首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two experiments were conducted to compare pregnancy rates when GnRH or estradiol were given to synchronize ovarian follicular wave emergence and ovulation in an MGA-based estrus synchronization program. Crossbred beef cattle were fed melengestrol acetate (MGA, 0.5 mg per day) for 7 days (designated days 0-6, without regard to stage of the estrous cycle) and given cloprostenol (PGF; 500 microg intramuscular (im)) on day 7. In Experiment 1, lactating beef cows (n=140) and pubertal heifers (n=40) were randomly allocated to three groups to receive 100 microg gonadorelin (GnRH), 5 mg estradiol-17beta and 100 mg progesterone (E+P) in canola oil or no treatment (control) on day 0. All cattle were observed for estrus every 12 h from 36 to 96 h after PGF. Cattle in the GnRH group that were detected in estrus 36 or 48 h after PGF were inseminated 12 h later; the remainder were given 100 microg GnRH im 72 h after PGF and concurrently inseminated. Cattle in the E+P group were randomly assigned to receive either 0.5 or 1.0 mg estradiol benzoate (EB) in 2 ml canola oil im 24 h after PGF and were inseminated 30 h later. Cattle in the control group were inseminated 12 h after the first detection of estrus; if not in estrus by 72 h after PGF, they were given 100 microg GnRH im and concurrently inseminated. In the absence of significant differences, all data for heifers and for cows were combined and the 0.5 and 1.0 mg EB groups were combined into a single estradiol group. Estrus rates were 57.6, 57.4 and 60.0% for the GnRH, E+P and control groups, respectively (P=0.95). The mean (+/-S.D.) interval from PGF treatment to estrus was shorter (P<0.001) and less variable (P<0.001) in the E+P group (49.0+/-6.1 h) than in either the GnRH (64.2+/-15.9 h) or control (66.3+/-13.3 h) groups. Overall pregnancy rates were higher (P<0.005) in the GnRH (57.6%) and E+P (55.7%) groups than in the control group (30.0%) as were pregnancy rates to fixed-time AI (47.5, 55.7 and 28.3%, respectively). In Experiment 2, 122 crossbred beef heifers were given either 100 microg GnRH or 2 mg EB and 50 mg progesterone in oil on day 0 and subsequently received either 100 microg GnRH 36 h after PGF and inseminated 14 h later or 1 mg EB im 24 h after PGF and inseminated 28 h later in a 2 x 2 factorial design. Pregnancy rates were not significantly different among groups (41.9, 32.2, 33.3 and 36.7% in GnRH/GnRH, GnRH/EB, EB/GnRH and EB/EB groups, respectively). In conclusion, GnRH or estradiol given to synchronize ovarian follicular wave emergence and ovulation in an MGA-based synchronization regimen resulted in acceptable pregnancy rates to fixed-time insemination.  相似文献   

2.
Gümen A  Seguin B 《Theriogenology》2003,60(2):341-348
The objectives of this study evaluating induction of ovulation in early postpartum dairy cows were to: compare two methods of GnRH (100 mcg) administration (i.m. route and s.c. implant), and determine if prostaglandin F(2alpha) (PGF) causes release of LH or ovulation similar to that reported for GnRH. In trial #1, serum LH peaked at 2h after i.m. administration of GnRH and was declining at 4h. The s.c. GnRH implant also caused an elevation in serum LH at 2 and 4h after treatment, with LH declining at 6h. Serum LH was unchanged in control cows. Experimental treatment caused ovulation in 4 of 14 GnRH i.m. treated cows, 4 of 12 GnRH implanted cows and 0 of 13 control cows. Parity had no effect on LH response but did affect resulting ovulation rate as multiparous cows were more likely to ovulate than were primiparous cows in response to either GnRH treatment. All cows that ovulated had a follicle larger than 12 mm at the time of treatment. In trial #2, serum LH increased as before after i.m. administration of GnRH, however, serum LH was unchanged in cows treated with PGF or saline. Gonadotropin releasing hormone caused more cows to ovulate than did PGF or saline treatments, and GnRH shortened the interval from treatment to the onset of CL function over the PGF treatment; 13.9+/-2.6, 28.2+/-4.1 and 22.3+/-4.1 days for GnRH, PGF and saline, respectively. In summary, there was no difference in the ability of s.c. implantation and i.m. administration of GnRH to cause ovulation. Prostaglandin F(2alpha) did not cause release of LH or ovulation. In 22 early postpartum dairy cows treated with 100 mcg GnRH i.m. in these two trials, nearly all cows (95%) responded with a release of LH but only 45% (10/22) responded with an ovulation and subsequent formation of a CL.  相似文献   

3.
To investigate the effects of prostaglandin (PGF 2alpha) plus GnRH at different stages of the luteal phase 13 ewes received PGF 2alpha on Day 9 of the synchronized cycle, followed 36 h later by GnRH. This control regimen resulted in ovulation and normal corpus luteum (CL) function. In the next cycle, the ewes were treated simultaneously with PGF 2alpha and GnRH either on Day 4 (early, n = 7) or Day 9 (late, n = 6). Ovarian activity was monitored daily by ultrasonography, and blood samples were obtained to monitor hormonal patterns. Size of the largest follicle present when GnRH was administered was similar in all groups, but the preceding growth rate was greatest for the early group. In the 36 h after injection of PGF 2alpha, serum progesterone (P4) had declined to basal levels in the control cycles when GnRH was administered, but P4 concentrations were higher in the early group and were highest in the late group when the GnRH was administered with PGF 2alpha. The LH surges induced by GnRH were highest in the control cycles, and were lower in the 2 treated groups. In the early group, 6 of 7 ewes demonstrated ovulation within 48 h of GnRH, resulting in the formation of normal CL. In the late group, ovulation was delayed for about 5 d in 4 of 6 ewes, and subsequent luteal function was normal; no ovulation was detected in the other 2 ewes of this group, but the follicles became luteinized, resulting in a normal P4 profile in one and subnormal in the other. These results suggest that follicles present during the early luteal phase are capable of ovulating and forming fully functional CL in response to exogenous GnRH. In contrast, follicles present during the late luteal phase fail to ovulate in response to GnRH while P4 levels are high, even though the LH stimulus is adequate; however, these follicles persist and subsequently ovulate after P4 levels have decreased. Therefore, the endocrine milieu to which a follicle was exposed may be more important than its size in determining its ability to undergo ovulation and development into a normal CL.  相似文献   

