首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ΔNp63α, the dominant negative isoform of the p63 family is an essential survival factor in head and neck squamous cell carcinoma. This isoform has been shown to be downregulated in response to several DNA damaging agents, thereby enabling an effective cellular response to genotoxic agents. Here, we identify a key molecular mechanism underlying the regulation of ΔNp63α expression in response to extrinsic stimuli, such as chemotherapeutic agents. We show that ΔNp63α interacts with NFκB in presence of cisplatin. We find that NFκB promotes ubiquitin-mediated proteasomal degradation of ΔNp63α. Chemotherapy-induced stimulation of NFκB leads to degradation of ΔNp63α and augments trans-activation of p53 family-induced genes involved in the cellular response to DNA damage. Conversely, inhibition of NFκB with siRNA-mediated silencing NFκB expression attenuates chemotherapy induced degradation of ΔNp63α. These data demonstrate that NFκB plays an essential role in regulating ΔNp63α in response to extrinsic stimuli. Our findings suggest that the activation of NFκB may be a mechanism by which levels of ΔNp63α are reduced, thereby rendering the cells susceptible to cell death in the face of cellular stress or DNA damage.Key words: ΔNp63α, NFκB, ubiquitination, cisplatin, head and neck cancer  相似文献   

2.
To investigate the roles of ΔNp63α during corneal wound healing and the genes regulated by ΔNp63α in limbal epithelial cells. Adenovirus or shRNA targeting ΔNp63α were pre-injected into the anterior chamber of rat eyeballs and the central corneal epithelium was then wounded with NaOH. The effects of ΔNp63α expression during wound healing were observed by propidium iodide staining. In addition, limbal epithelial cells were cultured and ectopically expressed ΔNp63α by transfecting Ad-ΔNp63α. Total RNA was extracted from transfected epithelial cells and subjected to a gene expression microarray assay. The results showed that over-expression of ΔNp63α accelerated the process of corneal wound healing while knockdown of ΔNp63α impaired the process. ΔNp63α positively up-regulated several cell growth promoter genes and could be referred as a positive regulator of limbal epithelial cell proliferation. It might also inhibit cell differentiation and cell death by differential target gene regulation.  相似文献   

3.
ΔNp63α, the dominant negative isoform of the p63 family is an essential survival factor in head and neck squamous cell carcinoma. This isoform has been shown to be down regulated in response to several DNA damaging agents, thereby enabling an effective cellular response to genotoxic agents. Here, we identify a key molecular mechanism underlying the regulation of ΔNp63α expression in response to extrinsic stimuli, such as chemotherapeutic agents. We show that ΔNp63α interacts with NF-κΒ in presence of cisplatin. We find that NF-κΒ promotes ubiquitin-mediated proteasomal degradation of ΔNp63α. Chemotherapy-induced stimulation of NF-κΒ leads to degradation of ΔNp63α and augments trans-activation of p53 family-induced genes involved in the cellular response to DNA damage. Conversely, inhibition of NF-κΒ with siRNA-mediated silencing NF-κΒ expression attenuates chemotherapy induced degradation of ΔNp63α . These data demonstrate that NF-κΒ plays an essential role in regulating ΔNp63α in response to extrinsic stimuli. Our findings suggest that the activation of NF-κΒ may be a mechanism by which levels of ΔNp63α are reduced, thereby rendering the cells susceptible to cell death in the face of cellular stress or DNA damage.  相似文献   

4.
5.
6.
7.
Genetic analysis of TP63 indicates that ΔNp63 isoforms are required for preservation of self-renewing capacity in the stem cell compartments of diverse epithelial structures; however, the underlying cellular and molecular mechanisms remain incompletely defined. Cellular quiescence is a common feature of adult stem cells that may account for their ability to retain long-term replicative capacity while simultaneously limiting cellular division. Similarly, quiescence within tumor stem cell populations may represent a mechanism by which these populations evade cytotoxic therapy and initiate tumor recurrence. Here, we present evidence that ΔNp63α, the predominant TP63 isoform in the regenerative compartment of diverse epithelial structuresm, promotes cellular quiescence via activation of Notch signaling. In HC11 cells, ectopic ΔNp63α mediates a proliferative arrest in the 2N state coincident with reduced RNA synthesis characteristic of cellular quiescence. Additionally, ΔNp63α and other quiescence-inducing stimuli enhanced expression of Notch3 in HC11s and breast cancer cell lines, and ectopic expression of the Notch3 intracellular domain (N3ICD) was sufficient to cause accumulation in G0/G1 and increased expression of two genes associated with quiescence, Hes1 and Mxi1. Pharmacologic inhibition of Notch signaling or shRNA-mediated suppression of Notch3 were sufficient to bypass quiescence induced by ΔNp63α and other quiescence-inducing stimuli. These studies identify a novel mechanism by which ΔNp63α preserves long-term replicative capacity by promoting cellular quiescence and identify the Notch signaling pathway as a mediator of multiple quiescence-inducing stimuli, including ΔNp63α expression.  相似文献   

