture. Using the docking studies structurally and functionally important residues were identified with subsequent characterisation of secondary structure.  相似文献   

4.
Homology models of cytochrome P450 RA1 (CYP26A1) were constructed using three human P450 structures, CYP2C8, CYP2C9 and CYP3A4 as templates for the model building. Using MOE software the lowest energy CYP26A1 model was then assessed for stereochemical quality and side chain environment. Further active site optimisation of the CYP26A1 model built using the CYP3A4 template was performed by molecular dynamics to generate a final CYP26A1 model. The natural substrate, all-trans-retinoic acid (atRA), and inhibitor R 15866, were docked into the model allowing further validation of the active site architecture. Using the docking studies structurally and functionally important residues were identified with subsequent characterisation of secondary structure. Multiple hydrophobic interactions, including the side chains of TRP112, PHE299, PHE222, PHE84, PHE374 and PRO371, are important for binding of atRA and R115866. Additional hydrogen bonding interactions were noted as follows: atRA-- C==O of the atRA carboxylate group and ARG86; R115866--benzothiazole nitrogen and the backbone NH of SER115.  相似文献   

5.
Cytochromes P450 (CYPs) are extremely versatile enzymes capable of catalyzing a vast number of compounds, and CYP3A4 is no exception metabolizing approximately half of the currently marketed drugs, besides endogenous compounds. To metabolize such a variety of compounds, CYP3A4 has to be extremely flexible, which makes interaction studies difficult. We employ a multi-conformational docking setup where conformations are generated by several molecular dynamics simulations to analyze the binding modes of various ligands, and the docking is considered successful if the ligand site of catalysis (SOC) is within 6.0 Å of the haem Fe. While docking with the X-ray structure proved unsuccessful with all ligands, the multi-conformational docking achieved successful binding of each ligand to at least one protein conformation. Analysis of the docked solutions highlights residues in the active site cavity that may have an important role in access, binding and stabilization of the ligand.  相似文献   

6.
Human cytochrome P450 (CYP) 2B6 activates the anticancer prodrug cyclophosphamide (CPA) by 4-hydroxylation. In contrast, the same enzyme catalyzes N-deethylation of a structural isomer, the prodrug ifosfamide (IFA), thus causing severe adverse drug effects. To model the molecular interactions leading to a switch in regioselectivity, the structure of CYP2B6 was modeled based on the structure of rabbit CYP2C5. We modeled the missing 22-residue loop in CYP2C5 between helices F and G (the F-G loop), which is not resolved in the X-ray structure, by molecular dynamics (MD) simulations using a simulated annealing protocol. The modeled conformation of the loop was validated by unconstrained MD simulations of the complete enzymes (CYP2C5 and CYP2B6) in water for 70 and 120 ps, respectively. The simulations were stable and led to a backbone r.m.s. deviation of 1.7 A between the two CYPs.The shape of the substrate binding site of CYP2B6 was further analyzed. It consists of three well-defined hydrophobic binding pockets adjacent to the catalytic heme. Size, shape and hydrophobicity of these pockets were compared to the shapes of the two structurally isomeric substrates. In their preferred orientation in the binding site, both substrates fill all three binding pockets without repulsive interactions. The distance to the heme iron is short enough for 4-hydroxylation and N-deethylation to occur for CPA and IFA, respectively. However, if the substrates are docked in the non-preferred orientation (such that 4-hydroxylation and N-deethylation would occur for IFA and CPA, respectively), one pocket is left empty, and clashes were observed between the substrates and the enzyme.  相似文献   

7.
CYP2C19 is selective for the 4'-hydroxylation of S-mephenytoin while the highly similar CYP2C9 has little activity toward this substrate. To identify critical amino acids determining the specificity of human CYP2C19 for S-mephenytoin 4'-hydroxylation, we constructed chimeras by replacing portions of CYP2C9 containing various proposed substrate recognition sites (SRSs) with those of CYP2C19 and mutating individual residues by site-directed mutagenesis. Only a chimera containing regions encompassing SRSs 1--4 was active (30% of wild-type CYP2C19), indicating that multiple regions are necessary to confer specificity for S-mephenytoin. Mutagenesis studies identified six residues in three topological components of the proteins required to convert CYP2C9 to an S-mephenytoin 4'-hydroxylase (6% of the activity of wild-type CYP2C19). Of these, only the I99H difference located in SRS 1 between helices B and C reflects a change in a side chain that is predicted to be in the substrate-binding cavity formed above the heme prosthetic group. Two additional substitutions, S220P and P221T residing between helices F and G but not in close proximity to the substrate binding site together with five differences in the N-terminal portion of helix I conferred S-mephenytoin 4'-hydroxylation activity with a K(M) similar to that of CYP2C19 but a 3-fold lower K(cat). Three residues in helix I, S286N, V292A, and F295L, were essential for S-mephenytoin 4'-hydroxylation activity. On the basis of the structure of the closely related enzyme CYP2C5, these residues are unlikely to directly contact the substrate during catalysis but are positioned to influence the packing of substrate binding site residues and likely substrate access channels in the enzyme.  相似文献   