4.
The objective was to determine reproductive performance following AI in beef heifers given estradiol to synchronize ovarian follicular wave emergence and estradiol or GnRH to synchronize ovulation in a two-dose PGF-based protocol. In Experiment 1, 561 cycling (confirmed by ultrasonography), Angus heifers received 500 microg cloprostenol, i.m. (PGF) twice, 14 days apart (days 0 and 14) and were equally allocated to four groups in a 2 x 2 factorial design. On Day 7, heifers received either 2 mg estradiol benzoate (EB) and 50 mg progesterone (P), i.m. in oil (EBP group) or no treatment (NT group). Half the heifers in each group received 1mg EB, i.m. in oil on Day 15 (24h after the second PGF treatment) with TAI 28 h later (52 h after PGF), and the other half received 100 microg GnRH, i.m. on Day 17 (72 h after PGF) concurrent with TAI. All heifers were observed for estrus twice daily from days 13 to 17; those detected in estrus more than 16 h before scheduled TAI were inseminated 4-16 h later and considered nonpregnant to TAI. Overall pregnancy rate (approximately 35 days after AI) was higher in heifers that received EBP than those that did not (61.6% versus 48.2%, respectively; P < 0.002); but was lower in heifers that received EB after PGF than those that received GnRH (50.0% versus 59.8%; P < 0.02). Although estrus was detected prior to TAI in 77 of 279 heifers (27.6%) treated with EBP (presumably due to induced luteolysis), they were inseminated and 53.2% became pregnant. Overall pregnancy rates were 51.4, 68.3, 45.0, and 55.0% in the NT/GnRH, EBP/GnRH, NT/EB, and EBP/EB groups, respectively (P < 0.05). In Experiment 2, 401 cycling, Angus heifers were used. The design was identical to Experiment 1, except that 1.5mg estradiol-17beta (E-17beta) plus 50mg progesterone (E-17betaP) and 1mg E-17beta were used in lieu of EBP and EB, respectively. All heifers receiving E-17beta 24h after the second injection of PGF (NT/E-17beta and E-17betaP/E-17beta) were TAI 28 h later without estrus detection, i.e. 52 h after PGF. Heifers in the other two groups received 100 microg GnRH, i.m. 72 h after PGF and were concurrently TAI; heifers in these two groups that were detected in estrus prior to this time were inseminated 4-12h later and considered nonpregnant to TAI. Estrus rate during the first 72 h after the second PGF treatment was higher (P < 0.05) in the E-17betaP/GnRH group (45.0%; n = 100) than in the NT/GnRH group (16.0%; n = 100), but conception rate following estrus detection and AI was not different (mean, 57.4%; P = 0.50). Overall pregnancy rate was not significantly different among groups (mean, 46.9%; P = 0.32). In summary, the use of EB or E-17beta to synchronize follicular wave emergence and estradiol or GnRH to synchronize ovulation in a two-dose, PGF-based protocol resulted in acceptable fertility to TAI. However, when 2mg EB was used to synchronize follicular wave emergence, early estrus occurred in approximately 28% of heifers, necessitating additional estrus detection. A combination of estrus detection and timed-AI in a two-dose PGF protocol resulted in highly acceptable pregnancy rates.  相似文献   

5.
The objective of this study was to evaluate protocols for synchronizing ovulation in beef cattle. In Experiment 1, Nelore cows (Bos indicus) at random stages of the estrous cycle were assigned to 1 of the following treatments: Group GP controls (nonlactating, n=7) received GnRH agonist (Day 0) and PGF2alpha (Day 7); while Groups GPG (nonlactating, n=8) and GPG-L (lactating, n=9) cows were given GnRH (Day 0), PGF2alpha (Day 7) and GnRH again (Day 8, 30 h after PGF2alpha). A new follicular wave was observed 1.79+/-0.34 d after GnRH in 19/24 cows. After PGF2alpha, ovulation occurred in 19/24 cows (6/7 GP, 6/8 GPG, 7/9 GPG-L). Most cows (83.3%) exhibited a dominant follicle just before PGF2alpha, and 17/19 ovulatory follicles were from a new follicular wave. There was a more precise synchrony of ovulation (within 12 h) in cows that received a second dose of GnRH (GPG and GPG-L) than controls (GP, ovulation within 48 h; P<0.01). In Experiment 2, lactating Nelore cows with a visible corpus luteum (CL) by ultrasonography were allocated to 2 treatments: Group GPE (n=10) received GnRH agonist (Day 0), PGF2alpha (Day 7) and estradiol benzoate (EB; Day 8, 24 h after PGF2alpha); while Group EPE (n=11), received EB (Day 0), PGF2alpha (Day 9) and EB (Day 10, 24 h after PGF2alpha). Emergence of a new follicular wave was observed 1.6+/-0.31 d after GnRH (Group GPE). After EB injection (Day 8) ovulation was observed at 45.38+/-2.03 h in 7/10 cows within 12 h. In Group EPE the emergence of a new follicular wave was observed later (4.36+/-0.31 d) than in Group GEP (1.6+/-0.31 d; P<0.001). After the second EB injection (Day 10) ovulation was observed at 44.16+/-2.21 h within 12 (7/11 cows) or 18 h (8/11 cows). All 3 treatments were effective in synchronizing ovulation in beef cows. However, GPE and, particularly, EPE treatments offer a promising alternative to the GPG protocol in timed artificial insemination of beef cattle, due to the low cost of EB compared with GnRH agonists.  相似文献   

