首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, a multiplexed electrochemical immunosensor was developed for sensitive detection of carcinoembryonic antigen (CEA) and α-fetoprotein (AFP) using silver nanoparticles (Ag NPs) or gold nanoparticles (Au NPs) coated-carbon nanospheres (CNSs) as labels. CNSs were employed as the carrier for the immobilization of nanoparticles (Ag NPs or Au NPs), thionine (Thi), and secondary antibodies (Ab2) due to their good monodispersity and uniform structure. Au NPs reduced graphene oxide (rGO) nanocomposites were used as sensing substrate for assembling two primary antibodies (Ab1). In the presence of target proteins, two labels were attached onto the surface of the rGO/Au NPs nanocomposites via a sandwich immunoreaction. Two distinguishable peaks, one at +0.16 V (corresponding to Ag NPs) and another at −0.33 V (corresponding to Thi), were obtained in differential pulse voltammetry (DPV). The peak difference was approximately 490 mV, indicating that CEA and AFP can be simultaneously detected in a single run. Under optimal conditions, the peak currents were linearly related to the concentrations of CEA or AFP in the range of 0.01–80 ng ml−1. The detection limits of CEA and AFP were 2.8 and 3.5 pg ml−1, respectively (at a signal-to-noise ratio of 3). Moreover, when the immunosensor was applied to serum samples, the results obtained were in agreement with those of the reference method, indicating that the immunosensor would be promising in the application of clinical diagnosis and screening of biomarkers.  相似文献   

2.
This study reports the development of an on-chip enzyme-mediated primer extension process based on a microfluidic device with microbeads array for single-nucleotide discrimination using quantum dots as labels. The functionalized microbeads were independently introduced into the arrayed chambers using the loading chip slab. A single channel was used to generate weir structures to confine the microbeads and make the beads array accessible by microfluidics. The applied allele-specific primer extension method employed a nucleotide-degrading enzyme (apyrase) to achieve specific single-nucleotide detection. Based on the apyrase-mediated allele-specific primer extension with quantum dots as labels, on-chip single-nucleotide discrimination was demonstrated with high discrimination specificity and sensitivity (0.5 pM, signal/noise > 3) using synthesized target DNA. The chip-based signal enhancement for single-nucleotide discrimination resulted in 200 times higher sensitivity than that of an off-chip test. This microfluidic device successfully achieved simultaneous detection of two disease-associated single-nucleotide polymorphism sites using polymerase chain reaction products as target. This apyrase-mediated microfluidic primer extension approach combines the rapid binding kinetics of homogeneous assays of suspended microbeads array, the liquid handling capability of microfluidics, and the fluorescence detection sensitivity of quantum dots to provide a platform for single-base analysis with small reagent consumption, short assay time, and parallel detection.  相似文献   

3.
Here a novel capillary electrophoresis (CE) for simultaneous detection of dual single-base mutations using quantum dot-molecular beacon (QD-MB) probe is described. Two QD-MB probes were designed using 585 and 650-nm emitting CdTe QDs which were covalently conjugated to MBs with different DNA oligonucleotide sequences by amide linkage and streptavidin-biotin binding, respectively. The hybridizations of QD-MB probes with different DNA targets were then monitored by CE, and results indicated that the two QD-MB probes specifically hybridized with their complementary DNA sequences, respectively. Target DNA identification was observed to have a high sensitivity of 16.2 pg in CE. Furthermore, the simultaneous detection of dual single-base mutations in a given DNA oligonucleotide was successfully achieved in CE using above two QD-MB probes. This novel CE-assisted QD-MB biosensor offers a promising approach for simultaneous detection of multiple single-base mutations, and exhibits potential capability in the single nucleotide polymorphism (SNP) analysis and high-sensitivity DNA detection.  相似文献   