8.
CYP7B1 mutations have been linked directly with the neurodegenerative disease hereditary spastic paraplegia (HSP), with mutations in the CYP7B1 gene identified as being directly responsible for autosomal recessive HSP type 5A (SPG5). To evaluate the potential impact of CYP7B1 mutations identified in SPG5 on binding and protein function, a comparative model of cytochrome P450 7B1 (CYP7B1) was constructed using human CYP7A1 as a template during model construction. The secondary structure was predicted using the PSIPRED and GOR4 prediction methods, the lowest energy CYP7B1 model was generated using MOE, and then this model was assessed in terms of stereochemical quality and the side chain environment using RAMPAGE, Verify3D and ProSA. Evaluation of the active site residues of the CYP7B1 model and validation of the active site architecture were performed via molecular docking experiments: the docking of the substrates 25-hydroxycholesterol and 27-hydroxycholesterol and the inhibitor 3α-Adiol identified structurally and functionally important residues. Mutational analysis of CYP7B1 amino acid mutations related to hereditary spastic paraplegia type 5 considered phosphorylation, ligand/substrate binding and the structural roles of mutated amino acid residues, with R112, T297 and S363 mutations expected to have a direct impact on ligand binding, while mutations involving R417 would indirectly affect ligand binding as a result of impairment in catalytic function.  相似文献   

9.
In the last 4 years, breakthroughs were made in the field of P450 2B (CYP2B) structure-function through determination of one ligand-free and two inhibitor-bound X-ray crystal structures of CYP2B4, which revealed many of the structural features required for binding ligands of different size and shape. Large conformational changes of several plastic regions of CYP2B4 can dramatically reshape the active site of the enzyme to fit the size and shape of the bound ligand without perturbing the overall P450 fold. Solution biophysical studies using isothermal titration calorimetry (ITC) have revealed the large difference in the thermodynamic parameters of CYP2B4 in binding inhibitors of different ring chemistry and side chains. Other studies have revealed that the effects of site-specific mutations on steady-state kinetic parameters and mechanism-based inactivation are often substrate dependent. These findings agree with the structural data that the enzymes adopt different conformations to bind various ligands. Thus, the substrate specificity of an individual enzyme is determined not only by active site residues but also non-active site residues that modulate conformational changes that are important for substrate access and rearrangement of the active site to accommodate the bound substrate.  相似文献   

10.
The membrane-bound protein cytochrome P450 3A4 (CYP3A4) is a major drug-metabolizing enzyme. Most studies of ligand binding by CYP3A4 are currently carried out in solution, in the absence of a model membrane. Therefore, there is little information concerning the membrane effects on CYP3A4 ligand binding behavior. Phospholipid bilayer Nanodiscs are a novel model membrane system derived from high density lipoprotein particles, whose stability, monodispersity, and consistency are ensured by their self-assembly. We explore the energetics of four ligands (6-(p-toluidino)-2-naphthalenesulfonic acid (TNS), alpha-naphthoflavone (ANF), miconazole, and bromocriptine) binding to CYP3A4 incorporated into Nanodiscs. Ligand binding to Nanodiscs was monitored by a combination of environment-sensitive ligand fluorescence and ligand-induced shifts in the fluorescence of tryptophan residues present in the scaffold proteins of Nanodiscs; binding to the CYP3A4 active site was monitored by ligand-induced shifts in the heme Soret band absorbance. The dissociation constants for binding to the active site in CYP3A4-Nanodiscs were 4.0 microm for TNS, 5.8 microm for ANF, 0.45 microm for miconazole, and 0.45 microm for bromocriptine. These values are for CYP3A4 incorporated into a lipid bilayer and are therefore presumably more biologically relevant that those measured using CYP3A4 in solution. In some cases, affinity measurements using CYP3A4 in Nanodiscs differ significantly from solution values. We also studied the equilibrium between ligand binding to CYP3A4 and to the membrane. TNS showed no marked preference for either environment; ANF preferentially bound to the membrane, and miconazole and bromocriptine preferentially bound to the CYP3A4 active site.  相似文献   