6.
Synchronization of ovulation in dairy cows using PGF2alpha and GnRH   总被引:2,自引:0,他引:2  
This paper reports a new method for synchronizing the time of ovulation in cattle using GnRH and PGF(2alpha). In Experiments 1 and 2, lactating dairy cows (n=20) ranging from 36 to 280 d postpartum and dairy heifers (n=24) 14 to 16 mo old were treated with an intramuscular injection of 100 mug GnRH at a random stage of the estrous cycle. Seven d later the cattle received PGF(2alpha) to regress corpora lutea (CL). Lactating cows and heifers received a second injection of 100 mug GnRH 48 and 24 h later, respectively. Lactating cows were artificially inseminated 24 h after the second GnRH injection. Ovarian morphology was monitored daily by trans-rectal ultrasonography from 5 d prior to treatment until ovulation. In Experiment 3, the flexibility in the timing of hormonal injections with this synchronization protocol was evaluated by randomly assigning 66 lactating dairy cows to 3 different treatment groups. Lactating cows received the injection of PGF(2alpha) 48 (Group 1), 24 (Group 2), and 0 h (Group 3) prior to the second injection of GnRH, which was administered at the same time in each group to ensure the second injection of GnRH was given when follicles were at a similar stage of growth. In Experiments 1 and 2, the first injection of GnRH caused ovulation and formation of a new or accessory CL in 18 20 cows and 13 24 heifers. In addition, this injection of GnRH initiated or was coincident with initiation of a new follicular wave in 20 20 lactating cows and 18 24 heifers. Corpora lutea regressed after PGF(2alpha) in 20 20 cows and in 18 24 heifers. All cows and 18 24 heifers ovulated a newly formed dominant follicle between 24 and 32 h after the second injection of GnRH. Ten of 20 cows conceived to the timed artificial insemination. In Experiment 3, the conception rate in Groups 1 and 2 were greater than in Group 3, (55 and 46 % vs 11%, respectively). In summary, this protocol could have a major impact on managing reproduction in lactating dairy cows, because it allows for AI to occur at a known time of ovulation and eliminates the need for detection of estrus.  相似文献   

7.
A new protocol for superovulating cattle which allows for control of the timing of ovulation after superstimulation with FSH was developed. The preovulatory LH surge was blocked with the GnRH agonist deslorelin, and ovulation was induced by injection of LH. In Experiment 1, heifers (3-yr-old) were assigned to a control group (Group 1A, n = 4) or a group with deslorelin implants (Group 1B, n = 5). On Day -7, heifers in Group 1A received a progestagen CIDR-B((R))device, while heifers in Group 1B received a CIDR-B((R))device + deslorelin implants. Both groups were superstimulated with twice daily injections of FSH (Folltropin((R))-V): Day 0, 40 mg (80 mg total dose on Day 0); Day 1, 30 mg; Day 2, 20 mg; Day 3, 10 mg. On Day 2, heifers were given PGF (a.m.) and CIDR-B((R)) devices were removed (p.m.). Three heifers in Group 1A had a LH surge and ovulated, whereas neither of these events occurred in Group 1B (with deslorelin implants) heifers. In Experiment 2, heifers (3-yr-old) were assigned to 1 of 4 equal groups (n = 6). On Day -7, heifers in Group 2A received a norgestomet implant, while heifers in Groups 2B, 2C and 2D received norgestomet + deslorelin implants. Heifers were superstimulated with FSH starting on Day 0 as in Experiment 1. On Day 2, heifers were given PGF (a.m.) and norgestomet implants were removed (p.m.). Heifers in Groups 2B to 2D were given 25 mg LH (Lutropin((R))): Group 2B, Day 4 (a.m.); Group 2C, Day 4 (p.m.); Group 2D, Day 5 (a.m.). Heifers in Group 2A were inseminated at estrus and 12 and 24 h later, while heifers in Groups 2B to 2D were inseminated at the time of respective LH injection and 12 and 24 h later. Injection of LH induced ovulation in heifers in Groups 2B to 2D. Heifers in Group 2C had similar total ova and embryos (15.2 +/- 1.4) as heifers in Group 2A (11.0 +/- 2.8) but greater (P < 0.05) numbers than heifers in Group 2B (7.0 +/- 2.3) and Group 2D (6.3 +/- 2.0). The number of transferable embryos was similar for heifers in Group 2A (5.8 +/- 1.8) and Group 2C (7.3 +/- 2.1) but lower (P < 0.05) for heifers in Group 2B (1.2 +/- 0.8) and Group 2D (1.3 +/- 1.0). The new GnRH agonist-LH protocol does not require observation of estrus, and induces ovulation in superstimulated heifers that would not have an endogenous LH surge.  相似文献   

