首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
代谢木糖和葡萄糖的重组酿酒酵母的构建   总被引:2,自引:0,他引:2  
为使酿酒酵母(Saccharomyces cerevisiae)YS58代谢木糖产乙醇,采用PCR方法克隆得到树干毕赤酵母(Pichia stipitis)木糖醇脱氢酶基因xy12,并将该基因和克隆得到的休哈塔假丝酵母(Candida shehatae)缺终止子的木糖还原酶基因xyl1一起连接到酵母表达载体pYES2的强启动子GAL下,得到融合表达载体pYES2-P12。通过醋酸锂转化的方法将pY-ES2-P12转入S.cerevisiae YS58中,得到S.cerevisiae YS58-12。利用所构建的重组酿酒酵母进行术糖发酵实验,结果表明该重组酵母能发酵木糖,使木糖利用率得到进一步提高,最高达到81.3%,而且能代谢木糖产生乙醇。  相似文献   

2.
利用全转录工程(gTME)方法将全局转录因子spt15随机突变并克隆表达, 构建突变库。将突变基因连接到表达载体 pYX212上, 醋酸锂法转化入不利用木糖的酿酒酵母YPH499中, 经特定的培养基初筛获得高效利用木糖并共发酵木糖和葡萄糖的酿酒酵母重组菌株。对获得的重组菌株进行了初步研究, 该菌株能够很好的利用木糖并共发酵木糖和葡萄糖。在30oC, 200 r/min, 发酵96 h时, 50 g/L木糖和葡萄糖的利用率为94.0%和98.9%, 乙醇产率为32.4%和31.6%, 原始菌株乙醇产率为44.3%; 当木糖和葡萄糖以质量比1:1混合发酵时, 木糖和葡萄糖利用率分别为91.7%和85.9%, 乙醇产率为26%。木糖醇的含量极低。  相似文献   

3.
利用全转录工程(gTME)方法将全局转录因子spt15随机突变并克隆表达, 构建突变库。将突变基因连接到表达载体 pYX212上, 醋酸锂法转化入不利用木糖的酿酒酵母YPH499中, 经特定的培养基初筛获得高效利用木糖并共发酵木糖和葡萄糖的酿酒酵母重组菌株。对获得的重组菌株进行了初步研究, 该菌株能够很好的利用木糖并共发酵木糖和葡萄糖。在30oC, 200 r/min, 发酵96 h时, 50 g/L木糖和葡萄糖的利用率为94.0%和98.9%, 乙醇产率为32.4%和31.6%, 原始菌株乙醇产率为44.3%; 当木糖和葡萄糖以质量比1:1混合发酵时, 木糖和葡萄糖利用率分别为91.7%和85.9%, 乙醇产率为26%。木糖醇的含量极低。  相似文献   

4.
汪天虹 Rent.  M 《菌物系统》1999,18(3):311-315
采用双载体系统,将携带有瑞氏木霉木糖醇脱氢酶基因的表达质粒pAJ401-xdh1转化已带有树干毕赤氏酵母木糖还原酶基因的重组酿酒酵母H475,构建了同时带有毕赤氏酵母木糖还原酶基因和瑞氏木霉木产基因的重组酿酒酵母HX1,研究了重组酿酒酵母HX1对木听转化利用情况。  相似文献   

5.
[目的]以不同强度的启动子控制表达木酮糖激酶基因,并研究其引起的不同木酮糖激酶活性水平对木糖利用酿酒酵母(Saccharomyces cerevisiae)代谢流向的影响.[方法]以酿酒酵母CEN.PK 113-5D为出发菌株,选择酿酒酵母内源启动子TEF1p,PGK1p和HXK2p,利用Cre-loxP无标记同源重组系统,置换染色体上木酮糖激酶基因XKS1的启动子(XKS1p)序列;并通过附加体质粒引入木糖代谢上游途径,构建不同水平表达木酮糖激酶的木糖利用工程菌株;从木酮糖激酶的转录水平、酶活水平、胞内的ATP浓度及木糖代谢等性状,对各菌株进行评价.[结果]转录及酶活测定结果显示,与天然状态相比,所选择的启动子对木酮糖激酶均表现出更强的启动效率.菌株体内表达木酮糖激酶活性水平由高至低的顺序为其基因XKS1在启动子PGK1p、TEF1p、HXK2p和XKS1p控制下.随着木酮糖激酶的活性的提高,胞内的ATP水平下降,而转化木糖生成乙醇的能力上升.最高乙醇产率为0.35g/g消耗的总糖,此时副产物木糖醇产率最低,为0.18g/g消耗的木糖.[结论]通过在染色体上置换启动子,提高了木酮糖激酶的表达水平.在一定范围内,木酮糖激酶的高活性有利于木糖向乙醇的转化.  相似文献   