4.
A novel microfluidic device with microbeads array was developed and sensitive genotyping of human papillomavirus was demonstrated using a multiple-enzyme labeled oligonucleotide-Au nanoparticle bioconjugate as the detection tool. This method utilizes microbeads as sensing platform that was functionalized with the capture probes and modified electron rich proteins, and uses the horseradish peroxidase (HRP)-functionalized gold nanoparticles as label with a secondary DNA probe. The functionalized microbeads were independently introduced into the arrayed chambers using the loading chip slab. A single channel was used to generate weir structures to confine the microbeads and make the beads array accessible by microfluidics. Through "sandwich" hybridization, the enzyme-functionalized Au nanoparticles labels were brought close to the surface of microbeads. The oxidation of biotin-tyramine by hydrogen peroxide resulted in the deposition of multiple biotin moieties onto the surface of beads. This deposition is markedly increased in the presence of immobilized electron rich proteins. Streptavidin-labeled quantum dots were then allowed to bind to the deposited biotin moieties and displayed the signal. Enhanced detection sensitivity was achieved where the large surface area of Au nanoparticle carriers increased the amount HRP bound per sandwiched hybridization. The on-chip genotyping method could discriminate as low as 1fmol/L (10zmol/chip, SNR>3) synthesized HPV oligonucleotides DNA. The chip-based signal enhancement of the amplified assay resulted in 1000 times higher sensitivity than that of off-chip test. In addition, this on-chip format could discriminate and genotype 10copies/μL HPV genomic DNA using the PCR products. These results demonstrated that this on-chip approach can achieve highly sensitive detection and genotyping of target DNA and can be further developed for detection of disease-related biomolecules at the lowest level at their earliest incidence.  相似文献   

5.
The DNA-binding protein (DBP) has a wide range of roles such as those in DNA repair, recombination, and gene expression. Recently, a microarray-based method has been developed for the high-throughput analysis of DNA-protein interactions. However, to maximize the advantages of this method, the detection process should be improved so that the method can be applied to many proteins without the use of antibody or sample labeling. Previously, we presented a primary report on the detection of DBP, which is applicable to the microarray format. The system consists of three steps: first, the target DBP in the sample solution is incubated with a probe DNA; second, the probe is digested with Exo (Exonuclease) III; finally, the probe is extended withTaq DNA polymerase using fluorescent dye-labeled dUTP as a substrate. The binding DBP protects the probe from digestion by Exo III. Therefore, only the DBP-bound probe allows the following extension. In this study, the simultaneous detection of multiple DBPs was examined, and then the DBPs were analyzed using a crude extract of the cultured cells to demonstrate the general applicability of the method. Our method can be applied to many DBPs using the same procedure and components, whereas in the antibody-based method, the same number of antibodies as DBPs is needed to detect target DBPs in ELISA (enzyme-linked immunosorbent assay). These results suggest that our method is useful for the high-throughput detection of DBPs in the microarray format.  相似文献   

6.
Quantum dots versus organic dyes as fluorescent labels   总被引:3,自引:0,他引:3  
Suitable labels are at the core of Luminescence and fluorescence imaging and sensing. One of the most exciting, yet also controversial, advances in label technology is the emerging development of quantum dots (QDs)--inorganic nanocrystals with unique optical and chemical properties but complicated surface chemistry--as in vitro and in vivo fluorophores. Here we compare and evaluate the differences in physicochemical properties of common fluorescent labels, focusing on traditional organic dyes and QDs. Our aim is to provide a better understanding of the advantages and limitations of both classes of chromophores, to facilitate label choice and to address future challenges in the rational design and manipulation of QD labels.  相似文献   

7.
Quantum dots as strain- and metabolism-specific microbiological labels   总被引:3,自引:0,他引:3  
Biologically conjugated quantum dots (QDs) have shown great promise as multiwavelength fluorescent labels for on-chip bioassays and eukaryotic cells. However, use of these photoluminescent nanocrystals in bacteria has not previously been reported, and their large size (3 to 10 nm) makes it unclear whether they inhibit bacterial recognition of attached molecules and whether they are able to pass through bacterial cell walls. Here we describe the use of conjugated CdSe QDs for strain- and metabolism-specific microbial labeling in a wide variety of bacteria and fungi, and our analysis was geared toward using receptors for a conjugated biomolecule that are present and active on the organism's surface. While cell surface molecules, such as glycoproteins, make excellent targets for conjugated QDs, internal labeling is inconsistent and leads to large spectral shifts compared with the original fluorescence, suggesting that there is breakup or dissolution of the QDs. Transmission electron microscopy of whole mounts and thin sections confirmed that bacteria are able to extract Cd and Se from QDs in a fashion dependent upon the QD surface conjugate.  相似文献   