8.
In this study we assessed the effect of GnRH on the recovery rate, meiotic synchronization and in vitro developmental competence of oocytes recovered close to the expected time of ovulation. Twenty-three heifers were superstimulated with FSH, and luteolysis was induced by PGF(2alpha) injection 48 h after the start of treatment Twelve heifers received 200 microg GnRH at 34 h after PGF(2alpha) treatment, Blood samples were collected between 35 to 47 h after PGF(2alpha) administration to determine the time of the LH surge. Transvaginal follicular aspiration was performed at 60 h after PGF(2alpha), and the recovered oocytes were fertilized or fixed either immediately or after 24 h of maturation in vitro. GnRH-treated heifers showed an LH surge within 3 h after treatment, while only 4 of the 10 heifers in the control group exhibited an LH surge by 47 h after treatment with PGF(2alpha). The average number of large follicles (> 10 mm) was 21.3 +/- 2.3 and 19.3 +/- 2.4 for GnRH-treated and control heifers, respectively. The oocyte recovery rate was 87.7 and 63.1% (P < 0.05), respectively, and most of the cumulus-oocyte-complexes (COC) recovered from the 2 groups had an expanded cumulus (80.4 and 80.5%, respectively). Oocytes with an expanded cumulus from the GnRH group had completed meiotic maturation at higher rate than the controls (97 vs 20%;P < 0.05). In vitro development to the blastocyst stage of cumulus-expanded oocytes fertilized immediately after recovery was higher in GnRH-treated than in control heifers (60.3 vs 40.0%; P < 0.05). No difference was observed when oocytes with compact or expanded cumulus were matured in vitro for 24 h before fertilization. These results indicate that GnRH injections improve the oocyte recovery rate and that oocytes have a higher development competence than those obtained from non-GnRH-treated animals. We propose that this higher in vitro developmental competence may result from a more synchronous or further advanced meiotic maturation. However, due to the small number of oocytes in our study, we must emphasize that our findings on meiotic resumption are of preliminary nature.  相似文献   

9.
The synchrony of ovulation was examined in superstimulated heifers that had a downregulated pituitary gland and which were induced to ovulate by injection of exogenous LH. The pituitary was downregulated and desensitized to GnRH by treatment with the GnRH agonist deslorelin. Nulliparous heifers (3.5 yr old) at random stages of the estrous cycle were assigned to 1 of 3 groups, and on Day -7 received the following treatments: Group 1 (control, n = 8), 1 norgestomet ear implant; Group 2 (GnRH agonist, n = 8); Group 3 (GnRH agonist-LH protocol, n = 8), 2 deslorelin ear implants. Ovarian follicle growth in all heifers was superstimulated with twice-daily intramuscular injections of FSH (Folltropin-V): Day O, 40 mg (80 mg total dose); Day 1, 30 mg; Day 2; 20 mg; Day 3, 10 mg. On Day 2, all heifers were given a luteolytic dose of PGF (7 A.M.), Norgestomet implants were removed from heifers in Group 1 (6 P.M.). Heifers in Group 3 were given an injection of 25 mg, i.m. porcine LH (Lutropin) on Day 4 (4 P.M.). Ovarian follicle status was monitored at 8-h intervals from Day 3 (8 A.M.) to Day 6 (4 P.M.) using an Aloka Echo Camera and 7.5 MHz transducer. Heifers in Groups 2 and 3 exhibited estrus earlier (P < 0.05) than heifers in Group 1. Heifers in Group 2 did not have a preovulatory LH surge and they did not ovulate. Individual control heifers in Group 1 ovulated between 12 A.M. on Day 5 and 8 A.M. on Day 6. Heifers with deslorelin implants and injected with LH in Group 3 ovulated between 4 P.M. on Day 5 and 8 A.M. on Day 6. It was confirmed that superstimulated heifers with GnRH agonist implants can be induced to ovulate with LH. It was also demonstrated that ovulation is closely synchronized after injection of LH. Thus, a single, fixed-time insemination schedule could be used in a GnRH agonist-LH superovulation protocol, with significant practical and economic advantages for superovulation and embryo transfer programs.  相似文献   

10.
Poor estrus expression and the difficulty encountered in predicting the time of ovulation compromise the reproductive efficiency of Murrah buffalo cows. Synchronization of ovulation and timed artificial insemination are able to precisely control the time of ovulation and thus avoid the need for estrus detection. Recently, the Estradoublesynch protocol (administration of a PGF2α injection 2 days before Heatsynch protocol; GnRH 0, PGF2α 7, estradiol benzoate [EB] 8) was developed that precisely synchronized ovulation twice, i.e., after GnRH and EB injections and resulted in satisfactory pregnancy rates in Murrah buffaloes. The present study was conducted on 104 cycling and 31 anestrus buffaloes to compare (1) the endocrine changes, timing of ovulations, ovarian follicular growth, and efficacy of Estradoublesynch and Heatsynch protocols in cycling and (2) the efficacy of Estradoublesynch and Heatsynch protocols for the improvement of fertility in cycling and anestrus Murrah buffalo cows. Ovulation was confirmed after all GnRH and EB treatments by ultrasonographic examination at 2-hour intervals. Plasma progesterone and total estrogen concentrations were determined in blood samples collected at daily intervals, beginning 2 days before the onset of protocols until the day of second ovulation detection. Ovulatory follicle size was measured by ultrasonography at six time points (first PGF2α administration of Estradoublesynch protocol every 2 days before the onset of Heatsynch protocol, GnRH administration of both protocols, 2 hours before ovulation detection after GnRH administration of both protocols, second PGF2α injection of Estradoublesynch protocol, PGF2α injection of Heatsynch protocol, EB injection of both protocols and, 2 hours before ovulation detection after EB administration of both protocols). Plasma LH, total estrogen, and progesterone concentrations were determined in blood samples collected at 30-minute intervals for 8 hours, beginning GnRH and EB injections, and thereafter at 2-hour intervals until 2 hours after the detection of ovulation. The first ovulatory rate was significantly higher (P < 0.05) in the Estradoublesynch protocol (84.6%) than that in the Heatsynch protocol (36.4%). The first LH peak concentration (74.6 ± 10.4 ng/mL) in the Estradoublesynch protocol was significantly higher (P < 0.05) than that of the Heatsynch protocol (55.3 ± 7.4 ng/mL). In Estradoublesynch protocol, the total estrogen concentration gradually increased from the day of GnRH administration coinciding with LH peak, and then gradually declined to the basal level until the time of ovulation detection. However, in Heatsynch protocol, the gradual increase in total estrogen concentration after GnRH administration was observed only in those buffalo cows, which responded to treatment with ovulation. In both Estradoublesynch and Heatsynch protocols, ovulatory follicle size increased by treatment with GnRH and EB until the detection of ovulation. The pregnancy rate after the Estradoublesynch protocol (60.0%) was significantly higher (P < 0.05) than that achieved after the Heatsynch protocol (32.5%). Satisfactory success rate using the Estradoublesynch protocol was attributed to the higher release of LH after treatment with GnRH, leading to ovulation in most of the animals and hence creating the optimum follicular size at EB injection for ovulation and pregnancy to occur.  相似文献   