6.
为使酿酒酵母(Saccharomyces cerevisiae)YS58代谢木糖产乙醇,采用PCR方法克隆得到树干毕赤酵母(Pichia stipitis)木糖醇脱氢酶基因xyl2,并将该基因和克隆得到的休哈塔假丝酵母(Candida shehatae)缺终止子的木糖还原酶基因xyt1一起连接到酵母表达载体pYES2的强启动子GAL下,得到融合表达载体pYES2-P12。通过醋酸锂转化的方法将pY- ES2-P12转入S.Cerevisiae YS5  相似文献   

7.
采用双载体系统,将携带有瑞氏木霉木糖醇脱氢酶基因的表达质粒pAJ401-Xdh1转化已带有树干毕赤氏酵母木糖还原酶基因的重组酿酒酵母H475,构建了同时带有毕赤氏酵母木糖还原酶基因和瑞氏木霉木糖醇脱氢酶基因的重组酿酒酵母HX1。研究了重组酿酒酵母HX1对木糖的转化利用情况。  相似文献   

8.
利用基因工程手段得到重组菌YPH499-3中的spt15有效突变基因,通过表达载体pYX212转化入酿酒酵母原始菌株YPH499中,重新获得酿酒酵母重组菌株。对其性状进行研究,结果表明该菌株能有效利用木糖并共发酵木糖和葡萄糖。在30oC、200r/min,发酵72h时,50g/L木糖的利用率为82.0%,乙醇产率为28.4%;当木糖和葡萄糖以质量比1:1混合发酵时,木糖和葡萄糖的利用率分别为80.4%和100%,乙醇产率为31.4%;同时发现木糖醇的含量极低。从而验证了有效突变基因spt15-10对酿酒酵母共发酵木糖和葡萄糖产酒精的影响。  相似文献   

9.
随着能源价格的持续上涨, 使用木质纤维素生产燃料乙醇已具有重要的实践意义。木糖是多数木质纤维素水解产物中含量仅次于葡萄糖的一种单糖, 传统乙醇生产菌株酿酒酵母不能利用木糖, 这为使用以木质纤维素为原料发酵生产乙醇带来了困难。多年以来人们试图通过基因工程和细胞融合等方法对其进行改造使其能够代谢木糖生产乙醇。本文主要介绍这方面的研究进展。  相似文献   

10.
在导入表达毕赤酵母(Pichia stipitis)木糖还原酶(xylose reductase,XR)和木糖醇脱氢酶(xylitol dehydrogenase,XDH)基因的重组酿酒酵母中,木糖还原酶活性主要依赖辅酶NADPH,木糖醇脱氢酶活性依赖辅酶 NAD+,两者的辅助因子不同导致细胞内电子氧化还原的不平衡,是造成木糖醇积累,影响木糖代谢和乙醇产量的主要原因之一.将经过基因工程改造获得的NADH高亲和力的木糖还原酶突变基因m1,与毕赤酵母木糖醇脱氢酶(PsXDH)基因xyl2共转染酿酒酵母AH109,以转染毕赤酵母木糖还原酶(PsXR)基因xyl1和xyl2重组质粒的酵母细胞为对照菌株,在SC/-Leu/-Trp营养缺陷型培养基中进行筛选,获得的阳性转化子分别命名为AH-M-XDH和AH-XR-XDH.重组酵母在限制氧通气条件下对木糖和葡萄糖进行共发酵摇瓶培养,HPLC检测发酵底物的消耗和代谢产物的产出情况.结果显示,与对照菌株AH-XR-XDH相比,AH-M-XDH的木糖利用率明显提高,乙醇得率增加了16%,木糖醇产生下降了41.4%.结果证实,通过基因工程改造的木糖代谢关键酶,可用于酿酒酵母发酵木糖生产乙醇,其能通过改善酿酒酵母细胞内氧化还原失衡的问题,提高木糖利用率和乙醇产率.  相似文献   

11.
木酮糖激酶表达水平对酿酒酵母木糖代谢产物流向的影响   总被引:4,自引:0,他引:4  
在酿酒酵母中分别引入真菌和细菌的木糖代谢关键酶,木糖还原酶基因XYL1、木糖醇脱氢酶基因XYL2和木糖异构酶基因xylA. 并在此基础上以共转化策略超表达下游关键酶木酮糖激酶基因XKS1. 与亲本菌株相比,用pMA91和YEp24质粒表达XKS1的重组菌株,木酮糖激酶(xylulokinase,XK)活性分别提高了14和6.7倍. 在限氧条件下,重组菌株对木糖和葡萄糖的共发酵结果显示,表达XYL1,XYL2以及XKS1的重组菌株HSXY-251木糖消耗为12.4 g/L,提高了120.9%,乙醇产量达到9.4 g/L,提高了36%,副产物木糖醇产量为0.7 g/L,下降了84.9%.  相似文献   

