首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MSCs are considered to be the natural precursors to adipocyte development through the process of adipogenesis. A link has been established between decreased protective effects of EETs or HO-1 and their interaction in metabolic syndrome. Decreases in HO-1 or EET were associated with an increase in adipocyte stem cell differentiation and increased levels of inflammatory cytokines. EET agonist (AKR-I-27-28) inhibited MSC-derived adipocytes and decreased the levels of inflammatory cytokines. We further describe the role of CYP-epoxygenase expression, HO expression, and circulating cytokine levels in an obese mouse, ob/ob(-/-) mouse model. Ex vivo measurements of EET expression within MSCs derived from ob/ob(-/-) showed decreased levels of EETs that were increased by HO induction. This review demonstrates that suppression of HO and EET systems exist in MSCs prior to the development of adipocyte dysfunction. Further, adipocyte dysfunction can be ameliorated by induction of HO-1 and CYP-epoxygenase, i.e. EET.  相似文献   

2.
3.
Dave S  Kaur NJ  Nanduri R  Dkhar HK  Kumar A  Gupta P 《PloS one》2012,7(1):e30831
The phytotherapeutic protein stem bromelain (SBM) is used as an anti-obesity alternative medicine. We show at the cellular level that SBM irreversibly inhibits 3T3-L1 adipocyte differentiation by reducing adipogenic gene expression and induces apoptosis and lipolysis in mature adipocytes. At the molecular level, SBM suppressed adipogenesis by downregulating C/EBPα and PPARγ independent of C/EBPβ gene expression. Moreover, mRNA levels of adipocyte fatty acid-binding protein (ap2), fatty acid synthase (FAS), lipoprotein lipase (LPL), CD36, and acetyl-CoA carboxylase (ACC) were also downregulated by SBM. Additionally, SBM reduced adiponectin expression and secretion. SBM's ability to repress PPARγ expression seems to stem from its ability to inhibit Akt and augment the TNFα pathway. The Akt-TSC2-mTORC1 pathway has recently been described for PPARγ expression in adipocytes. In our experiments, TNFα upregulation compromised cell viability of mature adipocytes (via apoptosis) and induced lipolysis. Lipolytic response was evident by downregulation of anti-lipolytic genes perilipin, phosphodiestersae-3B (PDE3B), and GTP binding protein G(i)α(1), as well as sustained expression of hormone sensitive lipase (HSL). These data indicate that SBM, together with all-trans retinoic-acid (atRA), may be a potent modulator of obesity by repressing the PPARγ-regulated adipogenesis pathway at all stages and by augmenting TNFα-induced lipolysis and apoptosis in mature adipocytes.  相似文献   

4.
5.
6.
7.
Adipogenesis plays a critical role in the initiation and progression of obesity. Although cytochrome P450 (CYP)-derived epoxyeicosatrienoic acids (EETs) have emerged as a potential therapeutic target for cardiometabolic disease, the functional contribution of EETs to adipogenesis and the pathogenesis of obesity remain poorly understood. Our studies demonstrated that induction of adipogenesis in differentiated 3T3-L1 cells (in vitro) and obesity-associated adipose expansion in high-fat diet (HFD)-fed mice (in vivo) significantly dysregulate the CYP epoxygenase pathway and evoke a marked suppression of adipose-derived EET levels. Subsequent in vitro experiments demonstrated that exogenous EET analog administration elicits potent anti-adipogenic effects via inhibition of the early phase of adipogenesis. Furthermore, EET analog administration to mice significantly mitigated HFD-induced weight gain, adipose tissue expansion, pro-adipogenic gene expression, and glucose intolerance. Collectively, these findings suggest that suppression of EET bioavailability in adipose tissue is a key pathological consequence of obesity, and strategies that promote the protective effects of EETs in adipose tissue offer enormous therapeutic potential for obesity and its downstream pathological consequences.  相似文献   