8.
Biomolecules detection by size-controlled quantum dots (QDs) was promising in developing clinic diagnostic techniques. In this work, a novel bioanalytical platform was developed to detect the activity of nicotinamide adenine dinucleotide (NAD) dependent enzyme, lactate dehydrogenase (LDH), and the concentration of glucose by the changes of fluorescence intensities of the QDs based on the electron transfer between QDs and sensitive biomolecules. The fluorescence intensities of the QDs was firstly quenched by NAD and then intensified with increasing amounts of the LDH because of the consumption of the NAD by the biocatalyzed reaction. Also the glucose led to the decline of fluorescence due to the formation of hydrogen peroxide (H(2)O(2)) which was the product of the glucose reacting with the glucose oxidase (GOD). The linear calibration plots of the activity of LDH and glucose were obtained from 250 to 6000 U/L and 1.67 to 6.67 mM, respectively. The detection system was also successfully applied to detect LDH and glucose in human serum samples. This analysis process was very convenient and simple because the QDs need not to be modified by any organic or biological molecules before they were used into the system. Moreover, the established method had great potential in detection of the physiological level of some biomolecules in clinical diagnostics of various diseases.  相似文献   

9.
Quantum dots (QDs) are attracting intense interest as fluorescence labeling agents for biomedical imaging because biocompatible coatings and relatively nontoxic rare earth metal QDs have emerged as possible options. QD photoemissions are bright, of narrow wavelength range, and very stable. We sought to encapsulate QDs within targeted PEGylated liposomes to reduce their propensity for liver uptake and to amplify the already strong QD emission signal. A novel lipid-QD conjugate initialized a process by which lipids in solution coalesced around the QDs. The liposomal structure was confirmed with size measurements, SEM, and IR spectroscopy. PEGylated QD liposomes injected into a xenograft tumor model largely cleared from the body within 24 h. Residual liver labeling was low. Targeted QD liposomes exhibited robust tumor labeling compared with controls. This study highlights the potential of these near IR emitting QD liposomes for preclinical/clinical applications.  相似文献   

10.

Background

Highly hydrophobic surfaces can have very low surface energy and such low surface energy biological interfaces can be obtained using fluorinated coatings on surfaces. Deposition of biocompatible organic films on solid-state surfaces is attained with techniques like plasma polymerization, biomineralization and chemical vapor deposition. All these require special equipment or harsh chemicals. This paper presents a simple vapor-phase approach to directly coat solid-state surfaces with biocompatible films without any harsh chemical or plasma treatment. Hydrophilic and hydrophobic monomers were used for reaction and deposition of nanolayer films. The monomers were characterized and showed a very consistent coating of 3D micropore structures.

Results

The coating showed nano-textured surface morphology which can aid cell growth and provide rich molecular functionalization. The surface properties of the obtained film were regulated by varying monomer concentrations, reaction time and the vacuum pressure in a simple reaction chamber. Films were characterized by contact angle analysis for surface energy and with profilometer to measure the thickness. Fourier Transform Infrared Spectroscopy (FTIR) analysis revealed the chemical composition of the coated films. Variations in the FTIR results with respect to different concentrations of monomers showed the chemical composition of the resulting films.

Conclusion

The presented approach of vapor-phase coating of solid-state structures is important and applicable in many areas of bio-nano interface development. The exposure of coatings to the solutions of different pH showed the stability of the coatings in chemical surroundings. The organic nanocoating of films can be used in bio-implants and many medical devices.  相似文献   

11.
A novel and sensitive immunoassay for the simultaneous detection of aflatoxin B1 (AFB1) and ochratoxin A (OTA) in food samples was developed by using artificial antigen-modified magnetic nanoparticles (MNPs) as immunosensing probes and antibody functionalized upconversion nanoparticles (UCNPs) as signal probes. NaY0.78F4:Yb0.2, Tm0.02 and NaY0.28F4:Yb0.7,Er0.02 UCNPs were prepared and functionalized, respectively, with immobilized monoclonal anti-AFB1 antibodies and anti-OTA antibodies as signal probes. Based on a competitive immunoassay format, the detection limit for both AFB1 and OTA under optimal conditions was as low as 0.01 ng mL−1, and the effective detection range was from 0.01 to 10 ng mL−1. The proposed method was successfully applied to measure AFB1 and OTA in naturally contaminated maize samples and compared to a commercially available ELISA method. The high sensitivity and selectivity of this method is due to the magnetic separation and concentration effect of the MNPs, the high sensitivity of the UCNPs, and the different emission lines of Yb/Tm and Yb/Er doped NaYF4 UCNPs excited by 980 nm laser. Multicolor UCNPs have the potential to be used in other applications for detecting toxins in the field of food safety and other fields.  相似文献   