11.
In the last 4 years, breakthroughs were made in the field of P450 2B (CYP2B) structure–function through determination of one ligand-free and two inhibitor-bound X-ray crystal structures of CYP2B4, which revealed many of the structural features required for binding ligands of different size and shape. Large conformational changes of several plastic regions of CYP2B4 can dramatically reshape the active site of the enzyme to fit the size and shape of the bound ligand without perturbing the overall P450 fold. Solution biophysical studies using isothermal titration calorimetry (ITC) have revealed the large difference in the thermodynamic parameters of CYP2B4 in binding inhibitors of different ring chemistry and side chains. Other studies have revealed that the effects of site-specific mutations on steady-state kinetic parameters and mechanism-based inactivation are often substrate dependent. These findings agree with the structural data that the enzymes adopt different conformations to bind various ligands. Thus, the substrate specificity of an individual enzyme is determined not only by active site residues but also non-active site residues that modulate conformational changes that are important for substrate access and rearrangement of the active site to accommodate the bound substrate.  相似文献   

12.
The antagonist-bound conformation of the NR2A and NR2B subunits of N-methyl-D-aspartate (NMDA) ionotropic glutamate receptor are modeled using the crystal structure of the DCKA (5,7-dichloro-kynurenic acid)-bound form of the NR1 subunit ligand-binding core (S1S2). Five different competitive NMDA receptor antagonists [(1) DL-AP5; (2) DL-AP7; (3) CGP-37847; (4) CGP 39551; (5) (RS)-CPP] have been docked into both NR2A and NR2B subunits. Experimental studies report NR2A and NR2B subunits having dissimilar interactions and affinities towards the antagonists. However, the molecular mechanism of this difference remains unexplored. The distinctive features in the antagonist's interaction with these two different but closely related (approximately 80% sequence identity at this region) subunits are analyzed from the patterns of their hydrogen bonding. The regions directly involved in the antagonist binding have been classified into seven different interaction sites. Two conserved hydrophilic pockets located at both the S1 and S2 domains are found to be crucial for antagonist binding. The positively charged (Lys) residues present at the second interaction site and the invariant residue (Arg) located at the fourth interaction site are seen to influence ligand binding. The geometry of the binding pockets of NR2A and NR2B subunits have been determined from the distance between the C-alpha atoms in the residues interacting with the ligands. The binding pockets are found to be different for NR2A and NR2B. There are gross dissimilarities in competitive antagonist binding between these two subunits. The binding pocket geometry identified in this study may have the potential for future development of selective antagonists for the NR2A or NR2B subunit.  相似文献   

13.
Cytochrome P450 3A4 (CYP3A4) is involved in the metabolism of a majority of drugs. Heterotropic cooperativity of drug binding to CYP3A4 was examined with the flavanoid, alpha-naphthoflavone (ANF) and the steroid, testosterone (TST). UV-vis and EPR spectroscopy of CYP3A4 show that ANF binding to CYP3A4 occurs with apparent negative cooperativity and that there are at least two binding sites: (1) a relatively tight spin-state insensitive binding site (CYP.ANF) and (2) a relatively low affinity spin-state sensitive binding site (CYP.ANF.ANF). Since binding to the spin-state insensitive binding site is considerably tighter for ANF than TST, the spin-state insensitive binding site could be occupied by ANF, while titrating TST at the other site(s). The spin-state insensitive binding site of ANF appears to compete with the spin-state insensitive binding site of TST. The formation of the spin-state insensitive CYP.ANF complex is strongly temperature dependent, when compared to the formation of the CYP.TST complex, suggesting that the formation of the CYP3A4.ANF complex leads to long-range conformational changes within the protein. When the CYP.ANF complex is titrated with TST, the formation of CYP.ANF.TST is favored by 3:1 over the formation of CYP.TST.TST, suggesting that there is an allosteric interaction between ANF and TST. A model of heterotropic cooperativity of CYP3A4 is presented, where the spin-state insensitive binding of ANF occurs at the same peripheral binding site of CYP3A4 as TST.  相似文献   