8.
Cyclic phosphatidic acid (cPA) is found in cells from slime mold to humans and has a largely unknown function. We previously reported that cPA significantly inhibited the lipid accumulation in 3T3-L1 adipocytes through inhibition of PPARγ activation. We find here that cPA reduced intracellular triglyceride levels and inhibited the phosphodiesterase 3B (PDE3B) expression in 3T3-L1 adipocytes. PPARγ activation in adipogenesis that can be blocked by treatment with cPA then participates in adipocyte function through inhibition of PDE3B expression. We also found the intracellular cAMP levels in 3T3-L1 adipocytes increased after exposure to cPA. These findings contribute to the participation of cPA on the lipolytic activity in 3T3-L1 adipocytes. Our studies imply that cPA might be a therapeutic compound in the treatment of obesity and obesity-related diseases.  相似文献   

9.
10.
In this study, we demonstrated that the two ginger-derived components have a potent and unique pharmacological function in 3T3-L1 adipocytes via different mechanisms. Both pretreatment of 6-shogaol (6S) and 6-gingerol (6G) significantly inhibited the tumor necrosis factor-α (TNF-α) mediated downregulation of the adiponectin expression in 3T3-L1 adipocytes. Our study demonstrate that (1) 6S functions as a PPARγ agonist with its inhibitory mechanism due to the PPARγ transactivation, and (2) 6G is not a PPARγ agonist, but it is an effective inhibitor of TNF-α induced c-Jun-NH2-terminal kinase signaling activation and thus, its inhibitory mechanism is due to this inhibitory effect.  相似文献   

11.

Objective:

Estrogen‐related receptors (ERRs) are important regulators of energy metabolism. Here we investigated the hypothesis that ERRγ impacts on differentiation and function of brown adipocytes.

Design and Methods:

We characterize the expression of ERRγ in adipose tissues and cell models and investigate the effects of modulating ERR? activity on UCP1 gene expression and metabolic features of brown and white adipocytes.

Results:

ERRγ was preferentially expressed in brown compared to white fat depots, and ERRγ was induced during cold‐induced browning of subcutaneous white adipose tissue and brown adipogenesis. Overexpression of ERRγ positively regulated uncoupling protein 1 (UCP1) expression levels during brown adipogenesis. This ERRγ‐induced augmentation of UCP1 expression was independent of the presence of peroxisome proliferator‐activated receptor coactivator‐1 (PGC‐1α) but was associated with increased rates of fatty acid oxidation in adrenergically stimulated cells. ERR? did not influence mitochondrial biogenesis, and its reduced expression in white adipocytes could not explain their low expression level of UCP1.

Conclusions:

Through its augmenting effect on expression of UCP1, ERRγ may physiologically be involved in increasing the potential for energy expenditure in brown adipocytes, a function that is becoming of therapeutic interest.
  相似文献   

12.
Brown adipose tissue is specialized to generate heat by dissipating chemical energy and may provide novel strategies for obesity treatment in humans. Recently, advances in understanding the pharmacological and dietary agents that contribute to the browning of white adipose tissue have been made to alleviate obesity by promoting energy expenditure. Krill oil is widely used as a health supplement in humans. In this study, the components from krill oil that promote adipogenesis of 3T3-L1 cells were screened to reveal palmitoyl lactic acid (PLA) as a promoter of adipogenesis. The PLA-induced adipocytes contained large number of small lipid droplets. Moreover, similar to the peroxisome proliferator-activated receptor (PPAR)γ agonists, pioglitazone and rosiglitazone, PLA significantly enhances adipogenesis in the presence of dexamethasone compared with PLA alone. Treatment with PLA causes a brown fat-like phenotype in 3T3-L1 cells by enhanced expression of various brown/beige cell-specific genes, such as PR domain containing 16 (Prdm16) and peroxisome proliferative activated receptor, gamma, coactivator 1 alpha (Pgc1a), as well as adiponectin gene. The expression profile of the brown/beige cell-specific genes induced by PLA was similar to that of the PPARγ agonist in 3T3-L1 cells. Our findings suggest that PLA induces a brown fat-like phenotype and, thus, likely has therapeutic potential in treating obesity.  相似文献   