12.
We have developed a simultaneous detection method for two common mutations in the epidermal growth factor receptor gene based on the fluorescence quenching phenomenon caused by aggregation of CdSe quantum dots. For detection of the in-frame deletion in exon 19 and the L858R point mutation in exon 21, water-soluble CdSe quantum dots with two sizes were functionalized using four different types of probe oligonucleotides. Addition of target oligonucleotides with the deletion mutation in exon 19 into the suspensions caused crosslinking-induced aggregation of green-emitting quantum dots, followed by the fluorescence quenching while that with the L858R point mutation resulted in aggregation of yellow-emitting quantum dots. In addition, targets with both deletion and point mutations caused aggregation of both green- and yellow-emitting quantum dots. This method allows a simultaneous detection of mutations in exon 19 and 21 of EGFR gene in a single experiment. We found that minimum mutant concentration that could be detected by this method was as low as 2% for deletion mutation, and 5% for point mutation. PCR products of EGFR gene were also used to confirm that our method could be used to detect mutation in amplified DNA fragments.  相似文献   

13.
Though people had recognized the pivotal function of CaCl(2) during DNA transformation into Escherichia coli, the mechanism of divalent Ca(2+) cation inducing E. coli competence development is still unknowable. Quantum dots (QDs), as a new fluorescent probe, being applied in biology research, had aroused great interest. We explored the penetrability of E. coli competent cells membrane using QDs and proved directly that competent cells were more permeable than that of noncompetent. The results are significant on understanding the problems of the microbiological genetics.  相似文献   

14.
We report results of the studies relating to electrophoretic deposition of nanostructured composite of chitosan (CS)-cadmium-telluride quantum dots (CdTe-QDs) onto indium-tin-oxide coated glass substrate. The high resolution transmission electron microscopic studies of the nanocomposite reveal molecular level coating of the CdTe-QDs with CS molecules in the colloidal dispersion medium. This novel composite platform has been explored to fabricate an electrochemical DNA biosensor for detection of chronic myelogenous leukemia (CML) by immobilizing amine terminated oligonucleotide probe sequence containing 22 base pairs, identified from BCR-ABL fusion gene. The results of differential pulse voltammetry reveal that this nucleic acid sensor can detect as low as 2.56 pM concentration of complementary target DNA with a response time of 60s. Further, the response characteristics show that this fabricated bioelectrode has a shelf life of about 6 weeks and can be used for about 5-6 times. The results of experiments conducted using clinical patient samples reveal that this sensor can be used to distinguish CML positive and the negative control samples.  相似文献   

15.
Here we present a sensitive DNA detection protocol using quantum dots (QDs) and magnetic beads (MBs) for large volume samples. In this study, QDs, conjugated with streptavidin, were used to produce fluorescent signals while magnetic beads (MBs) were used to isolate and concentrate the signals. The presence of target DNAs leads to the sandwich hybridization between the functionalized QDs, the target DNAs and the MBs. In fact, the QDs-MBs complex, which is bound using the target DNA, can be isolated and then concentrated. The binding of the QDs to the surface of the MBs was confirmed by confocal microscopy and Cd elemental analysis. It was found that the fluorescent intensity was proportional to concentration of the target DNA, while the presence of non-complementary DNA produced no significant fluorescent signal. In addition, the presence of low copies of target DNAs such as 0.5 pM in large volume samples up to 40 mL was successfully detected by using a magnet-assisted concentration protocol which consequently results in the enhancement of the sensitivity more than 100-fold.  相似文献   

16.
To obtain a stable and highly sensitive bioimaging fluorescence probe, polymer nanoparticles with embedded quantum dots were covered with an artificial cell membrane. These nanoparticles were designed by assembling phospholipid polar groups as a platform, and oligopeptide was immobilized as a bioaffinity moiety on the surface of the nanoparticles. The polymer nanoparticles showed resistance to cellular uptake from HeLa cells owing to the nature of the phosphorylcholine groups. When arginine octapeptide was immobilized at the surface of the nanoparticles, they were able to penetrate the membrane of HeLa cells effectively. Cytotoxicity of the nanoparticles was not observed even after immobilization of oligopeptide. Thus, we obtained stable fluorescent polymer nanoparticles covered with an artificial cell membrane, which are useful as an excellent bioimaging probe and as a novel evaluation tool for oligopeptide functions in the target cells.  相似文献   

