首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Synaptic plasticity -- the modulation of synaptic strength between a presynaptic terminal and a postsynaptic dendrite -- is thought to be a mechanism that underlies learning and memory. It has become increasingly clear that regulated protein synthesis is an important mechanism used to regulate the protein content of synapses that results in changes in synaptic strength. Recent experiments have highlighted a role for the opposing process, that is, regulated protein degradation via the ubiquitin-proteasome system, in synaptic plasticity. These recent findings raise exciting questions as to how proteasomal activity can regulate synapses over different temporal and spatial scales.  相似文献   

2.
BACKGROUND: The ubiquitin proteasome system (UPS) mediates regulated protein degradation and provides a mechanism for closely controlling protein abundance in spatially restricted domains within cells. We hypothesized that the UPS may acutely determine the local concentration of key regulatory proteins at neuronal synapses as a means for locally modulating synaptic efficacy and the strength of neurotransmission communication. RESULTS: We investigated this hypothesis at the Drosophila neuromuscular synapse by using an array of genetic and pharmacological tools. This study demonstrates that UPS components are present in presynaptic boutons and that the UPS functions locally in the presynaptic compartment to rapidly eliminate a conditional transgenic reporter of proteasome activity. We assayed a panel of synaptic proteins to determine whether the UPS acutely regulates the local abundance of native synaptic targets. Both acute pharmacological inhibition of the proteasome (<1 hr) and targeted genetic perturbation of proteasome function in the presynaptic neuron cause the specific accumulation of the essential synaptic vesicle-priming protein DUNC-13. Most importantly, acute pharmacological inhibition of the proteasome (<1 hr) causes a rapid strengthening of neurotransmission (an approximately 50% increase in evoked amplitude) because of increased presynaptic efficacy. The proteasome-dependent regulation of presynaptic protein abundance, both of the exogenous reporter and native DUNC-13, and the modulation of presynaptic neurotransmitter release occur on an intermediate, rapid (tens of minutes) timescale. CONCLUSIONS: Taken together, these studies demonstrate that the UPS functions locally within synaptic boutons to acutely control levels of presynaptic protein and that the rate of UPS-dependent protein degradation is a primary determinant of neurotransmission strength.  相似文献   

3.
Apoptosis is an organised ATP‐dependent programmed cell death that organisms have evolved to maintain homoeostatic cell numbers and eliminate unnecessary or unhealthy cells from the system. Dysregulation of apoptosis can have serious manifestations culminating into various diseases, especially cancer. Accurate control of apoptosis requires regulation of a wide range of growth enhancing as well as anti‐oncogenic factors. Appropriate regulation of magnitude and temporal expression of key proteins is vital to maintain functional apoptotic signalling. Controlled protein turnover is thus critical to the unhindered operation of the apoptotic machinery, disruption of which can have severe consequences, foremost being oncogenic transformation of cells. The ubiquitin proteasome system (UPS) is one such major cellular pathway that maintains homoeostatic protein levels. Recent studies have found interesting links between these two fundamental cellular processes, wherein UPS depending on the cue can either inhibit or promote apoptosis. A diverse range of E3 ligases are involved in regulating the turnover of key proteins of the apoptotic pathway. This review summarises an overview of key E3 ubiquitin ligases involved in the regulation of the fundamental proteins involved in apoptosis, linking UPS to apoptosis and attempts to emphasize the significance of this relationship in context of cancer.  相似文献   

4.
5.
The ubiquitin/proteasome system (UPS) is responsible for the regulated processive degradation of proteins residing in the cytosol, nucleus, and endoplasmic reticulum. The two central players are ubiquitin, a small protein that is conjugated to substrates, and the proteasome, a large multi-subunit proteolytic complex that executes degradation of ubiquitylated proteins. Ubiquitylation and proteasomal degradation are highly dynamic processes. During the last decade, many researchers have started taking advantage of fluorescent proteins, which allow studying the dynamic nature of this system in the context of its natural environment: the living cell. In this review, we will summarize studies that have implemented this approach to examine the UPS and discuss novel insights in the dynamic organization of the UPS.  相似文献   

6.
《BBA》2020,1861(12):148302
From mitochondrial quality control pathways to the regulation of specific functions, the Ubiquitin Proteasome System (UPS) could be compared to a Swiss knife without which mitochondria could not maintain its integrity in the cell. Here, we review the mechanisms that the UPS employs to regulate mitochondrial function and efficiency. For this purpose, we depict how Ubiquitin and the Proteasome participate in diverse quality control pathways that safeguard entry into the mitochondrial compartment. A focus is then achieved on the UPS-mediated control of the yeast mitofusin Fzo1 which provides insights into the complex regulation of this particular protein in mitochondrial fusion. We ultimately dissect the mechanisms by which the UPS controls the degradation of mitochondria by autophagy in both mammalian and yeast systems. This organization should offer a useful overview of this abundant but fascinating literature on the crosstalks between mitochondria and the UPS.  相似文献   