13.
14.
15.
Here, we show that Elovl3 (elongation of very long-chain fatty acids 3) was involved in the regulation of the progression of adipogenesis through activation of peroxisome proliferator-activated receptor (PPAR)γ in mouse adipocytic 3T3-L1 cells. The expression of the Elovl3 gene increased during adipogenesis, the expression pattern of which was similar to that of the PPARγ gene. Troglitazone, a PPARγ agonist, enhanced Elovl3 expression in adipocytes, as it did that of other PPARγ target genes. Promoter-reporter analysis demonstrated that three PPAR-responsive elements in the Elovl3 gene promoter had the potential to activate its expression in 3T3-L1 cells. Moreover, a chromatin immunoprecipitation assay revealed that PPARγ bound these PPAR-responsive elements of the Elovl3 promoter. When the Elovl3 mRNA level was suppressed by its siRNAs, the level of intracellular triglycerides was significantly decreased, and the expression levels of adipogenic, lipolytic, and lipogenic genes were also repressed. In a mammalian two-hybrid assay, C18:1 and C20:1 very long-chain fatty acids (VLCFAs), which are the products of Elovl3 and activated PPARγ function. In addition, these same VLCFAs could prevent the Elovl3 siRNA-mediated suppression of adipogenesis by enhancing the expression of adipogenic, lipolytic, and lipogenic genes in adipocytes. Moreover, this VLCFAs-mediated activation was repressed by a PPARγ antagonist. These results indicate that the expression of the Elovl3 gene was activated by PPARγ during adipogenesis. Elovl3-produced C18:1 and C20:1 VLCFAs acted as agonists of PPARγ in 3T3-L1 cells. Thus, the Elovl3-PPARγ cascade is a novel regulatory circuit for the regulation of adipogenesis through improvement of PPARγ function in adipocytes.  相似文献   

16.
Leukotriene (LT) C4 synthase (LTC4S) catalyzes the conversion from LTA4 to LTC4, which is a proinflammatory lipid mediator in asthma and other inflammatory diseases. LTC4 is metabolized to LTD4 and LTE4, all of which are known as cysteinyl (Cys) LTs and exert physiological functions through CysLT receptors. LTC4S is expressed in adipocytes. However, the function of CysLTs and the regulatory mechanism in adipocytes remain unclear. In this study, we investigated the expression of LTC4S and production of CysLTs in murine adipocyte 3T3-L1 cells and their underlying regulatory mechanisms. Expression of LTC4S and production of LTC4 and CysLTs increased during adipogenesis, whereas siRNA-mediated suppression of LTC4S expression repressed adipogenesis by reducing adipogenic gene expression. The CysLT1 receptor, one of the two LTC4 receptors, was expressed in adipocytes. LTC4 and LTD4 increased the intracellular triglyceride levels and adipogenic gene expression, and their enhancement was suppressed by co-treatment with pranlukast, a CysLT1 receptor antagonist. Moreover, the expression profiles of LTC4S gene/protein during adipogenesis resembled those of peroxisome proliferator-activated receptor (PPAR) γ. LTC4S expression was further upregulated by treatment with troglitazone, a PPARγ agonist. Promoter-luciferase and chromatin immunoprecipitation assays showed that PPARγ directly bound to the PPAR response element of the LTC4S gene promoter in adipocytes. These results indicate that the LTC4S gene expression was enhanced by PPARγ, and LTC4 and LTD4 activated adipogenesis through CysLT1 receptors in 3T3-L1 cells. Thus, LTC4S and CysLT1 receptors are novel potential targets for the treatment of obesity.  相似文献   

