首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
髓细胞组织增生蛋白(Myelocytomatosis proteins,MYC)类转录因子,是植物激素茉莉酸(JA)响应途径中的激活转录因子,广泛存在于动植物中,MYC2转录因子属于bHLH类转录因子家族,含有bHLH保守结构域,是当前MYC类转录因子中研究最透彻的一个。随着对植物抗生物逆境不断深入研究,对MYC2的研究亦逐渐清晰。本文综述了转录因子MYC2通过与下游靶基因形成一个层级转录级联,放大转录输出,参与调控植物抗生物逆境,着重阐述了水稻OsMYC2转录因子在抗生物逆境中的作用;茉莉酸ZIM结构域蛋白(Jasmonate ZIM-domain,JAZ)作为JA信号的转录抑制因子,抑制MYC2的活性并参与介导JA信号途径,为MYC2功能机制研究提供了参考,并对今后的研究热点与方向进行了展望。  相似文献   

2.
由多亚基组成的中介体复合物(Mediator complex)是真核生物转录调控中不可或缺的纽带,它的核心功能就是将基因特异的转录因子和基于RNA聚合酶II的转录机器相连接,形成转录预起始复合物(Pre-initiation complex,PIC),从而实现特定转录信号的传递。Mediator 25(MED25)是植物中介体复合物的一个多功能亚基,参与调控植物生长发育和抗逆境胁迫等多种复杂的生理过程。MED25可以和多种转录激活子(如MYCs、AP2/ERFs及ARFs等)、转录抑制子(如JAZs和Aux/IAAs等)以及其它中介体亚基(如MED13和MED16等)在蛋白水平上直接互作,调控植物激素茉莉酸(JA)、脱落酸(ABA)、生长素(Auxin)和乙烯(Ethylene)等信号途径以响应各种生物和非生物胁迫。近年来对MED25的靶标分离及功能鉴定已经成为一个热点话题。本文系统介绍了MED25在各激素信号途径转导中的调控作用机制,对深入讨论植物如何启动特定激素信号途径进而调控特定生理过程的分子机制提供新的研究思路。  相似文献   

3.
甘草(Glycyrrhiza uralensis)是一味大宗中药材,黄酮类活性成分是其主要的药物活性成分之一。茉莉酸是甘草响应非生物胁迫调控类黄酮类活性成分的主要内源激素。JAZ是茉莉酸信号转导途径中的一个重要节点,其通过负向调节茉莉酸的信号转导,参与植物发育、非生物胁迫和对植物激素处理的响应的调节。本研究通过测定聚乙二醇(polyethylene glycol, PEG) 6000诱导的干旱胁迫对乌拉尔甘草(Glycyrrhiza uralensis Fisch.)中茉莉酸(jasmonic acid, JA)含量和JAZ基因家族表达水平以及JAZ基因家族的生物信息学分析,筛选受干旱胁迫诱导JAZ基因。研究结果显示:JA主要在甘草地下部分中积累,干旱胁迫明显提升地下部分JA含量,地下和地上部分中PEG处理2h时JA表达量最高。基于对上述材料的转录组测序数据分析,有10个GuJAZ基因具有完整的读码框,且这些JAZ基因具有时空表达差异性。干旱胁迫诱导地下部分中的GuJAZ基因上调,GuJAZ1、GuJAZ3、GuJAZ4、GuJAZ5、GuJAZ6和GuJAZ10在处理2h组上调最明显...  相似文献   

4.
植物激素茉莉素作为抗性信号调控植物对腐生性病原菌和昆虫的抗性, 作为发育信号调控植物根的生长、雄蕊发育、表皮毛形成和叶片衰老。茉莉素受体COI1识别茉莉素分子, 进而与JAZ蛋白互作并诱导其降解, 继而调控多种茉莉素反应。拟南芥(Arabidopsis thaliana) IIId亚组bHLH转录因子(bHLH3、bHLH13、bHLH14和bHLH17)是JAZ的一类靶蛋白。与野生型相比, IIId亚组bHLH转录因子的单突变体对灰霉菌和甜菜夜蛾的抗性无明显差异, 而四突变体对灰霉菌和甜菜夜蛾的抗性增强。该文通过高表达bHLH17并研究其对灰霉菌和甜菜夜蛾的抗性反应, 结果显示, 被灰霉菌侵染的bHLH17高表达植株较野生型表现出更严重的病症。取食bHLH17高表达植株叶片的甜菜夜蛾幼虫体重大于取食野生型叶片的幼虫体重。bHLH17高表达抑制了茉莉素诱导的抗性相关基因(Thi2.1)和伤害响应基因(VSP2、AOS、JAZ1、JAZ9和JAZ10)的表达。原生质体转化实验显示bHLH17通过其N端行使转录抑制功能。研究结果表明, IIId亚组bHLH转录抑制因子bHLH17高表达会负调控茉莉素介导的对灰霉菌和甜菜夜蛾的抗性。  相似文献   