7.
8.
9.
O-GlcNAc修饰是一种特殊的糖基化修饰,几乎参与生物体内所有细胞过程的调控。该修饰与泛素化作为两种重要的蛋白质翻译后修饰形式,都与2型糖尿病、神经退行性疾病、癌症等疾病密切相关。O-GlcNAc修饰对蛋白质泛素化降解途径的影响主要体现在4个方面:(1)O-GlcNAc修饰能够抑制26S蛋白酶体的ATPase活性;(2)O-GlcNAc修饰会减少某些底物蛋白的泛素化降解;(3)O-GlcNAc修饰泛素化相关酶并调节其功能;(4)某些蛋白质(包括调控因子)发生O-GlcNAc修饰后间接影响蛋白质泛素化。  相似文献   

10.
11.
Jinghui Zhao 《Autophagy》2016,12(10):1967-1970
Proteins in eukaryotic cells are continually being degraded to amino acids either by the ubiquitin proteasome system (UPS) or by the autophagic-lysosomal pathway. The breakdown of proteins by these 2 degradative pathways involves totally different enzymes that function in distinct subcellular compartments. While most studies of the UPS have focused on the selective ubiquitination and breakdown of specific cell proteins, macroautophagy/autophagy is a more global nonselective process. Consequently, the UPS and autophagy were traditionally assumed to serve distinct physiological functions and to be regulated in quite different manners. However, recent findings indicate that protein breakdown by these 2 systems is coordinately regulated by important physiological stimuli. The activation of MTORC1 by nutrients and hormones rapidly suppresses proteolysis by both proteasomes and autophagy, which helps promote protein accumulation, whereas in nutrient-poor conditions, MTORC1 inactivation causes the simultaneous activation of these 2 degradative pathways to supply the deprived cells with a source of amino acids. Also this selective breakdown of key anabolic proteins by the UPS upon MTORC1 inhibition can help limit growth-related processes (e.g., cholesterol biosynthesis). Thus, the collaboration of these 2 degradative systems, together with the simultaneous control of protein translation by MTORC1, provide clear advantages to the organism in both growth and starvation conditions.  相似文献   

12.
In this study we show that mitochondrial uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) and thymus mitochondria can be ubiquitinylated and degraded by the cytosolic proteasome. Using a ubiquitin conjugating system, we show that UCP1 can be ubiquitinylated in vitro. We demonstrate that UCP1 is ubiquitinylated in vivo using isolated mitochondria from brown adipose tissue, thymus and whole brown adipocytes. Using an in vitro ubiquitin conjugating-proteasome degradation system, we show that the cytosolic proteasome can degrade UCP1 at a rate commensurate with the half-life of UCP1 (i.e. 30-72h in brown adipocytes and ~3h, in thymocytes). In addition, we demonstrate that the cytoplasmic proteasome is required for UCP1 degradation from mitochondria that the process is inhibited by the proteasome inhibitor MG132 and that dissipation of the mitochondrial membrane potential inhibits degradation of UCP1. There also appears to be a greater amount of ubiquitinylated UCP1 associated with BAT mitochondria from cold-acclimated animals. We have also identified (using immunoprecipitation coupled with mass spectrometry) ubiquitinylated proteins with molecular masses greater than 32kDa, as being UCP1. We conclude that there is a role for ubiquitinylation and the cytosolic proteasome in turnover of mitochondrial UCP1. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

13.
Adipose differentiation-related protein (ADRP) is localized to lipid droplets in most mammalian cells. ADRP, proposed to regulate fatty acid mobilization and lipid droplet formation, is linked to lipid accumulation in foam cells of human atherosclerotic lesions. In this report, we show that ADRP protein accumulates in Chinese hamster ovary fibroblastic cells cultured in the presence of oleic acid but is destabilized when fatty acid sources are removed from culture serum. The latter effect was blocked by the proteasome inhibitor MG132, whereas inhibitors of other proteolytic processes were ineffective. Pulse-chase experiments confirmed that ADRP degradation is inhibited by MG132. Conditions that stimulate ADRP degradation also promoted the covalent modification of ADRP by ubiquitin, whereas the addition of oleic acid to culture media, which promotes triacylglycerol deposition, blunted the appearance of ubiquitinated-ADRP. Treatment with MG132 increased the levels of ADRP associated with lipid droplets, as well as throughout the cytosol. Finally, we demonstrate that the disappearance of ADRP protein after the onset of perilipin expression during adipocyte differentiation is due to degradation by proteasomes Thus, proteolytic degradation of ADRP mediated through the ubiquitin/proteasome pathway appears to be a major mode for the post-translational regulation of ADRP.  相似文献   