17.
We developed a new method for imaging the movement of targeted proteins in living cancer cells with photostable and bright quantum dots (QDs). QDs were conjugated with various molecules and proteins, such as phalloidin, anti-tubulin antibody and kinesin. These bioconjugated QDs were mixed with a transfection reagent and successfully internalized into living cells. The movements of individual QDs were tracked for long periods of time. Phalloidin conjugated QDs bound to actin filaments and showed almost no movement. In contrast, anti-tubulin antibody conjugated QDs bound to microtubules and revealed dynamic movement of microtubules. Kinesin showed an interesting behavior whereby kinesin came to be almost paused briefly for a few seconds and then moved once again. This is in direct contrast to the smoothly continuous movement of kinesin in an in vitro assay. The maximum velocity of kinesin in cells was faster than that in the in vitro assay. These results suggest that intracellular movement of kinesin is different from that in the in vitro assay. This newly described method will be a powerful tool for investigating the functions of proteins in living cells.  相似文献   

18.
Core/shell quantum dots (CdSe/Zns) conjugated with various nuclear localization signaling (NLS) peptides, which could facilitate the transportation of quantum dots across the plasma membrane into the nucleus, have been utilized to investigate the uptake mechanism of targeted delivery. Because of their brightness and photostability, it was possible to trace the trajectories of individual quantum dots in living cells using both confocal and total internal reflection microscopes. We found that, when the quantum dots were added to a cell culture, the peptide-coated quantum dots entered the cell nucleus while the uncoated quantum dots remained in the cytoplasm. At 8 nM, most of the peptide coated quantum dots were found in the cytoplasm due to aggregation. However, at a lower concentration (0.08 nM), approximately 25% of the NLS peptide-coated quantum dots entered the cell nucleus. We also found that some quantum dots without NLS coating could also enter the nucleus, suggesting that the size of the quantum dots may play an important role in such a process.  相似文献   

19.
An electrochemical method for the simultaneous detection of two different tumor markers, carcinoembryonic antigen (CEA) and α-fetoprotein (AFP), in one-pot, using CdS/DNA and PbS/DNA nanochains as labels was developed. Herein, magnetic beads (MBs) as bimolecule immobilizing carriers, were used for co-immobilization of primary anti-CEA and anti-AFP antibodies. The distinguishable signal labels were synthesized by in situ growth of CdS and PbS nanoparticles on DNA chains, respectively, which were further employed to label the corresponding secondary antibodies. A sandwich-type immunoassay format was formed by the biorecognition of the antigens and corresponding antibodies. The assay was based on the peak currents of Cd(2+) and Pb(2+) dissolved from CdS and PbS nanoparticles by HNO(3) using square wave stripping voltammetry. Experimental results show that the multiplexed electrochemical immunoassay has enabled the simultaneous monitoring of CEA and AFP in a single run with wide working ranges of 0.1-100ngmL(-1) for CEA and 0.5-200ngmL(-1) for AFP. The detection limits reach to 3.3pgmL(-1) for CEA and 7.8pgmL(-1) for AFP.  相似文献   

20.
We describe the use of fluorophore-doped nanoparticles as reporters in a recently developed ArcDia TPX bioaffinity assay technique. The ArcDia TPX technique is based on the use of polymer microspheres as solid-phase reaction carrier, fluorescent bioaffinity reagents, and detection of two-photon excited fluorescence. This new assay technique enables multiplexed, separation-free bioaffinity assays from microvolumes with high sensitivity. As a model analyte we chose C-reactive protein (CRP). The assay of CRP was optimized for assessment of CRP baseline levels using a nanoparticulate fluorescent reporter, 75 nm in diameter, and the assay performance was compared to that of CRP assay based on a molecular reporter of the same fluorophore core. The results show that using fluorescent nanoparticles as the reporter provides two orders of magnitude better sensitivity (87 fM) than using the molecular label, while no difference between precision profiles of the different assay types was found. The new assay method was applied for assessment of baseline levels of CRP in sera of apparently healthy individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号