8.
Genetic analysis of TP63 indicates that ΔNp63 isoforms are required for preservation of self-renewing capacity in the stem cell compartments of diverse epithelial structures; however, the underlying cellular and molecular mechanisms remain incompletely defined. Cellular quiescence is a common feature of adult stem cells that may account for their ability to retain long-term replicative capacity while simultaneously limiting cellular division. Similarly, quiescence within tumor stem cell populations may represent a mechanism by which these populations evade cytotoxic therapy and initiate tumor recurrence. Here, we present evidence that ΔNp63α, the predominant TP63 isoform in the regenerative compartment of diverse epithelial structuresm, promotes cellular quiescence via activation of Notch signaling. In HC11 cells, ectopic ΔNp63α mediates a proliferative arrest in the 2N state coincident with reduced RNA synthesis characteristic of cellular quiescence. Additionally, ΔNp63α and other quiescence-inducing stimuli enhanced expression of Notch3 in HC11s and breast cancer cell lines, and ectopic expression of the Notch3 intracellular domain (N3ICD) was sufficient to cause accumulation in G0/G1 and increased expression of two genes associated with quiescence, Hes1 and Mxi1. Pharmacologic inhibition of Notch signaling or shRNA-mediated suppression of Notch3 were sufficient to bypass quiescence induced by ΔNp63α and other quiescence-inducing stimuli. These studies identify a novel mechanism by which ΔNp63α preserves long-term replicative capacity by promoting cellular quiescence and identify the Notch signaling pathway as a mediator of multiple quiescence-inducing stimuli, including ΔNp63α expression.Key words: p63, Notch, quiescence, stem cell  相似文献   

9.
Asherman's syndrome(AS) is a common disease that presents endometrial regeneration disorder. However, little is known about its molecular features of this aregenerative endometrium in AS and how to reconstruct the functioning endometrium for the patients with AS. Here, we report that ΔNp63 is significantly upregulated in residual epithelial cells of the impaired endometrium in AS; the upregulated-ΔNp63 induces endometrial quiescence and alteration of stemness. Importantly, we demonstrate that engrafting high density of autologous bone marrow mononuclear cells(BMNCs) loaded in collagen scaffold onto the uterine lining of patients with AS downregulates ΔNp63 expression, reverses ΔNp63-induced pathological changes, normalizes the stemness alterations and restores endometrial regeneration. Finally, five patients achieved successful pregnancies and live births. Therefore, we conclude that ΔNp63 is a crucial therapeutic target for AS. This novel treatment significantly improves the outcome for the patients with severe AS.  相似文献   

10.
11.
p63 is critical for squamous epithelial development, and elevated levels of the ΔNp63α isoform are seen in squamous cell cancers of various organ sites. However, significant controversy exists regarding the role of p63 isoforms as oncoproteins or tumor suppressors. Here, lentiviruses were developed to drive long-term overexpression of ΔNp63α in primary keratinocytes. Elevated levels of ΔNp63α in vitro promote long-term survival and block both replicative and oncogene-induced senescence in primary keratinocytes, as evidenced by the expression of SA-β-gal and the presence of nuclear foci of heterochromatin protein 1γ. The contribution of ΔNp63α to cancer development was assessed using an in vivo grafting model of experimental skin tumorigenesis that allows distinction between benign and malignant tumors. Grafted lenti-ΔNp63α keratinocytes do not form tumors, whereas lenti-GFP/v-ras(Ha) keratinocytes develop well-differentiated papillomas. Lenti-ΔNp63α/v-ras(Ha) keratinocytes form undifferentiated carcinomas. The average volume of lenti-ΔNp63α/v-ras(Ha) tumors was significantly higher than those in the lenti-GFP/v-ras(Ha) group, consistent with increased BrdU incorporation detected by immunohistochemistry. The block in oncogene-induced senescence corresponds to sustained levels of E2F1 and phosphorylated AKT, and is associated with loss of induction of p16(ink4a)/p19(arf). The relevance of p16(ink4a)/p19(arf) loss was demonstrated in grafting studies of p19(arf)-null keratinocytes, which develop malignant carcinomas in the presence of v-ras(Ha) similar to those arising in wildtype keratinocytes that express lenti-ΔNp63α and v-ras(Ha). Our findings establish that ΔNp63α has oncogenic activity and its overexpression in human squamous cell carcinomas contributes to the malignant phenotype, and implicate its ability to regulate p16(ink4a)/p19(arf) in the process.  相似文献   