11.
The influence of Buserelin injection and Deslorelin (a GnRH analogue) implants administered on Day 5 of the estrous cycle on plasma concentrations of LH and progesterone (P4), accessory CL formation, and follicle and CL dynamics was examined in nonlactating Holstein cows. On Day 5 (Day 1 = ovulation) following a synchronized estrus, 24 cows were assigned randomly (n = 4 per group) to receive 2 mL saline, i.m. (control), 8 micrograms, i.m. Buserelin or a subcutaneous Deslorelin (DES) implant in concentrations of 75 micrograms, 150 micrograms, 700 micrograms or 2100 micrograms. Blood samples were collected (for LH assay) at 30-min intervals for 2 h before and 12 h after GnRH-treatment from cows assigned to Buserelin, DES-700 micrograms and DES-2100 micrograms treatments and thereafter at 4-h intervals for 48 h. Beginning 24 h after treatment, ovaries were examined by ultrasound at 2-h intervals until ovulation was confirmed. Thereafter, ultrasonography and blood sampling (for P4 assay) was performed daily until a spontaneous ovulation before Day 45. A greater release of LH occurred in response to Deslorelin implants than to Buserelin injection (P < 0.01). Basal levels of LH between 12 and 48 h were higher in DES-700 micrograms group than in DES-2100 micrograms and Buserelin (P < 0.05). The first wave dominant follicle ovulated in all cows following GnRH treatment. Days to CL regression did not differ between treatments, but return to estrus was delayed (44.2 vs 27.2 d; P < 0.01) in cows of DES-2100 micrograms group. All GnRH treatments elevated plasma P4 concentrations, and the highest P4 responses were observed in the DES-700 micrograms and DES-2100 micrograms groups. The second follicular wave emerged earlier in GnRH-treated than in control cows (9.9 vs 12.8 d; P < 0.01). However, emergence of the third dominant follicle was delayed in cows of DES-2100 micrograms treatment (37.0 d) compared with DES-700 micrograms (22.2 d), Buserelin (17.8 d) or control (19.0 d). In conclusion, Deslorelin implants of 700 micrograms increased plasma P4 and LH concentrations and slightly delayed the emergence of the third dominant follicle. On the contrary, Deslorelin implants of 2100 micrograms drastically altered the P4 profiles and follicle dynamics.  相似文献   

12.
The objective was to evaluate the effects of plasma progesterone (P4) concentrations and exogenous eCG on ovulation and pregnancy rates of pubertal Nellore heifers in fixed-time artificial insemination (FTAI) protocols. In Experiment 1 (Exp. 1), on Day 0 (7 d after ovulation), heifers (n = 15) were given 2 mg of estradiol benzoate (EB) im and randomly allocated to receive: an intravaginal progesterone-releasing device containing 0.558 g of P4 (group 0.5G, n = 4); an intravaginal device containing 1 g of P4 (group 1G, n = 4); 0.558 g of P4 and PGF (PGF; 150 μg d-cloprostenol, group 0.5G/PGF, n = 4); or 1 g of P4 and PGF (group 1G/PGF, n = 3). On Day 8, PGF was given to all heifers and intravaginal devices removed; 24 h later (Day 9), all heifers were given 1 mg EB im. In Exp. 2, pubertal Nellore heifers (n = 292) were treated as in Exp. 1, with FTAI on Day 10 (30 to 36 h after EB). In Exp. 3, pubertal heifers (n = 459) received the treatments described for groups 0.5G/PGF and 1G/PGF and were also given 300 IU of eCG im (groups 0.5G/PGF/eCG and 1G/PGF/eCG) at device removal (Day 8). In Exp. 1, plasma P4 concentrations were significantly higher in heifers that received 1.0 vs 0.588 g P4, and were significantly lower in heifers that received PGF on Day 0. In Exp. 2 and 3, there were no significant differences among groups in rates of ovulation (65-77%) or pregnancy (Exp. 2: 26-33%; Exp. 3: 39-43%). In Exp. 3, diameter of the dominant ovarian follicle on Day 9 was larger in heifers given 0.558 g vs 1.0 g P4 (10.3 ± 0.2 vs 9.3 ± 0.2 mm; P < 0.01). In conclusion, lesser amounts of P4 in the intravaginal device or PGF on Day 0 decreased plasma P4 from Days 1 to 8 and increased diameter of the dominant follicle on Day 9. However, neither of these nor 300 IU of eCG on Day 8 significantly increased rates of ovulation or pregnancy.  相似文献   