14.
15.
16.
BACKGROUND: Molecular chaperones recognize nonnative proteins and orchestrate cellular folding processes in conjunction with regulatory cofactors. However, not every attempt to fold a protein is successful, and misfolded proteins can be directed to the cellular degradation machinery for destruction. Molecular mechanisms underlying the cooperation of molecular chaperones with the degradation machinery remain largely enigmatic so far. RESULTS: By characterizing the chaperone cofactors BAG-1 and CHIP, we gained insight into the cooperation of the molecular chaperones Hsc70 and Hsp70 with the ubiquitin/proteasome system, a major system for protein degradation in eukaryotic cells. The cofactor CHIP acts as a ubiquitin ligase in the ubiquitination of chaperone substrates such as the raf-1 protein kinase and the glucocorticoid hormone receptor. During targeting of signaling molecules to the proteasome, CHIP may cooperate with BAG-1, a ubiquitin domain protein previously shown to act as a coupling factor between Hsc/Hsp70 and the proteasome. BAG-1 directly interacts with CHIP; it accepts substrates from Hsc/Hsp70 and presents associated proteins to the CHIP ubiquitin conjugation machinery. Consequently, BAG-1 promotes CHIP-induced degradation of the glucocorticoid hormone receptor in vivo. CONCLUSIONS: The ubiquitin domain protein BAG-1 and the CHIP ubiquitin ligase can cooperate to shift the activity of the Hsc/Hsp70 chaperone system from protein folding to degradation. The chaperone cofactors thus act as key regulators to influence protein quality control.  相似文献   

17.
18.
Cooperation of molecular chaperones with the ubiquitin/proteasome system   总被引:12,自引:0,他引:12  
Molecular chaperones and energy-dependent proteases have long been viewed as opposing forces that control protein biogenesis. Molecular chaperones are specialized in protein folding, whereas energy-dependent proteases such as the proteasome mediate efficient protein degradation. Recent data, however, suggest that molecular chaperones directly cooperate with the ubiquitin/proteasome system during protein quality control in eukaryotic cells. Modulating the intracellular balance of protein folding and protein degradation may open new strategies for the treatment of human diseases that involve chaperone pathways such as cancer and diverse amyloid diseases.  相似文献   

19.
A transgenic mouse model of the ubiquitin/proteasome system   总被引:13,自引:0,他引:13  
Impairment of the ubiquitin/proteasome system has been proposed to play a role in neurodegenerative disorders such as Alzheimer and Parkinson diseases. Although recent studies confirmed that some disease-related proteins block proteasomal degradation, and despite the existence of excellent animal models of both diseases, in vivo data about the system are lacking. We have developed a model for in vivo analysis of the ubiquitin/proteasome system by generating mouse strains transgenic for a green fluorescent protein (GFP) reporter carrying a constitutively active degradation signal. Administration of proteasome inhibitors to the transgenic animals resulted in a substantial accumulation of GFP in multiple tissues, confirming the in vivo functionality of the reporter. Moreover, accumulation of the reporter was induced in primary neurons by UBB+1, an aberrant ubiquitin found in Alzheimer disease. These transgenic animals provide a tool for monitoring the status of the ubiquitin/proteasome system in physiologic or pathologic conditions.  相似文献   

20.
Regulation of apoptosis by the ubiquitin and proteasome pathway   总被引:6,自引:1,他引:5  
Regulated proteolysis plays important roles in cell physiology as well as in pathological conditions. In most of the cases, regulated proteolysis is carried out by the ubiquitin- and proteasome-dependent proteolytic system, which is also in charge of the bulk of cytoplasmic proteolysis. However, apoptosis or the process of programmed cell death is regulated by a different proteolytic system, i.e . by caspases, a family of specialized cysteine proteases. Nevertheless, there is plenty of evidence of a crosstalk between the apoptotic pathways and the ubiquitin and proteasome system, whose function in apoptosis appears to be very complex. Proteasome inhibitors induce apoptosis in multiple cell types, while in other they are relatively harmless or even prevent apoptosis induced by other stimuli. Proteasomes degrade specific proteins during apoptosis, but on the other hand some components of the proteasome system are degraded by caspases. The knowledge about the involvement of the ubiquitin- and proteasome-dependent system in apoptosis is already clinically exploited, since proteasome inhibitors are being tested as experimental drugs in the treatment of cancer and other pathological conditions, where manipulation of apoptosis is desirable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号