5.
姚瑞枫  谢道昕 《植物学报》2020,55(4):397-402
植物激素信号传导途径中的抑制子(repressor) DELLA、AUX/IAA、JAZ和D53/SMXL均结合下游转录因子并抑制其转录活性, 从而阻遏激素响应基因的表达; 激素分子则激活信号传导链降解抑制子、释放转录因子, 从而诱导响应基因表达并介导相应的生物学功能。中国科学院遗传与发育生物学研究所李家洋研究团队最新的研究发现, 独脚金内酯(SL)信号途径中的SMXL6、SMXL7和SMXL8是具有抑制子和转录因子双重功能的新型抑制子, 他们还通过研究SL转录调控网络发现了大量新的SL响应基因, 揭示了SL调控植物分枝、叶片伸长和花色素苷积累的分子机制。这些重要发现为探索植物激素作用机理提供了新思路, 具有重要科学意义和应用前景。  相似文献   

6.
植物激素信号传导途径中的抑制子(repressor) DELLA、AUX/IAA、JAZ和D53/SMXL均结合下游转录因子并抑制其转录活性,从而阻遏激素响应基因的表达;激素分子则激活信号传导链降解抑制子、释放转录因子,从而诱导响应基因表达并介导相应的生物学功能。中国科学院遗传与发育生物学研究所李家洋研究团队最新的研究发现,独脚金内酯(SL)信号途径中的SMXL6、SMXL7和SMXL8是具有抑制子和转录因子双重功能的新型抑制子,他们还通过研究SL转录调控网络发现了大量新的SL响应基因,揭示了SL调控植物分枝、叶片伸长和花色素苷积累的分子机制。这些重要发现为探索植物激素作用机理提供了新思路,具有重要科学意义和应用前景。  相似文献   

7.
JAZ(jasmonate ZIM-domain)蛋白是茉莉酸(jasmonic acid,JA)信号途径中关键的负调控因子,明确JAZ蛋白和MYC2之间的结合关系对整个JA信号通路至关重要.通过qRT-PCR筛选了在籽粒中较特异表达的ZmJAZ4、生殖器官中高表达的ZmJAZ8以及组成型表达的ZmJAZ12,利用玉米...  相似文献   

8.
茉莉酸(jasmonic acid, JA)是一种植物内源合成的脂类激素,在植物响应胁迫的调控中发挥着重要作用。本文概括了JA的生物合成与代谢途径及其调控机制;总结了JA信号的传导通路;系统归纳了JA在植物响应生物和非生物胁迫应答中的作用机制和调控网络,重点关注了最新的研究进展。此外,本文梳理了JA与其他植物激素在植物抗逆性调节过程中的信号交流。最后讨论了JA信号通路介导的植物抗逆性研究中亟待解决的问题,并展望了新的分子生物学技术在调控JA信号通路增强作物抗性中的应用前景,以期为植物的抗逆性研究和改良提供参考。  相似文献   

9.
茉莉酸甲酯(Me JA)是一种新型植物内源激素,该激素可以参与植物黄酮类物质的合成代谢途径。本实验用100μmol/L茉莉酸甲酯溶液对芽期苦荞进行叶面喷施处理,于0~12 h采样。采用Al Cl3法测定处理前后苦荞的总黄酮含量,利用半定量RT-PCR检测苦荞黄酮代谢相关的3个Ft JAZ蛋白基因、3个Ft MYB转录因子以及6个关键酶的基因表达量,并对基因表达量与总黄酮含量进行了相关性分析。结果表明,经茉莉酸甲酯处理后,苦荞芽菜叶片总黄酮含量有所升高,各基因表达模式有所不同,其中Ft JAZ1、Ft JAZ2、Ft JAZ3、Ft MYB2以及Ft PAL基因表达量与总黄酮含量变化趋势相似,而Ft MYB3与Ft F3'H表达量与总黄酮含量变化趋势相反。相关性分析表明,总黄酮含量与Ft MYB2(相关系数为0.864)和Ft JAZ1(相关系数为0.863)显著正相关,与Ft MYB3负相关(相关系数为-0.70),与所有黄酮合成关键酶基因均成正相关。本研究为进一步揭示茉莉酸甲酯参与苦荞黄酮代谢调控的机制奠定了基础。  相似文献   