13.
Current in vitro culture systems may not be adequate to support maturation, fertilization and embryo development of calf oocytes. Thus, we initiated a study to investigate an alternative method of assessing oocyte competence in vivo, initially using oocytes from adults. Experiment 1 was done to determine if follicle puncture would alter subsequent follicle development, ovulation and CL formation. In control (no follicle puncture, n = 3) and treated (follicle puncture, n = 3) heifers, ultrasound-guided transvaginal follicle aspiration was used to ablate all follicles > or = 5 mm at random stages of the estrous cycle to induce synchronous follicular wave emergence among heifers; PGF2 alpha was given 4 d later. Three days after PGF2 alpha, the preovulatory follicle in treated heifers was punctured with a 25-g needle between the exposed and nonexposed portions of the follicular wall, and 200 microL of PBS were infused into the antrum. There was no significant difference between control and treated heifers for mean diameter of the dominant follicle prior to ovulation, the interval to ovulation following PGF2 alpha, or first detection and diameter of the CL. Experiment 2 was designed to assess multiple embryo production following interfollicular transfer of oocytes (i.e., transfer of multiple oocytes from donor follicles to a single recipient preovulatory follicle). Follicular wave emergence was synchronized among control (no follicle puncture, n = 5), oocyte recipient (n = 7) and oocyte donor (n = 5) heifers as in Experiment 1. In control and oocyte recipient heifers, a norgestomet ear implant was placed at the time of ablation and removed 4 d later, at the second PGF2 alpha treatment. In oocyte donor heifers, FSH was given the day after ablation, and, 4 d later, oocytes were collected by transvaginal follicle aspiration, pooled and placed in holding medium. Five or 6 oocytes were loaded into the 25-g needle of the follicle infusion apparatus with < or = 200 microL of transfer medium. Puncture of the preovulatory follicle of recipient heifers was done as in Experiment 1. Immediately thereafter, LH was given to control and oocyte recipient heifers, but only the recipients were inseminated. Ovarian function was assessed by transrectal ultrasonography and control and oocyte recipient heifers were sent to the abattoir 2 or 3 d after ovulation, where excised oviducts were flushed. The interval between LH administration and ovulation (33 to 36 h) was highly synchronous within and among control and oocyte recipient heifers. Four of 5 (80%) ova were collected from controls and 16 of a potential 43 (37%) ova/embryos were recovered from oocyte recipients; 8 embryos from 3 heifers. Thus, the gamete recovery and follicular transfer procedure (GRAFT) did not alter ovulation or subsequent CL formation, and resulted in the recovery of multiple ova/embryos in which a total of 19 oocytes yielded as many as 8 early embryos, a 42% embryo production rate.  相似文献   

14.
Four experiments were conducted to investigate modifications to gonadotropin releasing hormone (GnRH)-based fixed-time Al protocols in beef cattle. In Experiment 1, the effect of reducing the interval from GnRH treatment to prostaglandin (PGF) was examined. Lactating beef cows (n = 111) were given 100 mg gonadorelin (GnRH) on Day 0 (start of treatment) and either 500 microg cloprostenol (PGF) on Day 6 with Al and 100 microg GnRH 60 h later, or PGF on Day 7 with Al and GnRH 48 h later (6- or 7-day Co-Synch regimens). Pregnancy rates were 32/61 (53.3%) versus 26/50 (52.0%), respectively (P = 0.96). In Experiment 2. cattle (n = 196) were synchronized with a 7-day Co-Synch regimen and received either no further treatment or a CIDR-B device (Days 0-7). Pregnancy rates were 32/71 (45.1%) versus 33/77 (42.9%) in cows (P < 0.8), and 9/23 (39.1 %) versus 17/25 (68.0%) in heifers (P < 0.05). In Experiment 3, 49 beef heifers were randomly assigned to receive 12.5 mg pLH on Day 0, PGF on Day 7 and 12.5 mg of pLH on Day 9 with Al 12 h later (pLH Ovsynch), or similar treatment plus a CIDR-B device from Days 0 to 7 (pLH Ovsynch + CIDR-B), or 1 mg estradiol benzoate (EB) and 100 mg progesterone on Day 0, a CIDR-B device from Days 0 to 7 (EB/ P4 + CIDR-B), PGF on Day 7 (at the time of CIDR-B removal) and 1 mg i.m. EB on Day 8 with AI on Day 9 (52 h after PGF). Pregnancy rate in the EB/P4 + CIDR-B group (75.0%) was higher (P < 0.04) than in the pLH Ovsynch group (37.5%): the pLH Ovsynch + CIDR-B group was intermediate (64.7%). In Experiment 4, 266 non-lactating cows were allocated to a 7-day Co-Synch protocol (Co-Synch), a 7-day Co-Synch plus 0.6 mg per head per day melengestrol acetate (MGA) from Days 0 to 6 inclusive (Co-Synch + MGA) or MGA (Days 0-6) plus 2 mg EB and 50 mg progesterone on Day 0. 500 microg PGF on Day 7, 1 mg EB on Day 8 and fixed-time Al 28 h later (EB/ P4 + MGA). Pregnancy rates (P < 0.25) were 44.8% (39/87: Co-Synch), 47.8% (43/90; Co-Synch + MGA), and 60.7% (54/89: EB/P4 + MGA). In conclusion, a 6- or 7-day interval from GnRH to PGF in a Co-Synch regimen resulted in similar pregnancy rates in cows. The addition of a progestin to a Co-Synch or Ovsynch regimen significantly improved pregnancy rates in heifers but not in cows. Progestin-based regimens that included EB consistently resulted in high pregnancy rates to fixed-time Al.  相似文献   