17.
ApoA1     
Insulin resistance is a risk factor in the development of type 2 diabetes and is a major cause of atherosclerosis. Reduction in heme oxygenase (HO-1) has been shown to exacerbate vascular dysfunction and insulin resistance in obese mice and involves a decrease in adiponectin levels. Adiponectin is released from mesenchymal stem cell (MSC)-derived adipocytes, its levels are decreased in type 2 diabetes. We hypothesized that the apoA1 mimetic peptide, L-4F, will target the expression of the HO-1-adiponectin axis and reverse adipocyte dysfunction both in vivo and in vitro. The administration of L-4F [2 mg/Kg/daily (i.p.) for 4-week to 8-week-old obese (ob) mice restored adipocyte function, increased adiponectin release (p < 0.05) and decreased the levels of IL-1 and IL-6 (p < 0.05)]. These perturbations were associated with an increase in insulin sensitivity (p < 0.01 vs. untreated ob mice) and decreased glucose levels (309 + 42 vs. 201 + 8 mg/d after L-4F treatment). Treatment of both mesenchymal stem cell (MSC)-derived adipocytes with L-4F (50 μg/ml) increased adiponectin (p < 0.05), decreased IL-1 and IL-6 (p < 0.05) levels and increased MSC-derived adipocyte cell numbers by 50% in S phase (p < 0.05). MSC-derived adipocytes treated with L-4F increased WNT10b and decreased Peg 1/Mest. Inhibition of HO activity reversed the decrease in the adipogenic response gene, Peg 1/Mest. An increase of HO-1 expression by L-4F increased insulin-receptor phosphorylation. These findings support the hypothesis that L-4F increases early adipocyte markers, HO-1-adiponectin, WNT10b and decreases Peg1/Mest, negative regulators of adipocyte differentiation.  相似文献   

18.
19.
Epoxyeicosatrienoic acids (EET), the primary arachidonic acid metabolites of cytochrome P450 2J (CYP2J) epoxygenases, possess potent vasodilatory, anti-inflammatory, antiapoptotic, and mitogenic effects. To date, little is known about the role of CYP2J2 and EETs in tumor necrosis factor (TNF)-α-induced cardiac injury. We utilized cell culture and in vivo models to examine the effects of exogenously applied EETs or CYP2J2 overexpression on TNF-α-induced cardiac apoptosis and cardiac dysfunction. In neonatal rat cardiomyocytes, TNF-α-induced apoptosis was markedly attenuated by EETs or CYP2J2 overexpression, leading to significantly improved cell survival. Further studies showed that TNF-α decreased expression of the antiapoptotic proteins Bcl-2 and Bcl-xL, decreased IκBα and PPARγ, and also inhibited PI3K-dependent Akt and EGFR signaling. Both EETs and CYP2J2 overexpression reversed the effects of TNF-α on these pathways. Furthermore, overexpression of CYP2J2 in rats prevented the decline in cardiac function that is normally observed in TNF-α-challenged animals. These results demonstrate that EETs or CYP2J2 overexpression can prevent TNF-α-induced cardiac cell injury and cardiac dysfunction by inhibiting apoptosis, reducing inflammation, and enhancing PPARγ expression. Targeting the CYP2J2 epoxygenase pathway may represent a novel approach to mitigate cardiac injury in diseases such as heart failure, where increased TNF-α levels are known to occur.  相似文献   

20.
Citrus fruit compounds have many health-enhancing effects. In this study, using a luciferase ligand assay system, we showed that citrus auraptene activates peroxisome proliferator-activated receptor (PPAR)-α and PPARγ. Auraptene induced up-regulation of adiponectin expression and increased the ratio of the amount of high-molecular-weight multimers of adiponectin to the total adiponectin. In contrast, auraptene suppressed monocyte chemoattractant protein (MCP)-1 expression in 3T3-L1 adipocytes. Experiments using PPARγ antagonist demonstrated that these effects on regulation of adiponectin and MCP-1 expression were caused by PPARγ activations. The results indicate that auraptene activates PPARγ in adipocytes to control adipocytekines such as adiponectin and MCP-1 and suggest that the consumption of citrus fruits, which contain auraptene can lead to a partial prevention of lipid and glucose metabolism abnormalities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号