10.
11.
分析外源性茉莉酸甲酯对广藿香JA信号转导途径关键基因JAZ2、MYC2、COI1及倍半萜合成途径关键基因PTS、FPPS、SQLE表达的影响,为深入研究茉莉酸甲酯调控广藿香JA信号转导途径及倍半萜合成途径的分子机制奠定基础.该文分别用0.10和0.25 mmol·L-1的MeJA喷施广藿香叶片,于处理后的0、2、6、1...  相似文献   

12.
转录因子是一类在生物生命活动过程中起到调控作用的重要因子,参与了各种信号转导和调控过程,可以直接或间接结合在顺式作用元件上,实现调控目标基因转录效率的抑制或增强,从而使植物在应对逆境胁迫下做出反应。 WRKY转录因子在大多数植物体内都有分布,是一类进化非常保守的转录因子家族,参与植物生长发育以及响应逆境胁迫的生理过程。众多研究表明,WRKY转录因子在植物中能够应答各种生物胁迫,如细菌、病毒和真菌等;多种非生物胁迫,包括高温、冷害、高光和高盐等;以及在各种植物激素,包括茉莉酸( JA)、水杨酸( SA)、脱落酸( ABA)和赤霉素( GA)等,在其信号传递途径中都起着重要作用。 WRKY转录因子家族蛋白至少含有一段60个氨基酸左右的高度保守序列,被称为WRKY结构域,其中WRKYGQK多肽序列是最为保守的,因此而得名。该转录因子的WRKY结构域能与目标基因启动子中的顺式作用元件W ̄box( TTGAC序列)特异结合,从而调节目标基因的表达,其调控基因表达主要受病原菌、虫咬、机械损伤、外界胁迫压力和信号分子的诱导。该文介绍了植物WRKY转录因子在植物应对冷害、干旱、高盐等非生物胁迫与病菌、虫害等生物胁迫反应中的重要调控功能,并总结了WRKY转录因子在调控这些逆境胁迫反应过程中的主要生理机制。  相似文献   

13.
转录因子是一类在生物生命活动过程中起到调控作用的重要因子,参与了各种信号转导和调控过程,可以直接或间接结合在顺式作用元件上,实现调控目标基因转录效率的抑制或增强,从而使植物在应对逆境胁迫下做出反应。WRKY转录因子在大多数植物体内都有分布,是一类进化非常保守的转录因子家族,参与植物生长发育以及响应逆境胁迫的生理过程。众多研究表明,WRKY转录因子在植物中能够应答各种生物胁迫,如细菌、病毒和真菌等;多种非生物胁迫,包括高温、冷害、高光和高盐等;以及在各种植物激素,包括茉莉酸(JA)、水杨酸(SA)、脱落酸(ABA)和赤霉素(GA)等,在其信号传递途径中都起着重要作用。WRKY转录因子家族蛋白至少含有一段60个氨基酸左右的高度保守序列,被称为WRKY结构域,其中WRKYGQK多肽序列是最为保守的,因此而得名。该转录因子的WRKY结构域能与目标基因启动子中的顺式作用元件Wbox(TTGAC序列)特异结合,从而调节目标基因的表达,其调控基因表达主要受病原菌、虫咬、机械损伤、外界胁迫压力和信号分子的诱导。该文介绍了植物WRKY转录因子在植物应对冷害、干旱、高盐等非生物胁迫与病菌、虫害等生物胁迫反应中的重要调控功能,并总结了WRKY转录因子在调控这些逆境胁迫反应过程中的主要生理机制。  相似文献   