15.
The objectives of this experiment were to determine the effects of 0.5 mg estradiol benzoate, administered intramuscularly 24 h after removal of CIDR-B progesterone containing intravaginal devices, on the time to estrus, ovulation and peak LH concentration in dairy heifers. Ovulatory responses and plasma LH concentrations were examined using 14 Friesian dairy heifers in 2 separate treatment periods. All heifers received a CIDR-B progesterone-containing intravaginal device with an attached 10-mg estradiol benzoate capsule for 12 d. Within each period, 24 h after CIDR-B removal, 7 heifers received an intramuscular injection of 0.5 mg estradiol benzoate while the remaining 7 heifers received an intramuscular injection of a placebo. Blood samples for LH assay were collected at 0, 6 and 12 h, and then every 4 h for 60 h after estradiol injection. Detection of estrus was conducted at 4-h intervals, and ultrasonographical examination to detect ovulation was conducted every 8 h for 88 h after removal of the CIDR-B device. Treatment with estradiol benzoate tended to reduce the time from device removal to the LH peak in Period 1 (median time to LH peak 40.1 vs 63.9 h; P = 6.07). In Period 2, treatment with estradiol had no significant effect on the time to the LH peak, standing estrus or ovulation. We hypothesize that the period effect was due to the stage of cycle at the time of treatment. For heifers treated in Period 1, the stage of cycle was random. However, because of the prior synchronization of estrus, which was implicit in the experimental design, heifers in Period 2 tended to be in late diestrus. The administration of estradiol benzoate after treatment with exogenous progesterone appears to overcome the variability in timing of LH peaks typically occurring in a herd of synchronized heifers due to different stages of follicular development.  相似文献   

16.
Estrous cycles of 10 postpartum cyclic Holstein cows were synchronized using prostaglandin f(2alpha) (PGF(2alpha)) given twice 12 d apart to study the relationship of the onset of estrus, body temperature, milk yield, luteinizing hormone (LH) and progesterone concentration to ovulation. Blood samples and body temperatures (vaginal and rectal) were taken every 4 h until ovulation, starting 4 h prior to the second PGF(2alpha) treatment. All cows were observed for estrus following the second administration of PGF(2alpha). Ultrasound scanning of the ovaries commenced at standing estrus and thereafter every 2 h until the disappearance of the fluid filled preovulatory follicle (ovulation). Two cows failed to ovulate and became cystic following the second PGF(2alpha) treatment. The remaining eight cows exhibited a decline in progesterone to <1.0 ng/ml within 28 h, standing estrus and a measurable rise (> 1.0 degrees C) in vaginal but not rectal temperature, and ovulated 90 +/- 10 h after the second PGF(2alpha) treatment. Onset of standing estrus, LH peak and vaginal temperature were highly correlated (P<0.05) with time of ovulation (0.82, 0.81 and 0.74, respectively). Intervals to ovulation tended to depend upon parity. Pluriparous (n = 4) and biparous (n = 4) cows ovulated within 24 and 30 +/- 3 h from the onset of standing estrus; 22 and 31 +/- 2 h from the LH peak; and 22 and 27 +/- 3 h from peak vaginal temperature (mean +/- standard error of the mean), respectively. The results indicated that the onset of standing estrus and rise in vaginal temperature are good practical parameters for predicting ovulation time in dairy cattle.  相似文献   

17.
The overall objective was to compare the efficacy of GnRH, porcine LH (pLH) and estradiol cypionate (ECP), in a modified Ovsynch/fixed-time AI (FTAI) protocol that included a controlled internal drug [progesterone] release (CIDR) device. In Experiment 1, heifers received a CIDR on Day -10, and PGF (25mg) on Day -3. At CIDR insertion, heifers received 100 microg of GnRH (n=6), 0.5mg of ECP (n=6), 5.0mg of pLH (n=6) or 2 mL of saline (n=7); these treatments were repeated on Day -1, except for ECP, that was repeated on Day -2, concurrent with CIDR-removal. The 5.0 mg pLH was the least effective with a longer interval to ovulation than the other groups combined (102 versus 64 h; P<0.05). Overall mean LH concentrations (1.6 ng/mL) and area under the curve (AUC) did not differ among treatments, but mean peak LH concentration was lower in heifers given 5 mg of pLH compared to all other groups (4.5 versus 10.3 ng/mL; P<0.05). In Experiment 2, heifers on CIDR-based Ovsynch protocols were given 12.5mg pLH (n=6; pLH-low), 25.0 mg pLH (n=6, pLH-high), or 100 microg GnRH (n=5; control). Heifers in the pLH-high group had greater (P<0.01) plasma LH concentrations (between 12 and 20 h) than GnRH-treated heifers, but the pLH treatments did not differ (P>0.10). Area under the curve for LH (ng/32 h) was at least 50% greater (P<0.01) in pLH-treated heifers compared to GnRH-treated heifers (mean, 41.3, 56.3 and 20.3 for pLH-low, pLH-high and GnRH, respectively). Ovulation occurred in 15 of 17 heifers. Progesterone concentrations were higher on Days 9 and 14 in heifers given 25mg of pLH, suggesting enhanced CL function. In Experiment 3, 240 heifers were assigned to CIDR-based Ovsynch/FTAI protocols. The first and second hormonal treatments (with an intervening PGF treatment on Day -3) were GnRH/GnRH (100 microg), ECP/ECP (0.5 mg), pLH/pLH (12.5 mg) or GnRH/ECP, respectively; pregnancy rates were 58.7, 66.1, 45.9 and 48.3%, respectively (ECP/ECP>both pLH/pLH and GnRH/ECP; P相似文献   