12.
13.
14.
ΔNp63α, a proto-oncogene, is up-regulated in non-melanoma skin cancers and directly regulates the expression of both Vitamin D receptor (VDR) and phosphatase and tensin homologue deleted on chromosome ten (PTEN). Since ΔNp63α has been shown to inhibit cell invasion via regulation of VDR, we wanted to determine whether dietary Vitamin D3 protected against UVB induced tumor formation in SKH-1 mice, a model for squamous cell carcinoma development. We examined whether there was a correlation between dietary Vitamin D3 and ΔNp63α, VDR or PTEN expression in vivo in SKH-1 mice chronically exposed to UVB radiation and fed chow containing increasing concentrations of dietary Vitamin D3. Although we observed differential effects of the Vitamin D3 diet on ΔNp63α and VDR expression in chronically irradiated normal mouse skin as well as UVB induced tumors, Vitamin D3 had little effect on PTEN expression in vivo. While low-grade papillomas in mice exposed to UV and fed normal chow displayed increased levels of ΔNp63α, expression of both ΔNp63α and VDR was reduced in invasive tumors. Interestingly, in mice fed high Vitamin D3 chow, elevated levels of ΔNp63α were observed in both local and invasive tumors but not in normal skin suggesting that oral supplementation with Vitamin D3 may increase the proliferative potential of skin tumors by increasing ΔNp63α levels.  相似文献   

15.
The tumor suppressor p53 is pivotal in cell growth arrest and apoptosis upon cellular stresses including DNA damage. Mounting evidence indicates that p63 proteins, which are homologs of p53, are also involved in apoptosis under certain circumstances. In this study, we found that treatment with DNA damage agents leads to down-regulation of ΔNp63α and induces apoptosis in FaDu and HaCat cells carrying mutant p53. Further study shows that DNA damage reduces steady-state mRNA level of ΔNp63α, but has little effect on its protein stability. In addition, knockdown of endogenous ΔNp63α directly induces apoptosis and sensitizes cells to DNA damage, while exogenous expression of ΔNp63α partially confers cellular resistance to DNA damage. Together, these data suggest that DNA damage down-regulates ΔNp63α, which may directly contribute to DNA damage-induced apoptosis.  相似文献   

16.
17.
18.
Chae YS  Kim H  Kim D  Lee H  Lee HO 《FEBS letters》2012,586(8):1128-1134
ΔNp63α is a p63 isoform that is predominantly expressed in the epidermal stem cells and in cancer. To find the regulatory pathways of ΔNp63α, we assessed whether ΔNp63α is acetylated and determined the functional implications of acetylation. First, the hinge region of p63 was shown to be acetylated by PCAF, similarly to other p53 family members. Second, acetylation synergistically induced cytoplasmic localization of ΔNp63α. Finally, acetyl-ΔNp63α was induced during high-density culture, suggesting that acetylation of ΔNp63α may reinforce cell cycle arrest upon cell contact. Altogether, these findings suggest that acetylation of ΔNp63α contributes to the epidermal homeostasis.  相似文献   

19.
20.
The tumor suppressor protein p53 plays a major role in preserving genomic stability. p53 suppresses a pathway leading from normal diploidy to neoplastic aneuploidy (via an intermediate metastable stage of tetraploidy) at two levels: first by preventing the generation/survival of tetraploid cells, and second by repressing their aberrant multipolar division. Here, we report the characterization of p53-/- tetraploid cells, which - at difference with both their p53-/- diploid and their p53+/+ tetraploid counterparts - manifest a marked hyperphosporylation of the mitogen-activated protein kinase MAPK14 (best known as p38α) that is particularly strong during mitosis. In p53-/- tetraploid cells, phosphorylated p38α accumulated at centrosomes during the metaphase and at midbodies during the telophase. Selective knockdown or pharmacological inhibition of p38α had a dramatic effect on p53-/- (but not p53+/+) tetraploids, causing the activation of the spindle assembly checkpoint, an arrest during the metaphase, a major increase in abnormal bipolar and monopolar mitoses, as well as an increment in the generation of multinuclear cells. We conclude that the mitotic progression of p53-/- (but not p53+/+) tetraploids heavily relies on p38α, revealing a novel function for this protein in the context of aneuploidizing cell divisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号