12.
木糖是纤维素原料水解液中最主要的五碳糖成分,由于野生的酿酒酵母缺乏有效的木糖利用途径,将外源木糖代谢途径整合至酿酒酵母中使其具有发酵木糖生产乙醇的能力是构建纤维素乙醇发酵菌株的关键。国内外学者的研究表明,同一木糖代谢途径导入不同酿酒酵母菌株中,所得到的重组菌发酵性能存在明显差异,表明宿主的遗传背景对菌株利用木糖能力和发酵性能具有重要的影响。就酿酒酵母宿主对重组菌株的木糖发酵性能的影响进行了综述,分析了产生宿主差异的内在机理,为进一步选育高效木糖共发酵菌种提供借鉴。  相似文献   

13.
【目的】通过系统研究一个、两个及多个非氧化磷酸戊糖(PP)途径基因组合过表达对酿酒酵母木糖代谢的影响,以优化重组菌株的构建过程,构建高效的木糖代谢酿酒酵母菌株。【方法】在酿酒酵母中双拷贝过表达上游代谢途径的关键酶(木糖还原酶XR,木糖醇脱氢酶XDH,木酮糖激酶XKS),在此基础上构建了一系列PP途径基因过表达菌株,并对其木糖发酵性能进行比较研究。【结果】木糖发酵结果显示,不同组合过表达PP途径基因能不同程度改善重组菌株的木糖发酵性能。其中,过表达PP途径全部基因(RKI1,RPE1,TAL1和TKL1)使菌株的发酵性能最优,其乙醇产率和产量较对照菌株分别提高了39.25%和12.57%,同时较其他基因组合过表达菌株也有不同程度的改善。【结论】通过构建PP途径基因不同组合过表达酿酒酵母菌株,首次对PP途径基因对酿酒酵母木糖代谢的影响进行了系统研究,结果表明,不同组合强化PP途径基因对重组菌株木糖代谢的影响存在差异,相对于其他基因过表达组合,同步过表达PP途径全部基因最有利于碳通量流向乙醇。  相似文献   

14.
酿酒酵母工业菌株中XI木糖代谢途径的建立   总被引:9,自引:0,他引:9  
根据代谢工程原理,采取多拷贝整合策略,利用整合载体pYMIKP,将来自嗜热细菌Thermusthermophilus的木糖异构酶(XI)基因xylA和酿酒酵母(Saccharomycescerevisiae)自身的木酮糖激酶(XK)基因XKS1,插入酿酒酵母工业菌株NAN-27的染色体中,得到工程菌株NAN-114。酶活测定结果显示,NAN-114中XI和XK的活性均高于出发菌株NAN-27,表明外源蛋白在酿酒酵母工业菌株中得到活性表达。对木糖、葡萄糖共发酵摇瓶实验结果表明,工程菌NAN-114消耗木糖4.6g/L,产生乙醇6.9g/L,较出发菌株分别提高了43.8%和9.5%。首次在酿酒酵母工业菌株中建立了XI路径的木糖代谢途径。  相似文献   

15.
重组运动发酵单胞菌的构建及木糖利用特性研究   总被引:2,自引:0,他引:2  
将大肠杆菌(Escherichia coli)木糖代谢的关键酶基因.引入到运动发酵单胞菌中,获得能利用木糖发酵生产乙醇的重组工程菌株PZM.混合糖发酵过程中,重组菌利用葡萄糖和木糖生成乙醇的效率分别达到理论值的81.2%和63.1%.  相似文献   

16.
木糖发酵重组菌研究进展   总被引:7,自引:1,他引:7  
木糖发酵是植物纤维原料生物转化制取乙醇商业化生产的基础和关键 ,但自然界存在的微生物菌株不能满足商业化生产的需要。利用基因工程技术对细菌和酵母进行改造 ,以提高它们在厌氧条件下的木糖发酵能力成为目前研究和开发的重点。通过转基因和基因删除技术 ,主要对Escherichiacoli、Zymomonasmobilis、Pichiastipitis和Saccharomycescerevisiae等典型的乙醇发酵菌株实施基因改造 ,构建出一系列不同类型的木糖发酵重组菌株。与野生型菌株相比 ,重组菌株在厌氧条件下的木糖发酵能力得到了不同程度的改善 ,但是它们仍然未能投入于商业化生产。微生物的木糖代谢工程和木糖发酵重组菌株的构建有待于进一步的深入研究 。  相似文献   