14.
目的:进一步找出拟南芥钙调素结合蛋白IQM1介导茉莉酸信号转导的证据。方法:比较分析IQM1基因的功能缺失突变体iqm1-1及其野生型幼苗在茉莉酸甲酯(Me JA)处理后的主根长度和JAZ(jasmonate ZIM-domain)家族基因的表达。结果:Me JA抑制iqm1-1及其野生型植株的主根生长,但iqm1-1对Me JA反应的敏感度比野生型弱;与此结果一致,iqm1-1幼苗中几个JAZ基因表达上调。结论:IQM1介导茉莉酸信号转导,参与对植物根生长的调节。  相似文献   

15.
该文对水曲柳JAZ蛋白家族的一员FmJAZ1的功能及对其上下游基因影响进行了初步分析。首先,利用无缝克隆的方法构建FmJAZ1-pROK2-GUS过表达载体,利用三亲杂交的方法将载体转入农杆菌;然后,使用农杆菌对水曲柳组培苗进行瞬时侵染,得到FmJAZ1过表达的侵染苗;最后,在侵染后36 h使用茉莉酸合成途径抑制剂(DIECA)对侵染苗进行处理,分别取0、1、3、6、18、21、24 h七个时间点的样品,通过荧光定量PCR对FmJAZ1、FmJAZ2、GL1、EIN3、MYC2 5个基因的表达进行了分析。结果表明:农杆菌瞬时侵染水曲柳幼苗后,FmJAZ1表达显著升高,为空载侵染的3.2倍,说明FmJAZ1瞬时转入水曲柳并完成基因表达,侵染有效。经过DIECA处理的侵染苗FmJAZ1的相对表达量初期下降并出现明显波动,18 h后恢复平稳,证明它是JA通路的作用基因。同时检测了4个JA通路相关基因的表达,在1 h时JAZ2、GL1表达下调,其余均有轻微上调,随后各基因表达均有上调。FmJAZ1瞬时转化水曲柳后FmJAZ1过表达,说明瞬时侵染有效; DIECA处理后FmJAZ1表达显著下调说明FmJAZ1的合成受JA调控。在水曲柳中,FmJAZ1抑制转录因子GL1、EIN3、MYC2、FmJAZ2的表达,且FmJAZ2的合成也受JA调控。综上结果表明,JAZs不仅调节JA通路的关键蛋白,还参与其他信号通路的调节,最终通过体内JA的表达与其他相关信号分子的协同表达来调节植物的生长发育及其对应激的反应。  相似文献   

16.
JAZ(Jasmonate ZIM-domain)蛋白是植物特有的一类转录因子,通过抑制茉莉素调控基因的表达,在植物的生长发育及非生物胁迫等方面发挥重要的功能。从玉米B73自交系中克隆到一个新的JAZ家族基因Zm JAZ4,该基因c DNA全长为651bp,编码蛋白含有216个氨基酸,分子量约为23.1 k D,p I为10.78,属于碱性蛋白。Real-time RT-PCR结果表明,Zm JAZ4主要在茎端分生组织、雄穗、发育早期的种子以及胚乳中表达。系统进化分析显示,Zm JAZ4与At JAZ10转录因子相似性较高。亚细胞定位试验表明,Zm JAZ4定位于细胞核内。Zm JAZ4在酵母细胞中不具有转录激活活性。激素及胁迫处理表明,Zm JAZ4在地上部的表达受PEG、Na Cl、SA、GA和ABA诱导,而在地下部的表达受到ABA和GA诱导。结果分析表明,Zm JAZ4可能是一个重要的转录调控因子,参与调控多种激素信号通路及非生物胁迫响应。  相似文献   

17.
COI1参与茉莉酸调控拟南芥吲哚族芥子油苷生物合成过程   总被引:2,自引:0,他引:2  
石璐  李梦莎  王丽华  于萍  李楠  国静  阎秀峰 《生态学报》2012,32(17):5438-5444
芥子油苷是一类具有防御作用的植物次生代谢产物,外源激素茉莉酸对吲哚族芥子油苷的合成具有强烈的诱导作用,但茉莉酸调控吲哚族芥子油苷生物合成的分子机制并不清楚。以模式植物拟南芥(Arabidopsis thaliana)的野生型和coi1-22、coi1-23两种突变体为研究材料,通过茉莉酸甲酯(MeJA)处理,比较了拟南芥野生型和coi1突变体植株吲哚族芥子油苷含量、吲哚族芥子油苷合成前体色氨酸的生物合成基因(ASA1、TSA1和TSB1)、吲哚族芥子油苷生物合成基因(CYP79B2、CYP79B3和CYP83B1)及调控基因(MYB34和MYB51)的表达对MeJA的响应差异,由此确定茉莉酸信号通过COI1蛋白调控吲哚族芥子油苷生物合成,即茉莉酸信号通过信号开关COI1蛋白作用于转录因子MYB34和MYB51,进而调控吲哚族芥子油苷合成基因CYP79B2、CYP79B3、CYP83B1和前体色氨酸的合成基因ASA1、TSA1、TSB1。并且推断,COI1功能缺失后,茉莉酸信号可能通过其他未知调控因子或调控途径激活MYB34转录因子从而调控下游基因表达。  相似文献   