18.
Treatments with progestin to synchronize the bovine estrous cycle in the absence of the corpus luteum, induces persistence of a dominant follicle and a reduction of fertility at doses commonly utilized. The objective of the present research was to induce a new wave of ovarian follicular development in heifers in which stage of the estrous cycle was synchronized with norgestomet. Holstein heifers (n=30) were used, in which estrus was synchronized using two doses of PGF2alpha i.m. (25 mg each) 11 days apart. Six days after estrus (day 0=day of estrus) heifers received a norgestomet implant (6 mg of norgestomet). On day 12, heifers were injected with 25 mg of PGF2alpha i.m. and assigned to treatments (T1 to T4) as follows: treatment 1, heifers received a second norgestomet implant (T1: N+N, n=6), treatment 2, received 100 microg of GnRH i.m. (T2: N+GnRH, n=6), treatment 3, 200 mg of progesterone i.m. (T3: N+P4, n=6), treatment 4, control treatment with saline solution i.m. (T4: N+SS); in the four treatments (T1 to T4) implants were removed on day 14. For treatment 5, heifers received 100 microg of GnRH i.m. on day 9 and 25 mg of PGF2alpha i.m. (T5: N+GnRH+PGF2alpha) at the time of implant removal (day 16). Ovarian evaluations using ultrasonographic techniques were performed every 48 h from days 3 to 11 and every 24 h from days 11 to 21. Blood samples were collected every 48 h to analyze for progesterone concentration. A new wave of ovarian follicular development was induced in 3/6, 6/6, 3/6, 1/6 and 6/6, and onset of estrus in 6/6, 0/6, 6/6, 6/6 and 6/6 for T1, T2, T3, T4 and T5, respectively. Heifers from T1, T3 and T4 that ovulated from a persistent follicle, showed estrus 37.5 +/- 12.10 h after implant removal and heifers that developed a new wave of ovarian follicular development showed it at 120.28 +/- 22.81 h (P<0.01). Ovulation occurred at 5.92 +/- 1.72 and 2.22 +/- 1.00 days (P<0.01), respectively. Progesterone concentration was <1 ng/ml from days 7 to 15 in T1, T2 and T4; for T3 progesterone concentration was 2.25 +/- 0.50 ng/ml on day 13 and decreased on day 15 to 0.34 +/- 0.12 ng/ml (P<0.01). For T5, progesterone concentration was 1.66 +/- 0.58 ng/ml on day 15. The more desirable results were obtained with T5, in which 100% of heifers had a new wave of ovarian follicular development induced, with onset of estrus and ovulation synchronized in a short time period.  相似文献   

19.
Thirty-two beef heifers were induced to superovulate by the administration of follicle stimulating hormone-porcine (FSH-P). All heifers received 32 mg FSH-P (total dose) which was injected twice daily in decreasing amounts for 4 d commencing on Days 8 to 10 of the estrous cycle. Cloprostenol was administered at 60 and 72 h after the first injection of FSH-P. Heifers were observed for estrus every 6 h and were slaughtered at known times between 48 to 100 h after the first cloprostenol treatment. The populations of ovulated and nonovulated follicles in the ovaries were quantified immediately after slaughter. Blood samples were taken at 2-h intervals from six heifers from 24 h after cloprostenol treatment until slaughter and the plasma was assayed for luteinizing hormone (LH) concentrations. The interval from cloprostenol injection to the onset of estrus was 41.3 +/- 1.25 h (n = 20). The interval from cloprostenol injection to the preovulatory peak of LH was 43.3 +/- 1.69 h (n = 6). No ovulations were observed in animals slaughtered prior to 64.5 h after cloprostenol (n = 12). After 64.5 h, ovulation had commenced in all animals except in one animal slaughtered at 65.5 h. The ovulation rate varied from 4 to 50 ovulations. Approximately 80% of large follicles (> 10 mm diameter) had ovulated within 12 h of the onset of ovulation. Onset of ovulation was followed by a dramatic decrease in the number of large follicles (> 10 mm) and an increase in the number of small follicles (相似文献   

20.
The role of LH in luteolysis and development of the ovulatory follicle and the involvement of GnRH receptors in estradiol (E2) stimulation of LH secretion were studied in heifers. A pulse of PGF, as indicated by a metabolite, was induced by E2 treatment on Day 15 (Day 0 = ovulation) and LH concentration was reduced with a GnRH-receptor antagonist (acyline) on Days 15, 16, and 17. Blood samples were collected every 6 h on Days 14-17 and hourly for 10 h beginning at the Day-15 treatments. Four groups were used (n = 6): control, acyline, E2, and E2/acyline. The number of LH pulses/heifer during the 10 h posttreatment was greater (P < 0.0002) in the E2 group (2.3 ± 0.4, mean ± SEM) than in the acyline group (0.2 ± 0.2) and was intermediate in the E2/acyline group (1.4 ± 0.2). Concentrations of progesterone in samples collected every 6 h on Day 15 showed a group-by-hour interaction (P < 0.02); concentrations decreased in the acyline group but not in the control group. The 12 heifers in the combined acyline and E2/acyline groups had three follicular waves compared to two waves in 10 of 12 heifers in the combined control and E2 groups. Results (1) supported the hypothesis that LH delays the progesterone decrease associated with luteolysis, (2) supported the hypothesis that LH has a positive effect on the continued development and growth of the selected ovulatory follicle, and (3) indicated that E2 stimulates LH production through an intracellular pathway that involves GnRH receptors on the gonadotropes and a pathway that does not involve the receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号