17.
木糖是木质纤维素原料水解液中的第二大组分,木糖和葡萄糖的充分利用是有经济性地生产纤维素乙醇的关键。通过基因克隆手段构建了一株可以高效利用木糖产乙醇的重组运动发酵单胞菌Zymomonas mobilis TSH01,并进行了利用单糖溶液、混合糖溶液及玉米秸秆水解液发酵产乙醇效率的研究。结果表明,利用单一葡萄糖或单一木糖溶液发酵时,当糖浓度为8%、发酵72 h后,糖利用率分别为100%和98.9%,乙醇代谢收率分别为87.8%和78.3%;利用8%葡萄糖和8%木糖的混合溶液发酵时,72 h后,葡萄糖和木糖的利用率分别为98.5%和97.4%,乙醇代谢收率为94.9%。利用含3.2%葡萄糖和3.5%木糖的玉米秸秆水解液发酵72 h后,葡萄糖和木糖的利用率分别为100%和92.3%,乙醇代谢收率为91.5%。此外,磷酸二氢钾对发酵过程中木糖利用率以及乙醇收率的提高有明显促进作用。  相似文献   

18.
为了使酿酒酵母较好地利用木糖产生乙醇,将来自Thermus thermophilus的木糖异构酶基因XYLA和酿酒酵母自身的木酮糖激酶基因XKS1,构建到酵母表达载体pESC-LEU中,导入酿酒酵母YPH499中,同时成功表达了两种酶基因。该菌以木糖为唯一碳源进行限氧发酵,木糖的利用率为9.64%,为宿主菌的4.17倍,产生2.22 mmol.L-1的乙醇。同时初步探讨了两种酶基因的表达量对酿酒酵母发酵木糖生成乙醇的影响。木糖异构酶对木糖的利用起关键性的作用,木酮糖激酶的过量表达不利于乙醇生成。  相似文献   

19.
利用木糖和葡萄糖合成乙醇的新型重组大肠杆菌的研究   总被引:10,自引:1,他引:10  
利用PCR方法从运动发酵单孢菌染色体DNA扩增出乙醇合成途径的关键酶基因pdc、adhB,分别用tac启动子控制表达,构建了可以在Escherichia coli JM109中表达的重组质粒pKK-PA、pEtac-PA.初步的乙醇发酵结果表明,在E.coli中只引入adhB基因不能拓宽其中的产乙醇途径,引入pdc基因可以与宿主自身的ADH酶协同作用,使碳流有效导向产乙醇方向.同时引入pdc、adhB基因可以在宿主E.coli中成功建立产乙醇途径.  相似文献   

20.
代谢工程与全基因组重组构建酿酒酵母抗逆高产乙醇菌株   总被引:1,自引:0,他引:1  
将酿酒酵母海藻糖代谢工程与全基因组重组技术相结合,改良工业酿酒酵母菌株的抗逆性和乙醇发酵性能。对来源于二倍体出发菌株Zd4的两株优良单倍体Z1和Z2菌株进行杂交获得基因组重组菌株Z12,并对Z1和Z2先进行(1)过表达海藻糖-6-磷酸合成酶基因 (TPS1) ,(2)敲除海藻糖水解酶基因 (ATH1), (3)同时过表达 TPS1和敲除ATH1, 经此三种基因工程操作后再进行杂交获得代谢工程菌株的全基因组重组菌株Z12ptps1、Z12 Δath1和Z12pTΔA。与亲株Zd4相比,Z12及结合代谢工程获得的菌株在高糖、高乙醇浓度与高温条件下生长与乙醇发酵性能都有不同程度的改进。对比研究结果表明:在高糖发酵条件下,同时过表达 TPS1和敲除ATH1 的双基因操作工程菌株胞内海藻糖积累、乙醇主发酵速率和乙醇产量相对于亲株的提高幅度要大于只过表达 TPS1,或敲除ATH1 的工程菌。结合了全基因组重组后获得的二倍体工程菌株Z12pTΔA,与原始出发菌株Zd4及重组子Z12相比,主发酵速率分别提高11.4%和6.3%,乙醇产量提高7.0%和4.1%,与其胞内海藻糖含量高于其它菌株、在胁迫条件下具有更强耐逆境能力相一致。结果证明,海藻糖代谢工程与杂交介导的全基因组重组相结合,是提高酿酒酵母抗逆生长与乙醇发酵性能的有效策略与技术途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号