18.
茉莉酸在植物的生长发育、应激反应和次生代谢过程中起着重要的调控作用。转录抑制因子JAZ(Jasmonate ZIM-domain)蛋白则是茉莉酸信号从SCF^coi1受体复合物向下游茉莉酸应答基因转导的纽带。采用比较基因组学的方法。从多谱系的角度对植物JAZ蛋白家族进行分子进化分析并取得以下研究结果。(1)在藻类植物、苔藓植物、蕨类植物、裸子植物及单、双子叶植物6个不同谱系的15种代表植物基因组中,鉴定了82个JAZ同源基因,其中在低等藻类植物基因组中没有鉴定到JAZ同源基因,提示JAZ家族基因可能起源于陆生植物。(2)系统发育分析表明,在植物基因组中JAZ蛋白家族可分为10个保守的亚家族,而谱系特异扩增尤其是串联重复和区段重复可能是陆生植物JAZ家族基因扩增与进化的主要机制,并导致多个谱系特异的JAZ亚家族产生。(3)基因结构分析表明,JAZ家族基因含有0一7个数目不等、62—4222bp长度不等的内含子,提示在植物基因组进化过程中,JAZ家族基因可能发生内含-丢失或内含子插入缺失,进而导致基因外显子.内含子结构的多样性。该研究结果将为植物JAZ蛋白家族的深入研究提供参考。  相似文献   

19.
植物的环境信号分子茉莉酸及其生物学功能   总被引:3,自引:0,他引:3  
李梦莎  阎秀峰 《生态学报》2014,34(23):6779-6788
茉莉酸信号分子参与植物生长发育众多生理过程的调控,尤其是作为环境信号分子能有效地介导植物对生物及非生物胁迫的防御反应。迄今已知具有信号分子生理功能的至少包括茉莉酸(jasmonic acid,JA)以及茉莉酸甲酯(methyl jasmonate,Me JA)和茉莉酸-异亮氨酸复合物(jasmonoyl-isoleucine,JA-Ile)等茉莉酸衍生物,统称为茉莉酸类化合物(jasmonates,JAs)。从环境信号分子角度介绍了茉莉酸信号的启动(环境信号感知与转导、茉莉酸类化合物合成)、传递(局部传递、维管束传输、空气传播)和生物学功能(茉莉酸信号受体、调控的转录因子、参与的生物学过程)。  相似文献   

20.
洪林  杨蕾  杨海健  王武 《植物学报》2020,55(4):481-496
低温、干旱、高盐和缺氧等多种不良环境影响植物的生长发育, 植物通过长期进化形成复杂的调节机制来适应这些不利条件。AP2/ERF是植物特有的转录因子, 在各种胁迫响应过程中发挥关键调控作用。近年来, 越来越多的研究表明, 植物激素介导的信号级联通路与逆境胁迫响应关系密切, AP2/ERF转录因子可与激素信号转导协同形成交叉调控网络。许多AP2/ERF转录因子通过响应植物激素脱落酸和乙烯, 激活依赖或不依赖于脱落酸和乙烯的胁迫响应基因的表达。此外, AP2/ERF转录因子参与赤霉素、细胞分裂素和油菜素内酯介导的生长发育和胁迫应答。该文简要综述了AP2/ERF转录因子的结构特征、转录调控、翻译后修饰、结合位点、协同互作蛋白及其参与调控依赖或不依赖激素信号转导途径的非生物胁迫响应研究进展, 为解析不同AP2/ERF转录因子在调控激素和胁迫响应网络中的作用提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号