14.
15.
16.
The active site topography of rabbit CYP4B1 has been studied relative to CYP2B1 and CYP102 using a variety of aromatic probe substrates. Oxidation of the prochiral substrate cumene by CYP4B1, but not CYP2B1 or CYP102, resulted in the formation of the thermodynamically disfavored omega-hydroxy metabolite, 2-phenyl-1-propanol, with product stereoselectivity for the (S)-enantiomer. Reaction of CYP4B1, CYP2B1, and CYP102 with phenyldiazene produced spectroscopically observable sigma-complexes for each enzyme. Subsequent oxidation of the CYP2B1 and CYP102 complexes followed by LC/ESI--MS analysis yielded heme pyrrole migration patterns similar to those in previous literature reports. Upon identical treatment, no migration products were detected for CYP4B1. Intramolecular deuterium isotope effects for the benzylic hydroxylation of o-xylene-alpha-(2)H(3), p-xylene-alpha-(2)H(3), 2-(2)H(3),6-dimethylnaphthalene, and 4-(2)H(3),4'-dimethylbiphenyl were determined for CYP4B1 and CYP2B1 to further map their active site dimensions. These probes permit assessment of the ease of equilibration, within P450 active sites, of oxidizable methyl groups located between 3 and 10 A apart [Iyer et al. (1997) Biochemistry 36, 7136--7143]. Isotope effects for the CYP4B1-mediated benzylic hydroxylation of o- and p-xylenes were fully expressed (k(H)/k(D) = 9.7 and 6.8, respectively), whereas deuterium isotope effects for the naphthyl and biphenyl derivatives were both substantially masked (k(H)/k(D) approximately equal to 1). In contrast, significant suppression of the deuterium isotope effects for CYP2B1 occurred only with the biphenyl substrate. Therefore, rapid equilibration between two methyl groups more than 6 A apart is impeded within the active site of CYP4B1, whereas for CYP2B1, equilibration is facile for methyl groups distanced by more than 8 A. Collectively, all data are consistent with the conclusion that the active site of CYP4B1 is considerably restricted relative to CYP2B1.  相似文献   

17.
18.
Human cytochrome P450 (CYP) 2A6 and 2A13 play an important role in catalyzing the metabolism of many environmental chemicals including coumarin, nicotine, and several tobacco-specific carcinogens. Both CYP2A6 and CYP2A13 proteins are composed of 494 amino acid residues. Although CYP2A13 shares a 93.5% identity with CYP2A6 in the amino acid sequence, it is only about one-tenth as active as CYP2A6 in catalyzing coumarin 7-hydroxylation. To identify the key amino acid residues that account for such a remarkable difference, we generated a series of CYP2A6 and CYP2A13 mutants by site-directed mutagenesis/heterologous expression and compared their coumarin 7-hydroxylation activities. In CYP2A6, the amino acid residues at position 117 and 372 are valine (Val) and arginine (Arg), respectively; whereas in CYP2A13, they are alanine (Ala) and histidine (His). Kinetic analysis revealed that the catalytic efficiency (Vmax/Km) of the CYP2A6 Val(117)--> Ala and Arg(372)--> His mutants was drastically reduced (0.41 and 0.64 versus 3.23 for the wild-type CYP2A6 protein). In contrast, the catalytic efficiency of the CYP2A13 Ala(117) --> Val and His(372) --> Arg mutants was greatly increased (2.65 and 2.60 versus 0.31 for wild-type CYP2A13 protein). These results clearly demonstrate that the Val at position 117 and Arg at position 372 are critical amino acid residues for coumarin 7-hydroxylation. Based on the crystal structure of CYP2C5, we have generated the homology models of CYP2A6 and CYP2A13 and docked the substrate coumarin to the active site. Together with the kinetic characterization, our structural modeling provides explanations for the amino acid substitution results and the insights of detailed enzyme-substrate interactions.  相似文献   

19.
20.
A cytochrome P450 2B4 (CYP2B4) model was used to select key residues supposed to serve in interactions with NADPH-cytochrome P450 reductase (P450R). Eight amino acid residues located on the surface of the hemoprotein were chosen for mutagenesis experiments with CYP2B4(Delta2-27) lacking the NH(2)-terminal signal anchor sequence. The mutated proteins were expressed in Escherichia coli, purified, and characterized by EPR- and CD-spectral analysis. Replacement of histidine 226 with alanine caused a 3.8-fold fall in the affinity for P450R with undisturbed reductive capacity of the system. Similarly, the K225A, R232A, and R253A variants exhibited P450R-directed activity that was depressed to about half that of the control enzyme, suggesting that the deletion of positive charges on the surface of CYP2B4(Delta2-27) resulted in impaired electrostatic contacts with complementary amino acids on the P450R protein. While the Y235A mutant did not show appreciably perturbed reduction activity, the conservative substitution with alanine of the phenylalanine residues at positions 223 and 227 gave a 2.1- to 6. 1-fold increase in the K(m) values with unchanged V(max); this was attributed to the disruption of hydrophobic forces rather than to global structural rearrangement(s) of the engineered pigments. Measurement of the stoichiometry of aerobic NADPH consumption and H(2)O(2) formation revealed the oxyferrous forms of the F223A, H226A, and F227A mutants to autoxidize more readily owing to less efficient coupling of the systems. Noteworthy, the F244A enzyme did not exhibit significant reduction activity, suggesting a pivotal role of Phe-244 in the functional coupling of P450R. The residue was predicted to constitute part of an obligatory electron transfer conduit through pi-stacking with Phe-296 located close to the heme unit. All of the residues examined reside in the putative G helix of CYP2B4, so that this domain obviously defines part of the binding site for P450R.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号